POWERS OF TWO IN GENERALIZED LUCAS SEQUENCES

SALAH EDDINE RIHANE, BERNADETTE FAYE, FLORIAN LUCA, AND ALAIN TOGBÉ

ABSTRACT. For an integer $k \ge 2$, let $(L_n^{(k)})_n$ be the k-generalized Lucas sequence that starts with $0, \ldots, 0, 2, 1$ (k terms) and each term afterwards is the sum of the k preceding terms. In this paper, we find all powers of two that appear in k-generalized Lucas sequences; i.e., we study the Diophantine equation $L_n^{(k)} = 2^m$ in positive integers n, k, m with $k \ge 2$.

1. INTRODUCTION

Let $k \ge 2$ be an integer. We consider a generalization of Lucas sequence called the kgeneralized Lucas sequence $(L_n^{(k)})_{n\ge -(k-2)}$ defined as

$$L_n^{(k)} = L_{n-1}^{(k)} + L_{n-2}^{(k)} + \dots + L_{n-k}^{(k)} \quad \text{for all } n \ge 2,$$
(1.1)

with the initial conditions $L_{-(k-3)}^{(k)} = \cdots = L_{-1}^{(k)} = 0$, $L_0^{(k)} = 2$, and $L_1^{(k)} = 1$. If k = 2, we obtain the classical Lucas sequence

$$L_0 = 2$$
, $L_1 = 1$, and $L_n = L_{n-1} + L_{n-2}$ for $n \ge 2$.

$$(L_n)_{n>0} = \{\underline{2}, \underline{1}, 3, \underline{4}, 7, 11, 18, 29, 47, 76, 123, 199, 322, 521, 843, 1364, \ldots\}$$

If k = 3, then the 3-Lucas sequence is

$$(L_n^{(3)})_{n\geq -1} = \{0, \underline{2}, \underline{1}, 3, 6, 10, 19, 35, \underline{64}, 118, 217, 399, 734, 1350, 2483, 4567, \ldots\}.$$

If k = 4, then the 4-Lucas sequence is

$$(L_n^{(4)})_{n\geq -2} = \{0, 0, \underline{2}, \underline{1}, 3, 6, 12, 22, 43, 83, 160, 308, 594, 1145, 2207, 4254, 8200, \ldots\}.$$

Finding perfect powers in a binary recurrence sequence is an interesting problem in number theory. For example, in [4], Bugeaud, Mignotte, and Siksek proved that 1, 2, and 4 are the only powers of 2 that appear in the Lucas sequence. In [2], Bravo and Luca found all powers of two that are k-generalized Fibonacci numbers. In general, there are several finiteness theorems for perfect powers in any nondegenerate binary recurrence sequences. For example, Pethő [9] and Shorey and Stewart [10] proved independently that there are only finitely many perfect powers with an exponent greater than 1 in any nondegenerate binary recurrence sequence, which are, in principle, effectively computable. But, finding the perfect powers is sometimes a challenge.

In this paper, we investigate the problem of finding powers of 2 in the k-generalized Lucas sequences. Namely, we determine all the solutions of the Diophantine equation

$$L_n^{(k)} = 2^m, (1.2)$$

in positive integers n, k, m with $k \ge 2$. Following the argument from [2], we prove the following result.

Theorem 1.1. All the solutions of the Diophantine equation (1.2) in positive integers n, k, m with $k \ge 2$ are

$$(n,k,m) \in \{(0,k,1), (1,k,0), (3,2,2), (7,3,6)\}.$$
(1.3)

Namely, we have

$$L_0^{(k)} = 2$$
, $L_1^{(k)} = 1 = 2^0$, $L_3^{(2)} = 4 = 2^2$, and $L_7^{(3)} = 64 = 2^6$.

Our proof of Theorem 1.1 is mainly based on linear forms in logarithms of algebraic numbers and a reduction algorithm originally introduced by Baker and Davenport in [1]. Here, we use a version from Dujella and Pethő in [5, Lemma 5(a)].

