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Abstract. Let a, b ∈ N be relatively prime. We consider (a − 1)(b − 1)/2, which arises in
the study of the pqth cyclotomic polynomial, where p, q are distinct primes. We prove two
possible representations of (a − 1)(b − 1)/2 as nonnegative integral linear combinations of a
and b. Surprisingly, for each pair (a, b), only one of the two representations exists and the
representation is also unique. We then investigate the representations of (Fn−1)(Fn+1−1)/2
and (Fn − 1)(Fn+2 − 1)/2, where Fi is the ith Fibonacci number, and observe several nice
patterns.

1. Motivation and Main Results

The nth cyclotomic polynomial is de�ned as

Φn(x) =
n∏

m=1, (m,n)=1

(x− e
2πim
n ).

Naturally, much work has been done on the values of the coe�cients of Φn(x). Numbers of
the form (a − 1)(b − 1)/2 with (a, b) = 1 arise in the study of the midterm coe�cient of the
pqth cyclotomic polynomial, where p, q are distinct primes. (Note that the degree of Φpq(x)
is φ(pq) = (p− 1)(q − 1), where φ is the Euler totient function, so its midterm coe�cient has
degree (p− 1)(q− 1)/2.) In particular, these polynomials have been fully characterized by the
work of Beiter [1], Carlitz [2], and Lam and Leung [6]. These authors used di�erent and clever
approaches.
In computing the midterm coe�cient of Φpq(x), Beiter sketched a proof that (p−1)(q−1)/2

can be uniquely written as αq + βp + δ, where 0 ≤ α ≤ p − 1, β ≥ 0, and δ ∈ {0, 1}. In this
article, we provide an alternate proof of the result applied to any relatively prime numbers.

Theorem 1.1. Let a, b ∈ N be relatively prime. Consider the following two equations.

xa+ yb =
(a− 1)(b− 1)

2
. (1.1)

xa+ yb+ 1 =
(a− 1)(b− 1)

2
. (1.2)

Exactly one of the two equations has nonnegative integral solution(s) and the solution is unique.

Example 1.2. We observe that both representations of (a− 1)(b− 1)/2 can happen. If a = 3
and b = 5, we have 1 · 3 + 0 · 5 + 1 = (3 − 1)(5 − 1)/2. If a = 11 and b = 31, we have
8 · 11 + 2 · 31 = (11 − 1)(31 − 1)/2. Our theorem is also related to Problem E1637 [5], which
states that for k ≥ (a − 1)(b − 1), there exist nonnegative solution(s) to xa + yb = k. Our
theorem gives examples of k smaller than (a− 1)(b− 1), which still makes xa+ yb = k have a
unique nonnegative solution.

Corollary 1.3. Let p, q be distinct primes. Then (p − 1)(q − 1)/2 can be uniquely written as
αq + βp+ δ for some 0 ≤ α ≤ p− 1, β ≥ 0, and δ ∈ {0, 1}.
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This corollary is what Beiter used in computing the midterm coe�cient of Φpq(x). We now
present another proof, which is shorter with the use of a strong theorem of Dresden, that was
not available when [1] �rst appeared.

Alternate proof of Corollary 1.3. By [4, Theorem 1], the midterm coe�cient of Φpq(x) is odd.
By [1, Theorem 1], (p− 1)(q − 1)/2 = αq + βp+ δ in exactly one way. �

Next, given a pair of consecutive Fibonacci numbers (Fn, Fn+1), we investigate the nonneg-
ative integral solutions to

Fnx+ Fn+1y = (Fn − 1)(Fn+1 − 1)/2, (1.3)

1 + Fnx+ Fn+1y = (Fn − 1)(Fn+1 − 1)/2. (1.4)

From Theorem 1.1 and (Fn, Fn+1) = 11, we know that exactly one of these equations has
a unique nonnegative integral solution. By convention, we index the Fibonacci sequence as
follows:

F1 = 1, F2 = 1, F3 = 2, F4 = 3, F5 = 5, . . . .

Table 1 provides the �rst several cases.

n Fn Fn+1 Equation x y
3 2 3 (1.4) 0 0
4 3 5 (1.4) 1 0
5 5 8 (1.4) 1 1
6 8 13 (1.3) 2 2
7 13 21 (1.3) 6 2
8 21 34 (1.3) 6 6
9 34 55 (1.4) 10 10
10 55 89 (1.4) 27 10
11 89 144 (1.4) 27 27
12 144 233 (1.3) 44 44
13 233 377 (1.3) 116 44
14 377 610 (1.3) 116 116

Table 1

We observe two patterns here. First, equation (1.3) and equation (1.4) are used alternatively
with period 3. Second, the �rst and the third row of each period give x = y. The two patterns
are summarized by the following theorem.

