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ABSTRACT. Zeckendorf [13] proved that every positive integer can be expressed as the sum of noncon-
secutive Fibonacci numbers. This theorem inspired a beautiful game, the Zeckendorf Game [2]. Two
players begin with n 1’s and take turns applying rules inspired by the Fibonacci recurrence, Fn+1 =
Fn + Fn−1, until a decomposition without consecutive terms is reached; whoever makes the last move
wins. We look at a game resulting from a generalization of the Fibonacci numbers, the Fibonacci Quilt
sequence [3]. This sequence arises from the two-dimensional geometric property of tiling the plane
through the Fibonacci spiral. Beginning with 1 in the center, we place integers in the squares of the spiral
such that each square contains the smallest positive integer that does not have a decomposition as the
sum of previous terms that do not share a wall. This sequence eventually follows two recurrence rela-
tions, allowing us to construct a variation on the Zeckendorf Game, the Fibonacci Quilt Game. Whereas
some properties of the Fibonacci sequence are inherited by this sequence, the nature of its recurrence
leads to others, such as Zeckendorf’s theorem, no longer holding. Thus, it is of interest to investigate the
generalization of the game in this setting to see which behaviors persist. We prove, similar to the original
game, that this game also always terminates in a legal decomposition. We give a lower bound on game
lengths, showing that, depending on strategies, the length of the game can vary and either player could
win. Finally, we give a conjecture on the length of a random game.

1. INTRODUCTION

1.1. History. The Fibonacci numbers are one of the most famous sequences of all time; appearing
throughout mathematics and nature [9]. Zeckendorf [13] proved that every positive integer has a unique
representation as a sum of nonconsecutive Fibonacci numbers, which are defined by F1 = 1, F2 = 2,
and Fn+1 = Fn + Fn−1; conversely, an equivalent definition of the Fibonacci numbers is the unique
sequence of integers such that every positive integer can be uniquely written as a sum of nonconsecutive
terms. Here, we set the initial conditions F1 = 1 and F2 = 2 rather then F1 = F2 = 1 to preserve
uniqueness. This is the first of many interplays between notions of legal decomposition and definitions
of a sequence, expanded to a large class of linear recurrences (see [6, 7, 11, 12] for examples).

1.1.1. The Zeckendorf Game. We can use these notions of legal decomposition to create interesting
games. The first, the Zeckendorf Game, was defined based on the recurrence relation of the Fibonacci
sequence {Fn}. We briefly summarize the results from [2, 1].

We first introduce some notation. Let {Fn
1 } denote n copies of F1, and in general {Fn

i } denote n
copies of Fi; because we never raise Fibonacci numbers to a power, there should be no confusion as to
what is meant. For example, {F 3

1 ∧F 2
4 ∧F 1

5 } would be three copies of F1 = 1, two copies of F4 = 5,
and one copy of F5 = 8. For simplicity, we omit exponents of 1, so {Fi} = {F 1

i }.

Definition 1.1 (The Two-Player Zeckendorf Game). At the beginning of the game, there is an un-
ordered list of n 1’s. Let F1 = 1, F2 = 2, and Fi+1 = Fi + Fi−1; therefore, the initial list is {Fn

1 }.
On each turn, a player can do one of the following moves.
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(1) If the list contains two consecutive Fibonacci numbers, Fi−1 and Fi, then a player can remove
these and replace with Fi+1. We denote this move {Fi−1 ∧ Fi → Fi+1}.

(2) If the list has two (or more) of the same Fibonacci number, Fi, then
(a) if i = 1, a player can change two F1’s to F2, denoted by {F 2

1 → F2},
(b) if i = 2, a player can change two F2’s to F1 and F3, denoted by {F 2

2 → F1 ∧ F3}, and
(c) if i ≥ 3, a player can change two Fi’s to Fi−2 and Fi+1, denoted by {F 2

i → Fi−2∧Fi+1}.
The players take turns moving. The game ends when no more moves are possible, and the last player
to move wins.

Baird-Smith, Epstein, Flint, and Miller [2, 1] proved that this game always terminates in a finite
number of moves in the Zeckendorf decomposition of n, and then bounded the game length. One of
the key ingredients in their proof is that there is no decomposition involving sums of Fibonacci numbers
with fewer summands than the Zeckendorf decomposition. This is proved using a monovariant related
to the number and indices of each term and has been generalized to many other sequences [5].

