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Abstract. For an integer k ≥ 2, let (L
(k)
n )n be the k-generalized Lucas sequence that starts

with 0, . . . , 0, 2, 1 (k terms) and each term afterwards is the sum of the k preceding terms. In
this paper, we find all powers of two that appear in k-generalized Lucas sequences; i.e., we

study the Diophantine equation L
(k)
n = 2m in positive integers n, k,m with k ≥ 2.

1. Introduction

Let k ≥ 2 be an integer. We consider a generalization of Lucas sequence called the k-

generalized Lucas sequence (L
(k)
n )n≥−(k−2) defined as

L(k)
n = L

(k)
n−1 + L

(k)
n−2 + · · · + L

(k)
n−k for all n ≥ 2, (1.1)

with the initial conditions L
(k)
−(k−3) = · · · = L

(k)
−1 = 0, L

(k)
0 = 2, and L

(k)
1 = 1. If k = 2, we

obtain the classical Lucas sequence

L0 = 2, L1 = 1, and Ln = Ln−1 + Ln−2 for n ≥ 2.

(Ln)n≥0 = {2, 1, 3, 4, 7, 11, 18, 29, 47, 76, 123, 199, 322, 521, 843, 1364, . . .}.

If k = 3, then the 3-Lucas sequence is

(L(3)
n )n≥−1 = {0, 2, 1, 3, 6, 10, 19, 35, 64, 118, 217, 399, 734, 1350, 2483, 4567, . . .}.

If k = 4, then the 4-Lucas sequence is

(L(4)
n )n≥−2 = {0, 0, 2, 1, 3, 6, 12, 22, 43, 83, 160, 308, 594, 1145, 2207, 4254, 8200, . . .}.

Finding perfect powers in a binary recurrence sequence is an interesting problem in number
theory. For example, in [4], Bugeaud, Mignotte, and Siksek proved that 1, 2, and 4 are the
only powers of 2 that appear in the Lucas sequence. In [2], Bravo and Luca found all powers of
two that are k-generalized Fibonacci numbers. In general, there are several finiteness theorems
for perfect powers in any nondegenerate binary recurrence sequences. For example, Pethő [9]
and Shorey and Stewart [10] proved independently that there are only finitely many perfect
powers with an exponent greater than 1 in any nondegenerate binary recurrence sequence,
which are, in principle, effectively computable. But, finding the perfect powers is sometimes
a challenge.

In this paper, we investigate the problem of finding powers of 2 in the k-generalized Lucas
sequences. Namely, we determine all the solutions of the Diophantine equation

L(k)
n = 2m, (1.2)

in positive integers n, k,m with k ≥ 2. Following the argument from [2], we prove the following
result.
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Theorem 1.1. All the solutions of the Diophantine equation (1.2) in positive integers n, k,m
with k ≥ 2 are

(n, k,m) ∈ {(0, k, 1), (1, k, 0), (3, 2, 2), (7, 3, 6)}. (1.3)

Namely, we have

L
(k)
0 = 2, L

(k)
1 = 1 = 20, L

(2)
3 = 4 = 22, and L

(3)
7 = 64 = 26.

Our proof of Theorem 1.1 is mainly based on linear forms in logarithms of algebraic numbers
and a reduction algorithm originally introduced by Baker and Davenport in [1]. Here, we use
a version from Dujella and Pethő in [5, Lemma 5(a)].

2. Preliminary Results

2.1. Linear Forms in Logarithms. For any nonzero algebraic number γ of degree d over

Q, whose minimal polynomial over Z is a
∏d

j=1

(
X − γ(j)

)
, we denote the usual absolute log-

arithmic height of γ by

h(γ) =
1

d


log |a|+

d∑

j=1

logmax
(
1, |γ(j)|

)

 .

With this notation, Matveev proved the following theorem (see [6]).