1from Cassini's identity: Fn−1Fn+1 − F 2
n = (−1)n.
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Theorem 1.4. For k ≥ 1, the following formulas are correct.

1

2
(F6k−1 − 1)F6k +

1

2
(F6k−1 − 1)F6k+1 =

(F6k − 1)(F6k+1 − 1)

2
. (1.5)

1

2
(F6k+1 − 1)F6k+1 +

1

2
(F6k−1 − 1)F6k+2 =

(F6k+1 − 1)(F6k+2 − 1)

2
. (1.6)

1

2
(F6k+1 − 1)F6k+2 +

1

2
(F6k+1 − 1)F6k+3 =

(F6k+2 − 1)(F6k+3 − 1)

2
. (1.7)

1 +
1

2
(F6k+2 − 1)F6k+3 +

1

2
(F6k+2 − 1)F6k+4 =

(F6k+3 − 1)(F6k+4 − 1)

2
. (1.8)

1 +
1

2
(F6k+4 − 1)F6k+4 +

1

2
(F6k+2 − 1)F6k+5 =

(F6k+4 − 1)(F6k+5 − 1)

2
. (1.9)

1 +
1

2
(F6k+4 − 1)F6k+5 +

1

2
(F6k+4 − 1)F6k+6 =

(F6k+5 − 1)(F6k+6 − 1)

2
. (1.10)

Remark 1.5. If n is a multiple of 3, then Fn is even [3]. Let k ∈ N. Because (F3k, F3k+1) =
(F3k+2, F3k+3) = 1, F3k+1 and F3k+2 are odd. Hence, Fn is even if and only if n is a multiple
of 3. Therefore, if n 6≡ 0 mod 3, 1

2(Fn − 1) is a nonnegative integer.

Similarly, given (Fn, Fn+2), we can consider two following equations.

Fnx+ Fn+2y = (Fn − 1)(Fn+2 − 1)/2. (1.11)

1 + Fnx+ Fn+2y = (Fn − 1)(Fn+2 − 1)/2. (1.12)

From Theorem 1.1 and (Fn, Fn+2) = 12, we know that exactly one of these equations has a
unique nonnegative integral solution. Table 2 provides the �rst several cases.

n Fn Fn+2 Equation x y
1 1 2 (1.11) 0 0
2 1 3 (1.11) 0 0
3 2 5 (1.11) 1 0
4 3 8 (1.12) 2 0
5 5 13 (1.12) 2 1
6 8 21 (1.12) 6 1
7 13 34 (1.11) 10 2
8 21 55 (1.11) 10 6
9 34 89 (1.11) 27 6
10 55 144 (1.12) 44 10
11 89 233 (1.12) 44 27
12 144 377 (1.12) 116 27

Table 2

Again, equation (1.11) and equation (1.12) appear alternately with period 3. The following
theorem is compatible with Theorem 1.4 and the proof is similar, so we omit it.

2from the identity: F 2
n − Fn−2Fn+2 = (−1)n [7].
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Theorem 1.6. For k ≥ 0, the following formulas are correct.

F6k+2 − 1

2
F6k+1 +

F6k−1 − 1

2
F6k+3 =

(F6k+1 − 1)(F6k+3 − 1)

2
. (1.13)

F6k+2 − 1

2
F6k+2 +

F6k+1 − 1

2
F6k+4 =

(F6k+2 − 1)(F6k+4 − 1)

2
. (1.14)

F6k+4 − 1

2
F6k+3 +

F6k+1 − 1

2
F6k+5 =

(F6k+3 − 1)(F6k+5 − 1)

2
. (1.15)

1 +
F6k+5 − 1

2
F6k+4 +

F6k+2 − 1

2
F6k+6 =

(F6k+4 − 1)(F6k+6 − 1)

2
. (1.16)

1 +
F6k+5 − 1

2
F6k+5 +

F6k+4 − 1

2
F6k+7 =

(F6k+5 − 1)(F6k+7 − 1)

2
. (1.17)

1 +
F6k+1 − 1

2
F6k +

F6k−2 − 1

2
F6k+2 =

(F6k − 1)(F6k+2 − 1)

2
. (1.18)

2. Proofs

We �rst prove the following lemma.