Theorem 1.2. The shortest game reaches the Zeckendorf decomposition in n − Z(n) moves, where
Z(n) is the number of terms in the Zeckendorf decomposition of n. The longest game is bounded by
i× n, where i is the index of the largest Fibonacci number less than or equal to n.

Because there is a large range between the lower and upper bounds, they also conjectured on the
length of a random game.

Conjecture 1.3. As n goes to infinity, the number of moves in a random game, when all legal moves
are equally likely, converges to a Gaussian.

Finally, they found that for n > 2, Player 2 has the winning strategy; interestingly, however, the
proof is nonconstructive. Although it is known that Player 2 can win, it is not known how they should
play.

In this paper, we generalize their results by replacing the Fibonacci numbers with the Fibonacci
Quilt. We define this sequence in the next section, and explain why this is an interesting extension.

1.1.2. The Fibonacci Quilt Sequence. Previous work extended Zeckendorf’s theorem to a wide class
of recurrence relations (see [6, 7]), and has extensively studied the behavior of these decompositions.
Lekkerkerker [10] proved the mean number of terms needed in a decomposition grows linearly with
the largest index in the decomposition, and Koloǧlu, Kopp, Miller, and Wang [8, 11, 12] expanded
this to show the distribution of the number of terms in a decomposition of n between two consecutive
terms of the sequence is Gaussian. This work, however, is done on a class of recurrences called PLRS
(for Positive Linear Recurrence Sequences). Briefly, these are fixed depth constant coefficient linear
recurrences where the coefficients are nonnegative integers, the first coefficient in the recurrence is
positive, and the initial conditions are chosen appropriately; if the first coefficient is not positive, then
different behavior can happen, in particular unique decomposition is often lost.

When looking to expand this work further, Catral, Ford, Harris, Miller, and Nelson [3] wanted to
explore new patterns. The Fibonacci Quilt sequence arises from a two-dimensional construction and
is eventually dictated by a recurrence relation with first coefficient zero; thus, the previous work is not
applicable here and although some properties are the same, we will see others are different.

Recall the alternative definition of the Fibonacci numbers stated above; they are the unique sequence
of integers such that every positive integer can be uniquely written as a sum of nonconsecutive terms.
The Fibonacci Quilt sequence is similarly defined on the Fibonacci spiral, where each term added is
the smallest positive integer that cannot be expressed as the sum of nonadjacent previous terms.

The spiral is known in quilting communities as the Log Cabin pattern, giving this sequence its
name. To construct the sequence begin with 1 in the q1 position, then spiral out adding the smallest
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FIGURE 1. Log Cabin Quilt Pattern FIGURE 2. The Fibonacci Quilt
Sequence

positive integer that cannot be expressed as the sum of nonadjacent previous terms; two terms are
adjacent if they share part of a wall. To display more terms, we adjust the size of the spiral and make
all horizontal distances 1 unit, and have the vertical distances the appropriate size from the spiral. For
example, the first positive integer we do not add is 6, because it can be expressed as 2+4. To formalize
our definition of this sequence, we must first formalize what it means to be expressed as the sum of
nonadjacent terms.

Definition 1.4 (FQ-legal decomposition). [3] Let an increasing sequence of positive integers {qi}∞i=1
be given. We declare a decomposition of an integer

m = q`1 + q`2 + · · ·+ q`t (1.1)

(where q`i > q`i+1
) to be an FQ-legal decomposition if, for all i and j, we have |`i − `j | 6= 0, 1, 3, 4

and {1, 3} 6⊂ {`1, `2, . . . , `t}.

To better understand this definition, see Figure 1. Looking at terms less than or equal to itself, qn+4

is adjacent to itself, qn, qn+1, and qn+3, thus, if any of these were present in the decomposition of
some m, then qn+4 could not be present without violating this definition. Further, q1 and q3 cannot
both be present because they are adjacent in the center of the quilt, although no other qn and qn+2 are.
Unlike the Fibonacci numbers, not all integers have a unique FQ-legal decomposition; for example,
8 = 1 + 7 = 3 + 5 are both FQ-legal decompositions of 8.

With this, we can now formalize the definition of the Fibonacci Quilt Sequence.

Definition 1.5 (Fibonacci Quilt Sequence). [3] An increasing sequence of positive integers {qi}∞i=1 is
called the Fibonacci Quilt sequence if every qi (i ≥ 1) is the smallest positive integer that does not
have an FQ-legal decomposition using the elements {q1, . . . , qi−1}.