2. Preliminary Results

2.1. Linear Forms in Logarithms. For any nonzero algebraic number γ of degree d over \mathbb{Q} , whose minimal polynomial over \mathbb{Z} is $a \prod_{j=1}^{d} (X - \gamma^{(j)})$, we denote the usual absolute logarithmic height of γ by

$$h(\gamma) = \frac{1}{d} \left(\log |a| + \sum_{j=1}^{d} \log \max \left(1, |\gamma^{(j)}| \right) \right).$$

With this notation, Matveev proved the following theorem (see [6]).

Theorem 2.1. Let $\gamma_1, \ldots, \gamma_s$ be real algebraic numbers and let b_1, \ldots, b_s be nonzero rational integer numbers. Let D be the degree of the number field $\mathbb{Q}(\gamma_1, \ldots, \gamma_s)$ over \mathbb{Q} and let A_j be a positive real number satisfying

$$A_j = \max\{Dh(\gamma), |\log \gamma|, 0.16\} \quad \text{for} \quad j = 1, \dots, s.$$

Assume that

$$B \geq \max\{|b_1|,\ldots,|b_s|\}.$$

If $\gamma_1^{b_1} \cdots \gamma_s^{b_s} - 1 \neq 0$, then

$$|\gamma_1^{b_1} \cdots \gamma_s^{b_s} - 1| \ge \exp(-1.4 \cdot 30^{s+3} \cdot s^{4.5} \cdot D^2(1 + \log D)(1 + \log B)A_1 \cdots A_s).$$

2.2. Reduction Algorithm.

Lemma 2.2. Let M be a positive integer, p/q be a convergent of the continued fraction of the irrational γ such that q > 6M, and let A, B, μ be some real numbers with A > 0 and B > 1. Let

$$\varepsilon = ||\mu q|| - M \cdot ||\gamma q||,$$

where $|| \cdot ||$ denotes the distance from the nearest integer. If $\varepsilon > 0$, then there is no solution of the inequality

$$0 < m\gamma - n + \mu < AB^{-k}$$

in positive integers m, n, and k with

$$m \le M$$
 and $k \ge \frac{\log(Aq/\varepsilon)}{\log B}$.

AUGUST 2020

2.3. Properties of k-generalized Lucas Sequence. In this subsection, we recall some facts and properties of these sequences that will be used later.

The characteristic polynomial of the k-generalized Lucas numbers $(L_n^{(k)})_n$,

$$\Psi_k(x) = x^k - x^{k-1} - \dots - x - 1,$$

is irreducible over $\mathbb{Q}[x]$ and has just one root outside the unit circle; the other roots are strictly inside the unit circle (see, for example, [7], [8] and [11]). In this paper, we denote by $\alpha = \alpha(k)$ the single real root larger than 1, which is located between $2(1 - 2^{-k})$ and 2 (see [11]). We label these roots as $\alpha_1, \ldots, \alpha_k$ with $\alpha = \alpha_1$. To simplify the notation, in general, we omit the dependence on k of α .

We now consider, for an integer $s \ge 2$, the function

$$f_s(x) = \frac{x-1}{2+(s+1)(x-2)}$$

With this notation, in the following lemma, we recall some properties of the sequence $(L_n^{(k)})_{n \ge -(k-2)}$, which will be used in the proof of Theorem 1.1.

Lemma 2.3. [3, page 144]

(a) For all $n \ge 1$ and $k \ge 2$, we have

$$\alpha^{n-1} \le L_n^{(k)} \le 2\alpha^n. \tag{2.1}$$

(b) The following "Binet-like" formula holds for all $n \ge -(k-2)$:

$$L_n^{(k)} = \sum_{i=1}^k (2\alpha_i - 1) f_k(\alpha_i) \alpha_i^{n-1}.$$
 (2.2)

(c) For all $n \ge -(k-2)$, we have

$$|L_n^{(k)} - (2\alpha - 1)f_k(\alpha)\alpha^{n-1}| < \frac{3}{2}.$$
(2.3)

(d) If $2 \leq n \leq k$, then

$$L_n^{(k)} = 3 \cdot 2^{n-2}. \tag{2.4}$$

Now, we will prove the following lemma, which is a small variation of the upper bound in inequality (2.1) and will be useful to bound m in terms of n.