Theorem 2.1. Let γ1, . . . , γs be real algebraic numbers and let b1, . . . , bs be nonzero rational

integer numbers. Let D be the degree of the number field Q(γ1, . . . , γs) over Q and let Aj be a

positive real number satisfying

Aj = max{Dh(γ), | log γ|, 0.16} for j = 1, . . . , s.

Assume that

B ≥ max{|b1|, . . . , |bs|}.

If γb11 · · · γbss − 1 6= 0, then

|γb11 · · · γbss − 1| ≥ exp(−1.4 · 30s+3 · s4.5 ·D2(1 + logD)(1 + logB)A1 · · ·As).

2.2. Reduction Algorithm.

Lemma 2.2. Let M be a positive integer, p/q be a convergent of the continued fraction of the

irrational γ such that q > 6M , and let A,B, µ be some real numbers with A > 0 and B > 1.
Let

ε = ||µq|| −M · ||γq||,

where || · || denotes the distance from the nearest integer. If ε > 0, then there is no solution of

the inequality

0 < mγ − n+ µ < AB−k

in positive integers m, n, and k with

m ≤ M and k ≥
log(Aq/ε)

logB
.
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2.3. Properties of k-generalized Lucas Sequence. In this subsection, we recall some facts
and properties of these sequences that will be used later.

The characteristic polynomial of the k-generalized Lucas numbers (L
(k)
n )n,

Ψk(x) = xk − xk−1 − · · · − x− 1,

is irreducible over Q[x] and has just one root outside the unit circle; the other roots are strictly
inside the unit circle (see, for example, [7], [8] and [11]). In this paper, we denote by α = α(k)
the single real root larger than 1, which is located between 2(1 − 2−k) and 2 (see [11]). We
label these roots as α1, . . . , αk with α = α1. To simplify the notation, in general, we omit the
dependence on k of α.

We now consider, for an integer s ≥ 2, the function

fs(x) =
x− 1

2 + (s+ 1)(x− 2)
.

With this notation, in the following lemma, we recall some properties of the sequence

(L
(k)
n )n≥−(k−2), which will be used in the proof of Theorem 1.1.

Lemma 2.3. [3, page 144]

(a) For all n ≥ 1 and k ≥ 2, we have

αn−1 ≤ L(k)
n ≤ 2αn. (2.1)

(b) The following “Binet-like” formula holds for all n ≥ −(k − 2):

L(k)
n =

k∑

i=1

(2αi − 1)fk(αi)α
n−1
i . (2.2)

(c) For all n ≥ −(k − 2), we have

|L(k)
n − (2α− 1)fk(α)α

n−1| <
3

2
. (2.3)

(d) If 2 ≤ n ≤ k, then

L(k)
n = 3 · 2n−2. (2.4)

Now, we will prove the following lemma, which is a small variation of the upper bound in
inequality (2.1) and will be useful to bound m in terms of n.

Lemma 2.4. For every positive integer n ≥ 2, we have

L(k)
n ≤ 3 · 2n−2. (2.5)

Moreover, if n ≥ k + 2, then the above inequality is strict.

Proof. The proof follows from formula (2.4), L
(k)
n = 3 · 2n−2 − 2 < 3 · 2n−2 for n = k + 1, and

induction for n ≥ k + 2 using the recurrence

L(k)
n = L

(k)
n−1 + · · ·+ L

(k)
n−k < 3 · 2n−3 + · · ·+ 3 · 2n−k−2 ≤ 3(2n−3 + · · ·+ 1) < 3 · 2n−2.

�

3. The Proof of Theorem 1.1

The proof of Theorem 1.1 will be done in three steps.
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3.1. Setup. Clearly, L
(k)
0 = 2 and L

(k)
1 = 1 = 20 for all k ≥ 2. We call these types of solutions

trivial solutions. Now, assume that we have a nontrivial solution (n, k,m) of equation (1.2).
By inequality (2.1) and Lemma 2.4, we have

αn−1 ≤ L(k)
n = 2m < 3 · 2n−2.