Although this definition is mathematically precise, in practice it is still computation and time inten-
sive to determine qn, even knowing q1, q2, . . . , qn−1. Fortunately, after a short time, the behavior of
the sequence can be explained by recurrence relations.
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Theorem 1.6 (Recurrence Relations). [3] Let qn denote the nth term in the Fibonacci Quilt. Then,

qn+1 = qn + qn−4 for n ≥ 6,

qn+1 = qn−1 + qn−2 for n ≥ 5,
n∑

i=1

qi = qn+5 − 6. (1.2)

Note that the recurrence relation of minimal length is the second one above, and because the leading
coefficient there (the qn term) is zero, we do not have a PLRS.1

From these recurrence relations we can build our game, which we describe in the next section. Sim-
ilar to the Zeckendorf Game, the rules follow from the recurrence relations that describe the sequence.
However, new features arise from the nonuniqueness of decompositions, and the different behavior of
the quilt at the center coming from its two-dimensional definition.

1.2. Main Results. Although the Fibonacci Quilt Game is adapted from the Zeckendorf Game, it
requires many more moves. This is firstly because in a Zeckendorf Decomposition, there are only two
criteria required for legality: no duplicate terms, and no consecutive terms. The Fibonacci Quilt Game
requires five criteria, which are direct results of Definition 1.4: no duplicate terms, no consecutive
terms, no terms of distance 3 apart, no terms of distance 4 apart, and 1 and 3 cannot both be present.
Each of these requirements creates a new rule.

Each of these rules also requires many base case rules, which is due to the construction of the
Fibonacci Quilt sequence. The quilt behaves differently in the center causing the recurrence relations
in (1.2) to begin later. The base rules are largely intuitive, e.g., 1 ∧ 2 → 3 not 4, as it would be
in the general rules. The general rules arise from how the recurrence relation combines terms. The
most interesting is Rule (2a) below, which states a certain move can only be done if no other moves
are available; without this addition, the game need not terminate. It is similar in spirit to the Greedy-
6 decomposition from [3] (which leads to unique decompositions). We will see later that we can
associate an almost monovariant to the game; it breaks down for Rule (2a), but our requirements imply
that this rule is used at most once, and thus, our quantity is effectively as good as a true monovariant.

The notation used for the Fibonacci Quilt Game is similar to that of the Zeckendorf Game. Let {1n}
or {qn1 } be n copies of 1, and in general {qni } be n copies of qi. For example, {q31 ∧ q23 ∧ q14} would be
three copies of 1, two copies of 3, and one copy of 4.

Definition 1.7 (The Two-Player Fibonacci Quilt Game). At the beginning of the game, there is an
unordered list of n 1’s. Let q1 = 1, q2 = 2, q3 = 3, q4 = 4, and, for i ≥ 5, qi = qi−3+ qi−2; therefore,
the initial list is {qn1 }. Players alternate turns, and on each turn can make one of the following moves.

(1) If the list contains two consecutive Fibonacci Quilt terms, qi and qi+1, then
(a) if i = 1, a player can change q1 and q2 to q3, denoted {q1 ∧ q2 → q3}, and
(b) if i ≥ 2, a player can change qi and qi+1 to qi+3, denoted {qi ∧ qi+1 → qi+3}.

(2) If the list contains two Fibonacci Quilt terms of distance 4 apart, qi and qi+4, then
(a) if i = 1, and no other moves are possible, a player can change q1 and q5 to q2 and q4,

denoted {q1 ∧ q5 → q2 ∧ q4}, and
(b) if i ≥ 2, a player can change qi and qi+4 to qi+5, denoted {qi ∧ qi+4 → qi+5}.

(3) If the list contains two (or more) of the same Fibonacci Quilt term, qi, then
(a) if i = 1, a player can change q1 and q1 to q2, denoted {q21 → q2},
(b) if i = 2, a player can change q2 and q2 to q4, denoted {q22 → q4},

1The first recurrence relation is a PLRS, but the initial conditions for the Fibonacci Quilt come from the second relation,
and thus, although this could generate a PLRS, it does not generate a PLRS for our situation because of the different initial
conditions.
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(c) if i = 3, a player can change q3 and q3 to q2 and q4, denoted {q23 → q2 ∧ q4},
(d) if i = 4, a player can choose to change q4 and q4 to q1 and q6 or q3 and q5, denoted
{q24 → q1 ∧ q6} and {q24 → q3 ∧ q5}, respectively,

(e) if i = 5, a player can change q5 and q5 to q1 and q7, denoted {q25 → q1 ∧ q7},
(f) if i = 6, a player can choose to change q6 and q6 to q2 and q8 or q3 and q7, denoted
{q26 → q2 ∧ q8} and {q26 → q3 ∧ q7}, respectively, and