Lemma 2.4. For every positive integer $n \ge 2$, we have

$$L_n^{(k)} \le 3 \cdot 2^{n-2}. \tag{2.5}$$

Moreover, if $n \ge k+2$, then the above inequality is strict.

Proof. The proof follows from formula (2.4), $L_n^{(k)} = 3 \cdot 2^{n-2} - 2 < 3 \cdot 2^{n-2}$ for n = k+1, and induction for $n \ge k+2$ using the recurrence

$$L_n^{(k)} = L_{n-1}^{(k)} + \dots + L_{n-k}^{(k)} < 3 \cdot 2^{n-3} + \dots + 3 \cdot 2^{n-k-2} \le 3(2^{n-3} + \dots + 1) < 3 \cdot 2^{n-2}.$$

3. The Proof of Theorem 1.1

The proof of Theorem 1.1 will be done in three steps.

3.1. Setup. Clearly, $L_0^{(k)} = 2$ and $L_1^{(k)} = 1 = 2^0$ for all $k \ge 2$. We call these types of solutions *trivial* solutions. Now, assume that we have a nontrivial solution (n, k, m) of equation (1.2). By inequality (2.1) and Lemma 2.4, we have

$$\alpha^{n-1} \le L_n^{(k)} = 2^m < 3 \cdot 2^{n-2}$$

So, we get

$$n \le m\left(\frac{\log 2}{\log \alpha}\right) + 1 \quad \text{and} \quad m < n.$$
 (3.1)

In addition to this, by using $\log 2/\log \alpha < 3/2$, it follows immediately from (3.1) that

$$m < n < \frac{3}{2}m + 1. \tag{3.2}$$

Because the Diophantine equation (1.2) was already solved for k = 2, we may assume that $k \ge 3$. Because the solutions to equation (1.2) are nontrivial and $L_n^{(k)} = 3 \cdot 2^{n-2}$ for $2 \le n \le k$ (see relation (2.4)), in the remainder of the article we suppose that $n \ge k + 1$. So, we get $n \ge 4$ and $m \ge 3$.

Now, we give an inequality for n and m in terms of k.

Lemma 3.1. If (n, k, m) is a nontrivial solution in integers of (1.2) with $k \ge 2$ and $n \ge k+1$, then the inequalities

$$m < n < 2.2 \cdot 10^{14} k^4 \log^3 k \tag{3.3}$$

hold.

Proof. Equation (1.2) and inequality (2.3) imply that

$$|2^m - (2\alpha - 1)f_k(\alpha)\alpha^{n-1}| < \frac{3}{2}.$$
(3.4)

Dividing both sides of the above inequality by the positive number $(2\alpha - 1)f_k(\alpha)\alpha^{n-1}$ and using $2 + (k+1)(\alpha - 2) < 2$ with $1/(2\alpha - 1) < 1/2$, we get

$$|2^{m} \cdot \alpha^{-(n-1)} \cdot ((2\alpha - 1)f_k(\alpha))^{-1} - 1| < \frac{3}{\alpha^{n-1}}.$$
(3.5)

To prove (3.3), we use Theorem 2.1. We take t = 3 and

$$\gamma_1 = 2$$
, $\gamma_2 = \alpha$, $\gamma_3 = (2\alpha - 1)f_k(\alpha)$, $b_1 = m$, $b_2 = -(n - 1)$, $b_3 = -1$.