So, we get

n ≤ m

(
log 2

log α

)
+ 1 and m < n. (3.1)

In addition to this, by using log 2/ log α < 3/2, it follows immediately from (3.1) that

m < n <
3

2
m+ 1. (3.2)

Because the Diophantine equation (1.2) was already solved for k = 2, we may assume that

k ≥ 3. Because the solutions to equation (1.2) are nontrivial and L
(k)
n = 3 · 2n−2 for 2 ≤ n ≤ k

(see relation (2.4)), in the remainder of the article we suppose that n ≥ k + 1. So, we get
n ≥ 4 and m ≥ 3.

Now, we give an inequality for n and m in terms of k.

Lemma 3.1. If (n, k,m) is a nontrivial solution in integers of (1.2) with k ≥ 2 and n ≥ k+1,
then the inequalities

m < n < 2.2 · 1014k4 log3 k (3.3)

hold.

Proof. Equation (1.2) and inequality (2.3) imply that

|2m − (2α − 1)fk(α)α
n−1| <

3

2
. (3.4)

Dividing both sides of the above inequality by the positive number (2α− 1)fk(α)α
n−1 and

using 2 + (k + 1)(α− 2) < 2 with 1/(2α − 1) < 1/2, we get

|2m · α−(n−1) · ((2α − 1)fk(α))
−1 − 1| <

3

αn−1
. (3.5)

To prove (3.3), we use Theorem 2.1. We take t = 3 and

γ1 = 2, γ2 = α, γ3 = (2α− 1)fk(α), b1 = m, b2 = −(n− 1), b3 = −1.

Let

Λ = 2m · α−(n−1) · ((2α − 1)fk(α))
−1 − 1. (3.6)

We check that Λ 6= 0. Assuming Λ = 0, we are led to

2m =
(2α− 1)(α − 1)

2 + (k + 1)(α − 2)
αn−1.

Conjugating the above relation by the automorphism of Galois σ : α 7→ αi for some i > 1 and
then taking absolute values, we have

8 < 2m = |
(2αi − 1)(αi − 1)

2 + (k + 1)(αi − 2)
αn−1
i | <

6

k − 1
< 8.

Thus, Λ 6= 0.
We have γ1, γ2, γ3 ∈ K = Q(α), so we can take D = k. Because h(γ1) = log 2 and

h(γ2) = (log α)/k < (log 2)/k = (0.693147 . . .)/k, it follows that we can take A1 = k log 2 and
A2 = 0.7. Furthermore, because h(γ3) ≤ 6 log k for all k ≥ 3 (see [3] page 147), we can take
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A3 = 6k log k. By recalling that m ≤ n− 1 from (3.2), we can take B = n− 1. Thus, applying
Theorem 2.1 and taking into account inequality (3.5), we obtain

n− 1 < 3.5 · 1012k4 log2 k log(n− 1),

where we used 1 + log k < 2 log k, 1 + log(n − 1) < 2 log(n − 1), and 1/ log α < 2, which hold
for k ≥ 3 and n ≥ 4.

Thus,
n− 1

log(n− 1)
< 3.5 · 1012k4 log2 k. (3.7)

Because the function x 7→ x/ log x is increasing for all x > e, it is easy to check that the
inequality

x

log x
< A implies x < 2A logA, whenever A ≥ 3.

Thus, the desired inequality follows after taking A = 3.5 · 1012k4 log2 k and using inequality
(3.7) and 29 + 4 log k + 2 log log k < 31 log k, which holds for all k ≥ 3. �

3.2. The Case 3 ≤ k ≤ 168. In this step, we use Lemma 2.2 several times to reduce the
upper bound on n.

To apply Lemma 2.2, we let

z = m log 2− (n− 1) log α− log µ̂, (3.8)

where µ̂ = (2α − 1)fk(α). Then (3.6) and (2.1) imply that z 6= 0 and

|ez − 1| <
3

αn−1
. (3.9)

If z > 0 and after dividing both sides by log α and using 1/ log α < 2 for all k ≥ 3, we obtain