(g) if i ≥ 7, a player can change qi and qi to qi−5 and qi+2, denoted {q2i → qi−5 ∧ qi+2}.
(4) If the list contains two Fibonacci Quilt terms of distance 3 apart, qi and qi+3, then

(a) if i = 1, 2, a player can change qi and qi+3 to qi+4, denoted {qi ∧ qi+3 → qi+4},
(b) if i = 3, a player can change q3 and q6 to q1 and q7, denoted {q3 ∧ q6 → q1 ∧ q7},
(c) if i = 4, 5, a player can change qi and qi+3 to q1 and qi+4, denoted {qi ∧ qi+3 →

q1 ∧ qi+4},
(d) if i = 6, a player can change q6 and q9 to q2 and q10, denoted {q6 ∧ q9 → q2 ∧ q10}, and
(e) if i ≥ 7, a player can change qi and qi+3 to qi−5 and qi+4, denoted {qi ∧ qi+3 →

qi−5 ∧ qi+4}.
(5) If the list contains q1 and q3, a player can change q1 and q3 to q4, denoted {q1 ∧ q3 → q4}.

The game ends when there are no possible moves, and whomever made the last move wins.

The moves for this game may seem random, but they are a direct result of the recurrence relations
stated in Theorem 1.6, and Definition 1.4 (FQ-legal decomposition). Each rule, when applied, takes
two terms that could not be in a legal decomposition together and changes them to a legal term or pair
of terms. For example, Rule 1 takes terms that are distance 1 apart, or qi and qj such that j − i = 1,
and changes them to a single term.

There are many cases for each rule because the Fibonacci Quilt sequence does not follow the recur-
rence relations of (1.2) at the very beginning, and thus, the same rules cannot be applied there. Each
base rule is created to change terms to a legal term or pair of terms while preserving that the sum of
the list is n.

Two important things to note are Rule (2a) and Rules (3d) and (3f). Rule (2a) can only be applied
when no other moves are possible, that is the list contains no other illegal pairs besides (q1, q5). For
Rules (3d) and (3f), the player has two options because the Fibonacci Quilt Sequence lacks uniqueness,
so n = 8 can be decomposed into 1 + 7 or 3 + 5, both of which are legal. We will show later that for
i ≥ 7, 2qi can only be decomposed into two terms legally by Rule (3g).

With this construction, we first show that it is well-defined, and then study the length of a game.

Theorem 1.8. Every game terminates in a finite number of moves at an FQ-legal decomposition.

Knowing that the game terminates, we can also ask how quickly it can end. We give a result for
the shortest game because we are able to associate a monovariant to the game. By looking at the
smallest change possible for the summands that can be in play (i.e., we can never have a summand
larger qm > n), one could isolate an upper bound as well.

Theorem 1.9. The shortest game on n arrives at an FQ-legal decomposition in n−L(n) moves, where
L(n) is the maximum number of terms in an FQ-legal decomposition of n.

We can also look at the length of a completely random game.

Conjecture 1.10. As n goes to infinity, the number of moves in a random game decomposing n into its
Zeckendorf expansion, when all legal moves are equally likely, converges to a Gaussian.

The next section will provide proofs for each of these theorems, starting with key lemmas and
building up, as well as evidence to support our conjecture. Finally, we will pose some questions we
still hope to answer, as well as possible future work.
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2. THE FIBONACCI QUILT GAME

2.1. The Game Is Playable. The game as stated in Definition 1.7 has two rules where the player
can choose between two possible decompositions. Specifically, if there are two q4, the player may
choose to make the move {q24 → q1 ∧ q6} or the move {q24 → q3 ∧ q5}, and if there are two q6,
the player may choose to make the move {q26 → q2 ∧ q8} or the move {q26 → q3 ∧ q7}. To ensure
that the given definition of the game encompasses all possible moves, we first verify that for n ≥ 7,
{q2i → qi−5 ∧ qi+2} is the only possible move.

Proposition 2.1. Given q2i for i ≥ 7, the only legal way to decompose q2i into two terms is {q2i →
qi−5 ∧ qi+2}.

Proof. Suppose 2qn = qi + qj and, without loss of generality, let i > j. We know 2qn = qn + qn <
qn + qn+1 = qn+3, so i < n+ 3.