Let

$$\Lambda = 2^{m} \cdot \alpha^{-(n-1)} \cdot ((2\alpha - 1)f_k(\alpha))^{-1} - 1.$$
(3.6)

We check that $\Lambda \neq 0$. Assuming $\Lambda = 0$, we are led to

$$2^{m} = \frac{(2\alpha - 1)(\alpha - 1)}{2 + (k+1)(\alpha - 2)} \alpha^{n-1}$$

Conjugating the above relation by the automorphism of Galois $\sigma : \alpha \mapsto \alpha_i$ for some i > 1 and then taking absolute values, we have

$$8 < 2^{m} = \left|\frac{(2\alpha_{i} - 1)(\alpha_{i} - 1)}{2 + (k+1)(\alpha_{i} - 2)}\alpha_{i}^{n-1}\right| < \frac{6}{k-1} < 8.$$

Thus, $\Lambda \neq 0$.

We have $\gamma_1, \gamma_2, \gamma_3 \in \mathbb{K} = \mathbb{Q}(\alpha)$, so we can take D = k. Because $h(\gamma_1) = \log 2$ and $h(\gamma_2) = (\log \alpha)/k < (\log 2)/k = (0.693147...)/k$, it follows that we can take $A_1 = k \log 2$ and $A_2 = 0.7$. Furthermore, because $h(\gamma_3) \leq 6 \log k$ for all $k \geq 3$ (see [3] page 147), we can take

AUGUST 2020

THE FIBONACCI QUARTERLY

 $A_3 = 6k \log k$. By recalling that $m \le n-1$ from (3.2), we can take B = n-1. Thus, applying Theorem 2.1 and taking into account inequality (3.5), we obtain

$$n - 1 < 3.5 \cdot 10^{12} k^4 \log^2 k \log(n - 1),$$

where we used $1 + \log k < 2 \log k$, $1 + \log(n-1) < 2 \log(n-1)$, and $1/\log \alpha < 2$, which hold for $k \ge 3$ and $n \ge 4$.

Thus,

$$\frac{n-1}{\log(n-1)} < 3.5 \cdot 10^{12} k^4 \log^2 k.$$
(3.7)

Because the function $x \mapsto x/\log x$ is increasing for all x > e, it is easy to check that the inequality

$$\frac{x}{\log x} < A \text{ implies } x < 2A \log A, \text{ whenever } A \ge 3.$$

Thus, the desired inequality follows after taking $A = 3.5 \cdot 10^{12} k^4 \log^2 k$ and using inequality (3.7) and $29 + 4 \log k + 2 \log \log k < 31 \log k$, which holds for all $k \ge 3$.

3.2. The Case $3 \le k \le 168$. In this step, we use Lemma 2.2 several times to reduce the upper bound on n.

To apply Lemma 2.2, we let

$$z = m \log 2 - (n-1) \log \alpha - \log \widehat{\mu}, \tag{3.8}$$

where $\widehat{\mu} = (2\alpha - 1)f_k(\alpha)$. Then (3.6) and (2.1) imply that $z \neq 0$ and

$$|e^z - 1| < \frac{3}{\alpha^{n-1}}.$$
(3.9)

If z > 0 and after dividing both sides by $\log \alpha$ and using $1/\log \alpha < 2$ for all $k \ge 3$, we obtain

$$0 < m\gamma - n + \mu < AB^{-(n-1)}, \tag{3.10}$$

where

$$\gamma = \frac{\log 2}{\log \alpha}, \quad \mu = 1 - \frac{\log \widehat{\mu}}{\log \alpha}, \quad A = 6, \text{ and } B = \alpha,$$

Because $\alpha > 1$ is a unit in $\mathcal{O}_{\mathbb{K}}$, α and 2 are multiplicatively independent, so $\gamma \notin \mathbb{Q}$.

For each $k \in [3, 168]$, we find a good approximation of α and a convergent p_{ℓ}/q_{ℓ} of the continued fraction of γ such that $q_{\ell} > 6M$, where $M = \lfloor 2.2 \cdot 10^{14} k^4 \log^3 k \rfloor$, which is an upper bound on m by Lemma 3.3. After doing this, we use Lemma 2.2 on inequality (3.10). A computer search with Pari-gp revealed that the maximum value of $\lfloor \log(Aq/\varepsilon)/\log B \rfloor$ over all $k \in [3, 168]$ is 172, which according to Lemma 2.2, is an upper bound on n-1. Hence, we deduce that the possible solutions (n, k, m) of the equation (1.2) for which $k \in [3, 168]$ and z > 0 have $n \leq 173$; therefore $m \leq 172$, since m < n.