Lemma 2.1. For any integers n, x, y, a, b with a, b positive and (a, b) = 1, we consider the
equation xa + yb = n. If there is a solution r, s with r < b and s < 0, then there are no
solutions with x, y nonnegative.

Proof. All solutions are of the form (x, y) = (r + tb, s − ta) for some t ∈ Z. To get y ≥ 0, we
must have t < 0, but then x < 0. �

Proof of Theorem 1.1. Let k = (a− 1)(b− 1)/2.
Let 0 ≤ r1 ≤ b− 1 be chosen such that ar1 ≡ k mod b and s1 = (k − ar1)/b.
Let 0 ≤ r2 ≤ b− 1 be chosen such that ar2 ≡ (k − 1) mod b and s2 = (k − 1− ar2)/b.
Observe that

a(r1 + r2) = ar1 + ar2 ≡ 2k − 1 = a(b− 1)− b ≡ a(b− 1) mod b.

So, b | (r1 + r2 − (b− 1)) and so, r1 + r2 = b− 1. We compute

s1 + s2 =
k − ar1 + k − ar2 − 1

b
=

2k − a(b− 1)− 1

b
= −1.

Hence, exactly one of s1, s2 is nonnegative. By de�nition, r1a+ s1b = k and r2a+ s2b+ 1 = k.
Therefore, we have shown that equation (1.1) or equation (1.2) has a nonnegative solution
(x, y), whereas the other equation has no nonnegative solutions because of Lemma 2.1.
It remains to prove that equation (1.1) has at most one nonnegative solution. (A similar

claim and proof hold for equation (1.2).) Let (x1, y1) and (x2, y2) be two nonnegative solutions
of equation (1.1). Clearly, 0 ≤ x1, x2 ≤ (b−1), so |x1−x2| ≤ b−1. Because x1a+y1b = x2a+y2b,
(x1 − x2)a = −(y1 − y2)b. Because (a, b) = 1, b divides x1 − x2, which, with |x1 − x2| ≤ b− 1,
implies that x1 = x2. It follows that y1 = y2. Hence, equation (1.1) has at most one nonnegative
solution. �

Proof of Theorem 1.4. We prove formulas (1.5), (1.6), and (1.8). Proofs for the remaining
formulas are similar. We use identity (d7) [7] repeatedly

FnFn+3 = Fn+1Fn+2 + (−1)n−1. (2.1)

NOVEMBER 2020 337



THE FIBONACCI QUARTERLY

Write

1

2
(F6k−1 − 1)F6k +

1

2
(F6k−1 − 1)F6k+1

=
1

2
(F6k−1 − 1)(F6k + F6k+1)

=
1

2
F6k−1F6k+2 −

1

2
(F6k + F6k+1)

=
F6kF6k+1 + 1

2
− 1

2
(F6k + F6k+1) due to (2.1)

=
(F6k − 1)(F6k+1 − 1)

2
.

This proves formula (1.5).
Next, we have

1

2
(F6k+1 − 1)F6k+1 +

1

2
(F6k−1 − 1)F6k+2

=
1

2
F 2
6k+1 −

1

2
F6k+1 +

1

2
F6k−1F6k+2 −

1

2
F6k+2

=
1

2
F 2
6k+1 −

1

2
F6k+1 +

1

2
(F6kF6k+1 + 1)− 1

2
F6k+2 due to (2.1)

=
1

2
F 2
6k+1 −

1

2
F6k+1 +

1

2
((F6k+2 − F6k+1)F6k+1 + 1)− 1

2
F6k+2

=
1

2
F6k+1F6k+2 −

1

2
(F6k+1 + F6k+2) +

1

2
=

(F6k+1 − 1)(F6k+2 − 1)

2
.

This proves formula (1.6)
Finally, we prove formula (1.8). The left side is

1 +
1

2
(F6k+2 − 1)F6k+3 +

1

2
(F6k+2 − 1)F6k+4

= 1 +
1

2
F6k+2F6k+5 −

1

2
(F6k+3 + F6k+4)

= 1 +
1

2
(F6k+3F6k+4 − 1)− 1

2
(F6k+3 + F6k+4)

=
(F6k+3 − 1)(F6k+4 − 1)

2
,

which is the right side. �
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