If i = n, then j = n gives us an illegal decomposition.
If i < n, then j < n, but the Fibonacci Quilt sequence is strictly increasing, so 2qn 6= qi + qj for

i, j < n.
So, i = n + 1 or i = n + 2. If i = n + 2, then we get the known solution 2qn = qn−5 + qn+2.

If i = n + 2, j = n − 5 is the unique solution to this addition. So, we must verify there are no
legal decompositions for i = n + 1. If j = n − 3, then qi + qj = qn+2 < qn+2 + qn−5 = 2qn, so
n − 2 ≤ j ≤ n. j ∈ {n − 2, n} gives an illegal decomposition with i = n + 1. So, the only possible
case is j = n − 1. But, 2qn < qn−9 + 2qn = qn−1 + qn−4 + qn = qn−1 + qn+1, by applying Rules
(4e) and (2b). Thus, there is no value of j for i = n + 1, and 2qn = qn−5 + qn+2 is the only legal
decomposition using two terms. �

Now that we have established this, we may prove Theorem 1.8, starting with a few crucial lemmas.
Our proof strategy is adapted from that used on the Zeckendorf Game [2, 1].

Lemma 2.2. In one game of the Fibonacci Quilt Game, on some fixed integer n, Rule (2a), {q1∧q5 →
q2 ∧ q4}, can be used at most once.

This is a result of the restriction placed on Rule (2a), that it may only be used when there are no
other possible moves. This is crucial in ensuring that the game terminates.

Proof. The trivial game {12 → 2} shows that we do not necessarily use this rule.
Now, we will consider a game where Rule (2a) has been applied once.
Let us begin before the rule has been applied. Recall that this rule may only be applied when there

are no other possible moves to make. Thus, at the time the rule is applied, our unordered list must
contain {q1 ∧ q5}. Furthermore, it cannot contain q2, q3, q4, q6, q8, or q9, because there is a rule in
Definition 1.7 that applies to each of these and q1 or q5 and to use Rule (2a), no other moves may be
possible. For example, if the list contained q3, then the move {q1∧ q3 → q4} could be applied, so Rule
(2a) could not. A rule that could be applied before (2a) for each of these qi is shown in Figure 3.

FIGURE 3. Rules from Definition 1.7 that combine q1 or q5 with each of the other qi.
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The first term that could possibly be in the list, besides q1 and q5, is q7, because there is no Rule to
combine it with q1 or q5 in Figure 3.

If q7 = 9 is not in the unordered list, then the game terminates after the rule is applied:

{q1 ∧ q5 ∧ qk ∧ · · · → q2 ∧ q4 ∧ qk ∧ · · · },
where qk is the smallest possible next term, k ≥ 10. There can be no possible moves within {qk∧· · · },
or else we would not have been able to apply this rule, so we are finished.

If q7 = 9 is in the unordered list, then the next moves are:

{q1 ∧ q5 ∧ q7 ∧ q` ∧ · · · → q2 ∧ q4 ∧ q9 ∧ q` ∧ · · · → q1 ∧ q2 ∧ q8 ∧ q` ∧ · · · → q3 ∧ q8 ∧ q` ∧ · · · },
where q` is the smallest possible next term, ` ≥ 12. If q12 is not in the list, then the game is over.

If q12 is present, we are in the situation where we have qi−4 ∧ qi followed by a legal decomposition.
Having qi, there are three possible next terms: qi+2, qi+5, or qj for some j > i+5. The possible games
for each of these are illustrated in Figure 4.

FIGURE 4. All possible moves, with terminating positions in {}, positions that return
to the root of the tree in (), and positions that return to {qi+1 ∧ qi+2 ∧ · · · } in [].

If the next term is qj for some j > i+ 5, the game terminates immediately.
If the next term is qi+5, then we reach {qi+1 ∧ qi+5 ∧ · · · }. Let k = i+5, then this can be rewritten

as {qk−4 ∧ qk ∧ · · · }, and the possible games will follow the same possibilities as the root of our tree.
If the next term is qi+2, then we reach {qi+1 ∧ qi+2 ∧ · · · }. Again we have to consider the next

possible term, there are three possibilities: qi+7, qi+8, or qj for some j > i + 8. Note that qi+4 is not
possible here, although it is an acceptable distance from qi+2, because we know qi was present and
there could be no possible moves to begin with.

If the next terms are qi+2 and qj for some j > i+ 8, then the game terminates immediately.
If the next terms are qi+2 and qi+8, then we reach {qi+4 ∧ qi+8 ∧ · · · }. Let l = i+ 8, then this can

be rewritten as {ql−4 ∧ ql ∧ · · · }, and the possible games will follow the same possibilities as the root
of our tree.