Next, we treat the case z < 0. It is easy to see that $2/\alpha^{n-1} < 1/2$ holds for all $k \ge 3$ and $n \ge 4$. Thus, from (3.9), we have that $|e^z - 1| < 1/2$ and therefore, $e^{|z|} < 2$. Since z < 0, we have

$$0 < |z| \le e^{|z|} - 1 = e^{|z|} |e^z - 1| < \frac{6}{\alpha^{n-1}}.$$

In a similar way, as was done in the case when z > 0, we obtain

$$0 < (n-1)\gamma - m + \mu < AB^{-(n-1)}, \tag{3.11}$$

where

$$\gamma = \frac{\log \alpha}{\log 2}, \quad \mu = \frac{\log \mu}{\log 2}, \quad A = 9, \quad B = \alpha$$

258

In this case, we also took $M = \lfloor 2.2 \cdot 10^{14} k^4 \log^3 k \rfloor$, which is an upper bound on n-1 by Lemma 3.1, and we applied Lemma 2.2 to inequality (3.11). In this case, with the help of Pari-gp, we found that the maximum value of $\lfloor \log(Aq/\varepsilon)/\log B \rfloor$ is 174. Thus, the possible solutions (n, k, m) of equation (1.2) in the range $k \in [3, 168]$ and z < 0 have $n \leq 175$, so $m \leq 174$.

Finally, we used Mathematica to compare $L_n^{(k)}$ and 2^m for the range $4 \le n \le 175$ and $3 \le m \le 174$, with $m < n < \frac{3m}{2} + 1$ and checked that the only solution of equation (1.2) in this range is that given by Theorem 1.1. Therefore, we have dealt with the case $k \in [3, 168]$.

3.3. The Case k > 168. Now, we assume that k > 168. Thus, we have

$$n < 2.2 \cdot 10^{14} k^4 \log^3 k < 2^{k/2}$$

In [3, page 150], it was proved that

$$(2\alpha - 1)f_k(\alpha)\alpha^{n-1} = 3 \cdot 2^{n-2} + 3 \cdot 2^{n-1}\eta + \frac{\delta}{2} + \eta\delta,$$

where

$$|\eta| < \frac{2k}{2^k}$$
 and $|\delta| < \frac{2^{n+2}}{2^{k/2}}$.

So, from (3.4) and the above equality, we get

$$\begin{aligned} |2^m - 3 \cdot 2^{n-2}| &< |(2^m - (2\alpha - 1)f_k(\alpha)\alpha^{n-1} + 3 \cdot 2^{n-1}\eta + \frac{\delta}{2} + \eta\delta| \\ &< \frac{3}{2} + \frac{3k \cdot 2^n}{2^k} + \frac{2^{n+1}}{2^{k/2}} + \frac{2^{n+3}k}{2^{3k/2}}. \end{aligned}$$

We factor $3 \cdot 2^{n-2}$ on the right side of the above inequality and since $1/2^{n-1} < 1/2^{k/2}$ (because $n \ge k+1$), we obtain

$$\frac{4k}{2^k} < \frac{1}{2^{k/2}}, \quad \frac{8}{3 \cdot 2^{k/2}} < \frac{3}{2^{k/2}}, \quad \text{and} \quad \frac{32k}{3 \cdot 2^{3k/2}} < \frac{1}{2^{k/2}}$$

for k > 169. Thus, we get

$$\left|\frac{2^{m-n+2}}{3} - 1\right| < \frac{6}{2^{k/2}}.$$
(3.12)

As m < n (see (3.2)), we have $m - n + 2 \le 1$. Then, it follows from (3.12) that

$$\frac{1}{3} < 1 - \frac{2^{m-n+2}}{3} < \frac{6}{2^{k/2}}.$$

So, $2^{k/2} < 18$, which is impossible since k > 168.