0 < mγ − n+ µ < AB−(n−1), (3.10)

where

γ =
log 2

log α
, µ = 1−

log µ̂

logα
, A = 6, and B = α,

Because α > 1 is a unit in OK, α and 2 are multiplicatively independent, so γ 6∈ Q.
For each k ∈ [3, 168], we find a good approximation of α and a convergent pℓ/qℓ of the

continued fraction of γ such that qℓ > 6M , where M = ⌊2.2 · 1014k4 log3 k⌋, which is an upper
bound on m by Lemma 3.3. After doing this, we use Lemma 2.2 on inequality (3.10). A
computer search with Pari-gp revealed that the maximum value of ⌊log(Aq/ε)/ logB⌋ over all
k ∈ [3, 168] is 172, which according to Lemma 2.2, is an upper bound on n − 1. Hence, we
deduce that the possible solutions (n, k,m) of the equation (1.2) for which k ∈ [3, 168] and
z > 0 have n ≤ 173; therefore m ≤ 172, since m < n.

Next, we treat the case z < 0. It is easy to see that 2/αn−1 < 1/2 holds for all k ≥ 3 and

n ≥ 4. Thus, from (3.9), we have that |ez − 1| < 1/2 and therefore, e|z| < 2. Since z < 0, we
have

0 < |z| ≤ e|z| − 1 = e|z||ez − 1| <
6

αn−1
.

In a similar way, as was done in the case when z > 0, we obtain

0 < (n − 1)γ −m+ µ < AB−(n−1), (3.11)

where

γ =
logα

log 2
, µ =

log µ̂

log 2
, A = 9, B = α.
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In this case, we also took M = ⌊2.2 · 1014k4 log3 k⌋, which is an upper bound on n − 1 by
Lemma 3.1, and we applied Lemma 2.2 to inequality (3.11). In this case, with the help of
Pari-gp, we found that the maximum value of ⌊log(Aq/ε)/ logB⌋ is 174. Thus, the possible
solutions (n, k,m) of equation (1.2) in the range k ∈ [3, 168] and z < 0 have n ≤ 175, so
m ≤ 174.

Finally, we used Mathematica to compare L
(k)
n and 2m for the range 4 ≤ n ≤ 175 and

3 ≤ m ≤ 174, with m < n <
3m

2
+ 1 and checked that the only solution of equation (1.2) in

this range is that given by Theorem 1.1. Therefore, we have dealt with the case k ∈ [3, 168].

3.3. The Case k > 168. Now, we assume that k > 168. Thus, we have

n < 2.2 · 1014k4 log3 k < 2k/2.

In [3, page 150], it was proved that

(2α − 1)fk(α)α
n−1 = 3 · 2n−2 + 3 · 2n−1η +

δ

2
+ ηδ,

where

|η| <
2k

2k
and |δ| <

2n+2

2k/2
.

So, from (3.4) and the above equality, we get

|2m − 3 · 2n−2| < |(2m − (2α − 1)fk(α)α
n−1 + 3 · 2n−1η +

δ

2
+ ηδ|

<
3

2
+

3k · 2n

2k
+

2n+1

2k/2
+

2n+3k

23k/2
.

We factor 3 · 2n−2 on the right side of the above inequality and since 1/2n−1 < 1/2k/2

(because n ≥ k + 1), we obtain

4k

2k
<

1

2k/2
,

8

3 · 2k/2
<

3

2k/2
, and

32k

3 · 23k/2
<

1

2k/2

for k > 169. Thus, we get

|
2m−n+2

3
− 1| <

6

2k/2
. (3.12)

As m < n (see (3.2)), we have m− n+ 2 ≤ 1. Then, it follows from (3.12) that

1

3
< 1−

2m−n+2

3
<

6

2k/2
.

So, 2k/2 < 18, which is impossible since k > 168.
Therefore, we have no solutions (n, k,m) to equation (1.2) with k > 168. This completes

the proof of Theorem 1.1.
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