If the next terms are qi+2 and qi+7, then we must again consider the next possible term. If it is qj
for some j > i + 12, we reach {qi−1 ∧ qi+8 ∧ qj ∧ · · · } and the game terminates. The other two
possibilities are qi+9 and qi+12.

If the next terms are qi+2, qi+7, and qi+12, then we reach {qi−1∧qi+8∧qi+12∧· · · }. Let t = i+12,
then this can be rewritten as {qt−4∧qt∧· · · }, and the possible games will follow the same possibilities
as the root of our tree.

If the next terms are qi+2, qi+7, and qi+9, then we reach {qi−1∧qi+8∧qi+9∧· · · }. Let s = i+7, then
this can be rewritten as {qs+1 ∧ qs+2 ∧ · · · }, and the possible games will follow the same possibilities
as {qi+1 ∧ qi+2 ∧ · · · }.
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Note in the last two cases that we have an additional term qi−1. However, following the tree, the
next smallest terms that could be created are qi+11 and qi+6, respectively, and there are no rules that
combine qi−1 with anything this large.

Because there are a finite number of terms in the unordered list to begin the game, and each time
through, the tree reduces this number by at least one, we know that we must terminate at some point.
Throughout the tree, the smallest possible term we could create is qi−1 = q11, which cannot be com-
bined with any smaller terms, and thus, we can never create another q5, and the rule cannot be applied
again. �

Knowing that we may only apply this rule at most once, we now must ensure that the game takes on
only a finite number of moves before and potentially after this rule is applied. We do this by introducing
a quantity that is almost a monovariant.

Lemma 2.3. The sum of the square roots of the indices of the qi in the unordered list on any given
turn, besides Rule (2a) of {q1 ∧ q5 → q2 ∧ q4}, is a strictly decreasing monovariant; however, Rule
(2a) can be used at most once and thus, this quantity is effectively a monovariant.

Proof. When considering this monovariant, we must only consider the terms directly affected by the
move, because all other terms will contribute the same to the sum before and after the move. For
clarity, we will show the monovariant in the same order as Definition 1.7. The contribution of the
terms directly affected by the move is always smaller after the move is applied.

(1) Combining Consecutive Terms:
(a) {q1 ∧ q2 → q3}:

√
3−
√
2− 1 < 0.

(b) i ≥ 2 and {qi ∧ qi+1 → qi+3}:
√
i+ 3−

√
i+ 1−

√
i < 0.

(2) Combining qi and qi+4

(a) {q1 ∧ q5 → q2 ∧ q4}: this rule is not included in this lemma.
(b) i ≥ 2 and {qi ∧ qi+4 → qi+5}:

√
i+ 5−

√
i+ 4−

√
i < 0.

(3) Combining 2qi
(a) {q21 → q2}:

√
2− 2 < 0.

(b) {q22 → q4}: 2− 2
√
2 < 0.

(c) {q23 → q2 ∧ q4}: 2 +
√
2− 2

√
3 < 0.

(d) {q24 → q1 ∧ q6}:
√
6 + 1− 4 < 0.

{q24 → q3 ∧ q5}:
√
5 +
√
3− 4 < 0.

(e) {q25 → q1 ∧ q7}:
√
7 + 1− 2

√
5 < 0.

(f) {q26 → q2 ∧ q8}:
√
8 +
√
2− 2

√
6 < 0.

{q26 → q3 ∧ q7}:
√
7 +
√
3− 2

√
6 < 0.

(g) if i ≥ 7, {q2i → qi−5 ∧ qi+2}:
√
i+ 2 +

√
i− 5− 2

√
i < 0.

(4) Combining qi and qi+3

(a) i = 1, 2 and {qi ∧ qi+3 → qi+4}:
√
i+ 4−

√
i+ 3−

√
i < 0.

(b) {q3 ∧ q6 → q1 ∧ q7}:
√
7 + 1−

√
6−
√
3 < 0.

(c) i = 4, 5 and {qi ∧ qi+3 → q1 ∧ qi+4}:
√
i+ 4 + 1−

√
i+ 3−

√
i < 0.

(d) {q6 ∧ q9 → q2 ∧ q10}:
√
10 +

√
2− 3−

√
6 < 0.

(e) i ≥ 7 and {qi ∧ qi+3 → qi−5 ∧ qi+4}:
√
i+ 4 +

√
i− 5−

√
i+ 3−

√
i < 0.