Therefore, we have no solutions (n, k, m) to equation (1.2) with k > 168. This completes the proof of Theorem 1.1.

Acknowledgements

We thank the referee for comments that improved the quality of this manuscript. BF was partially supported by a grant from the Simons Foundation, FL was partially supported by grant no. CPRR160325161141 and an A-rated scientist award, both from the NRF of South Africa, and by grant no. 17-02804S of the Czech Granting Agency, and AT was supported in part by Purdue University Northwest.

AUGUST 2020

THE FIBONACCI QUARTERLY

References

- [1] A. Baker and H. Davenport, The equations $3x^2 2 = y^2$ and $8x^2 7 = z^2$, Quart. J. Math. Oxford Ser., **20.1** (1969), 129–137.
- [2] J. J. Bravo and F. Luca, Powers of two in generalized Fibonacci sequences, Rev. Colombiana Mat., 46 (2012), 67–79.
- [3] J. J. Bravo and F. Luca, *Repdigits in k-Lucas sequences*, Proc. Indian Acad. Sci. Math. Sci., **124.2** (2014), 141–154.
- [4] Y. Bugeaud, M. Mignotte, and S. Siksek, Classical and modular approaches to exponential Diophantine equations. I. Fibonacci and Lucas perfect powers, Ann. of Math., 163 (2006), 969–1018.
- [5] A. Dujella and A. Pethő, A generalization of a theorem of Baker and Davenport, Quart. J. Math. Oxford Ser., 49.3 (1998), 291–306.
- [6] E. M. Matveev, An explicit lower bound for a homogeneous rational linear form in the logarithms of algebraic numbers, II, Izv. Math., 64.6 (2000) 1217–1269.
- [7] E. P. Jr. Miles, Generalized Fibonacci numbers and associated matrices, Amer. Math. Monthly, 67 (1960), 745–752.
- [8] M. D. Miller, Mathematical notes: On generalized Fibonacci numbers, Amer. Math. Monthly, 78 (1971), 1108–1109.
- [9] A. Pethő, Perfect powers in second order linear recurrences, J. Number Theory, 15 (1982), 5–13.
- [10] T. N. Shorey and C. L. Stewart, On the Diophantine equation $ax^{2t} + bx^ty + cy^2 = d$ and pure powers in recurrence sequences, Math. Scand., **52** (1983), 24–36.
- [11] D. A. Wolfram, Solving generalized Fibonacci recurrences, The Fibonacci Quarterly, 36.2 (1998), 129–145.

MSC2010: 11B39, 11J86.

DEPARTMENT OF MATHEMATICS, INSTITUTE OF SCIENCE AND TECHNOLOGY, UNIVERSITY CENTER OF MILA, ALGERIA.

Email address: salahrihane@hotmail.fr

DEPARTMENT OF MATHEMATICS, UNIVERSITY GASTON BERGER OF SAINT-LOUIS (UBG), SAINT-LOUIS, SENEGAL

Email address: bernadette.fayee@gmail.com

School of Mathematics, University of the Witwatersrand, Private Bag 3, Wits 2050, Johan-Nesburg, South Africa; Research Group in Algebraic Structures and Applications, King Abdu-Laziz University, Jeddah, Saudi Arabia; Max Planck Institute for Mathematics, Vivatsgasse 7, 53111 Bonn, Germany; Department of Mathematics, Faculty of Sciences, University of Ostrava, 30 Dubna 22, 701 03 Ostrava 1, Czech Republic

Email address: Florian.Luca@wits.ac.za

DEPARTMENT OF MATHEMATICS, STATISTICS, AND COMPUTER SCIENCE, PURDUE UNIVERSITY NORTHWEST, 1401 S, U.S. 421, WESTVILLE IN 46391, USA

Email address: atogbe@pnw.edu