(5) {q1 ∧ q3 → q4}: 2− 1−
√
3 < 0.

For the values of i on which these rules apply, each of the resulting expressions is negative. Thus, the
sum of the square roots of the indices of the terms decreases on each move and is a monovariant. �

With these two lemmas, we can now prove Theorem 1.8.
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Proof. From Lemma 2.2, we know that the rule {q1 ∧ q5 → q2 ∧ q4} is used either once or not at all;
thus, we can consider these two cases. In the first case, we consider two different subgames: the game
before applying this rule and the game after. For the second case, we consider the whole game.

We can see that each of these games is finite using the monovariant from Lemma 2.3. At the
beginning of the game, the sum of the square roots of the indices is

√
n, and with each move, this value

is decreasing. This means that the sum cannot be the same for two different turns and thus, there will
be no repeat turns. Because on each turn the unordered list is essentially a partition of n, of which
there are finitely many, the game must terminate in finitely many moves. Similarly, for a game after
applying {q1 ∧ q5 → q2 ∧ q4}, we begin with some monovariant value less than

√
n and the argument

continues as before.
When the game terminates, it must be at an FQ-legal decomposition of n, because there is a rule in

Definition 1.7 corresponding to each illegal distance in Definition 1.4. Thus, if the decomposition was
not an FQ-legal decomposition, there would be a rule that could be applied and the game would not be
over. �

Now that we know the game terminates, we want to make sure that it is interesting to play; that is,
that the players have choices to make and either player could win.

Lemma 2.4. Given any positive integer n such that n > 3, there are at least two distinct sequences of
moves M = {mi}, where the application of each set of moves to the initial set, denoted by M({q1}n),
leads to an FQ-legal decomposition of n.

Proof. To show this, we must only show that there are two distinct games on n = 4; for n > 4, starting
with these moves would create two distinct games. There are exactly two distinct games on n = 4,
they are:

M1 = {{q21 → q2}, {q1 ∧ q2 → q3}, {q1 ∧ q3 → q4}},
M2 = {{q21 → q2}, {q21 → q2}, {q22 → q4}}.

Thus, there are distinct games for n > 3. �

For n ≤ 3, there is only one unique game. For n = 4, there are two unique games, and for n = 5,
there are four games; however, all games have the same length. Games begin to vary in length at n = 6.

Corollary 2.5. For all n > 5, there are at least two games with different numbers of moves. Further,
there is always a game with an odd number of moves and one with an even number of moves.

Proof. There are two distinct games, one of odd length and one of even length for n = 6. A game of
odd length on n = 6 is

{{q21 → q2}, {q1 ∧ q2 → q3}, {q1 ∧ q3 → q4}, {q1 ∧ q4 → q5}, {q1 ∧ q5 → q2 ∧ q4}}.

A game of even length on n = 6 is

{{q21 → q2}, {q21 → q2}, {q1 ∧ q2 → q3}, {q1 ∧ q3 → q4}}.

For n ≥ 7, it is enough to show that there are two distinct games, one of odd length and one of
even length for n = 7. For n > 7, we know there is some M ′ that takes {qn−71 ∧ q6} to a FQ-legal
decomposition of n. If the length of M ′ is even, combine it with the even game on n = 7 to get an
even length game, and the odd game on n = 7 to get an odd game, and similarly, if the length of M ′ is
odd.

A game of odd length on n = 7 is

{{q21 → q2}, {q1∧q2 → q3}, {q21 → q2}, {q1∧q2 → q3}, {q23 → q2∧q4}, {q1∧q2 → q3}, {q3∧q4 → q6}}.
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A game of even length on n = 7 is

{{q21 → q2}, {q1 ∧ q2 → q3}, {q21 → q2}, {q21 → q2}, {q22 → q4}, {q3 ∧ q4 → q6}}.

Thus, there are game of even and odd length for all n ≥ 6. �

In the next section, we will explore the behavior of the game length more.

2.2. Game Length. For some n, FQ-legal decompositions are not unique. The smallest example of
this is n = 8 = 1 + 7 = 3 + 5. From this, we can define two values for n. Let L(n) be the maximum
number of terms in an FQ-legal decomposition of n, and let l(n) be the minimum number of terms in
an FQ-legal decomposition of n. For n = 8, we see that L(8) = l(8) = 2; however, they are not
always equal. For example 50 = 49 + 1 = 2 + 4 + 16 + 28, so l(50) = 2, but L(50) = 4. Theorem
1.9 says that the shortest possible game on n is achieved in n− L(n) moves.

Proof of Theorem 1.9. Note that this is trivially true for n = 1. It takes 0 = 1 − 1 moves to complete
the game on 1.

Assume that the shortest game on i, for 1 ≤ i ≤ n−1, is achieved in i−L(i) moves. Then, consider
the shortest possible game on n.

If n is in the Fibonacci Quilt Sequence, denote it qj . One can quickly verify, for j < 5, that the
lower bound holds. For j ≥ 5, qj = qj−2 + qj−3. To reach the right side, it would take (qj−2 − 1) +
(qj−3− 1) = qj − 2 moves, using one additional move to combine qj−2 and qj−3 gives us qj in qj − 1
moves.

If n is not in the Fibonacci Quilt Sequence, then write it in an FQ-legal decomposition using the
maximum possible number of terms: n = q`1 + q`2 + · · · + q`L(n)

. To reach the right side, it would
take (q`1 − 1)+ (q`2 − 1)+ · · ·+(q`L(n)

− 1) = (q`1 + q`2 + · · ·+ q`L(n)
)−L(n) = n−L(n) moves.

To see why the game would not terminate in fewer moves, note that every move can reduce the total
number of terms in the unordered list by at most 1. Thus, after n − L(n) − 1 moves, we would still
have at least n − (n − L(n) − 1) = L(n) + 1 terms, which cannot be an FQ-legal decomposition as
L(n) is the maximum. �

From this theorem, we see that we must be able to play the game without using any of the rules that
take two terms to two terms, because we must remove one term on each turn to reach the lower bound.

Corollary 2.6. It is possible, for any n, to play the Fibonacci Quilt Game without using Rules (2a),
(3c–g), (4b–e).

We have obtained this lower bound for many values of n, but an algorithm to reach the lower bound
for all n is still unknown.

For small values of n, it is clear that the lower bound will not be reached in a large number of
possible games. To better understand the length of an average game, we used Mathematica code to
simulate completely random games, where every possible move on each turn was equally likely. We
then looked at the distribution of random games as n increased, leading us to Conjecture 1.10, that the
distribution of these random games will approach a Gaussian curve as n approaches infinity.

We ran 10, 000 simulations of a random game, and plotted the distribution of game lengths. For
small values of n, the Gaussian does not fit as well. Figure 5 shows the distribution of random games
for n = 20.

As we increase n to 200 in Figure 6, we see that the Gaussian curve fits better.
We also looked at the moments of these distributions compared to those with the same mean and

standard deviation, with the differences of these values shown in Figure 7 (note that, because we are
using the best fit Gaussian, there is no error in the mean or second moment).
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FIGURE 5. The distribution of game lengths of 10,000 random games on n = 20.

FIGURE 6. The distribution of game lengths of 10,000 random games on n = 200.

n 2nd Moment Difference 4th Moment Difference 6th Moment Difference
20 0 0.044176 0.219217
60 0 0.009249 0.046575

200 0 0.000008 0.004052

FIGURE 7. The percent difference between the moments of the distribution and the
moments of the Gaussian curve with the same mean and standard deviation.

Thus, a Gaussian curve appears to fit the randomly simulated games well. From this, we can also
see that in a random game, either player has an equal chance of winning, so the game is fair.

3. FUTURE WORK

There are many questions about this game that can still be asked. It is known that if n 6= 2, then
Player 2 has a winning strategy in the original Zeckendorf game. The proof techniques do not easily
generalize to the Fibonacci Quilt Game because of the odd behavior of the quilt at its center, which
necessitates a significantly larger set of strategies to investigate. Does Player 2 still have a winning
strategy for the Fibonacci Quilt Game? If so, what is it? Note, we do not know the answer to the second
question for the original game; the proof that Player 2 has a winning strategy is nonconstructive.

Other questions arise from bounds on game length. Is there one algorithm that reaches the lower
bound for all values of n? Is there a reasonable upper bound on the length of a game? Simulations
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have never given a game of length close to or longer than 2n, and numerical exploration of small n (up
to 120) suggest that the mean and maximum length grow linearly.

Another question, asked by Dylan King at a presentation of this work, relates to L(n) and l(n). We
give an example where L(n) − l(n) = 0, and another where L(n) − l(n) = 2, but can the distance
between these two values grow arbitrarily large?

Lastly, like the Zeckendorf Game, this game has been constructed for two players, but one could
also study how the behavior of this game changes if it was constructed to be played by more people at
once. Who has a winning strategy (as a function of n and the number of people)?
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