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Abstract. We investigate two gibonacci sums of polynomial products of order 3, and their
Pell and Jacobsthal counterparts.

1. Introduction

Extended gibonacci polynomials zn(x) are defined by the recurrence zn+2(x) = a(x)zn+1(x)+
b(x)zn(x), where x is an arbitrary complex variable, a(x), b(x), z0(x), and z1(x) are arbitrary
complex polynomials, and n ≥ 0.

Fibonacci polynomials fn(x), Lucas polynomials ln(x), Pell polynomials pn(x), Pell-Lucas
polynomials qn(x), Jacobsthal polynomials Jn(x), and Jacobsthal-Lucas polynomials jn(x)
belong to this family {zn(x)}. Their numeric counterparts are Fn = fn(1), Ln = ln(1),
Pn = pn(1), 2Qn = qn(1), Jn = Jn(x), and jn = jn(2), respectively [4, 3].

As in [3], in the interest of brevity, clarity, and convenience, we omit the argument in the
functional notation, when there is no ambiguity; so zn will mean zn(x). We let gn = fn or ln,
bn = pn or qn, and cn = Jn(x) or jn(x). Correspondingly, let Gn = Fn or Ln, Bn = Pn or Qn,
and Cn = Jn or jn.

An extended gibonacci polynomial product of order m is a product of gibonacci polynomials

zn+k of the form
∏
k≥0

z
sj
n+k, where

∑
sj≥1

sj = m [2, 3].

We now explore two gibonacci sums of polynomial products of order 3, and their Pell and
Jacobsthal counterparts.

2. A Gibonacci Sum of Polynomial Products of Order 3

Our investigation hinges on the identity [5]

g3n+1 + xg3n − g3n−1 =

{
xg3n, if gn = fn;

x∆2g3n, otherwise,
(2.1)

and the gibonacci recurrence

gn+6 = (x3 + 3x)gn+3 + gn, (2.2)

where ∆2 = x2 + 4.

Theorem 2.1. Let gn = fn or ln. Then,

(x2 + 3)

(
x

n∑
k=0

g3k + g3n+1 + g3n

)
=

{
g3n+3 + g3n + 2, if gn = fn;

∆2(g3n+3 + g3n − 2) + 4(x + 2)(x2 + 3), otherwise.

(2.3)
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Proof. By recurrence (2.2), we have

(x3 + 3x)
n∑

k=0

g3k+3 +
n∑

k=0

g3k =
n∑

k=0

g3k+6,

(x3 + 3x)

(
n∑

k=0

g3k + g3n+3 − g0

)
+

n∑
k=0

g3k =

n∑
k=0

g3k + g3n+6 + g3n+3 − g3 − g0,

(x3 + 3x)

n∑
k=0

g3k = g3n+3 + g3n − g3 + (x3 + 3x− 1)g0. (2.4)

Case 1. Suppose gn = fn. Then,

(x3 + 3x)
n∑

k=0

f3k = f3n+3 + f3n − (x2 + 1).

Consequently, by identity (2.1), we have
n∑

k=0

f3
k+1 + x

n∑
k=0

f3
k −

n∑
k=0

f3
k−1 = x

n∑
k=0

f3k,

(x2 + 3)

(
x

n∑
k=0

f3
k + f3

n+1 + f3
n

)
= f3n+3 + f3n + 2. (2.5)

Case 2. Suppose gn = ln. Then,

(x3 + 3x)
n∑

k=0

l3k = l3n+3 + l3n − (x3 + 3x) + 2(x3 + 3x− 1)

= l3n+3 + l3n + x3 + 3x− 2.

By identity (2.1), we have
n∑

k=0

l3k+1 + x
n∑

k=0

l3k −
n∑

k=0

l3k−1 = x∆2
n∑

k=0

l3k,

x
n∑

k=0

l3k + l3n+1 + l3n + x3 − 8 =
x∆2

x3 + 3x

(
l3n+3 + l3n + x3 + 3x− 2

)
,

(x2 + 3)

(
x

n∑
k=0

l3k + l3n+1 + l3n

)
= ∆2(l3n+3 + l3n − 2) + 4(x + 2)(x2 + 3). (2.6)

Combining the two cases yields the desired result. �

This theorem has interesting byproducts. It follows from formula (2.3) that

4

(
n∑

k=0

G3
k + G3

n+1 + G3
n

)
=

{
G3n+3 + G3n + 2, if Gn = Fn;

5(G3n+3 + G3n − 2) + 48, otherwise;
(2.7)

4
n∑

k=0

G3
k + 4G3

n−1 =

{
G3n+3 − 3G3n + 2, if Gn = Fn;

5(G3n+3 − 3G3n) + 38, otherwise;

2
n∑

k=0

G3
k + 2G3

n−1 =

{
G3n−1 + 1, if Gn = Fn;

5G3n−1 + 19, otherwise.
(2.8)
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Formula (2.7) implies that G3n+3+G3n ≡ 2 (mod 4). Formula (2.8), with Gn = Fn, appears
in [8].

Next, we investigate the Pell implications of Theorem 2.1.

3. Pell Implications

Because bn(x) = gn(2x), formula (2.3) has a Pell counterpart:

(4x2+3)
(

2x

n∑
k=0

b3k+b3n+1+b3n

)
=

{
b3n+3 + b3n + 2, if bn = pn;

4(x2 + 1)(b3n+3 + b3n − 2) + 8(x + 1)(4x2 + 3), otherwise.

This yields

7

(
2

n∑
k=0

B3
k + B3

n+1 + B3
n

)
=

{
B3n+3 + B3n + 2, if Bn = Pn;

2(B3n+3 + B3n) + 12, otherwise.
(3.1)

Because Bn+3 = 12Bn + 5Bn−1 and

B3
n+1 + 2B3

n −B3
n−1 =

{
2B3n, if Bn = Pn;

4B3n, otherwise

by formula (2.1) [5], it then follows that

7

(
n∑

k=0

B3
k −B3

n + B3
n−1

)
=

{
5B3n−1 −B3n + 1, if Bn = Pn;

10B3n−1 − 2B3n + 12, otherwise.

Next, we explore the Jacobsthal ramifications of Theorem 2.1.

4. Jacobsthal Consequences

Identity (2.1) has a Jacobsthal counterpart [6]:

c3n+1 + xc3n − x3c3n−1 =

{
c3n, if cn = Jn(x);

(4x + 1)c3n, otherwise.
(4.1)

This implies

C3
n+1 + 2C3

n − 8C3
n−1 =

{
C3n, if Cn = Jn;

9C3n, otherwise.
(4.2)

By the Jacobsthal recurrence, we have cn+6 = (3x + 1)cn+3 + x3cn. Consequently,

(3x + 1)

n∑
k=0

c3k+3 + x3
n∑

k=0

c3k =

n∑
k=0

c3k+6,

(3x + 1)

(
n∑

k=0

c3k + c3n+3 − c0

)
+ x3

n∑
k=0

c3k =
n∑

k=0

c3k + c3n+6 + c3n+3 − c3 − c0,

(x3 + 3x)

n∑
k=0

c3k = c3n+6 − 3xc3n+3 − c3 + 3xc0

= c3n+3 + x3c3n − c3 + 3xc0. (4.3)
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Case 1. Suppose cn = Jn(x). Then,

(x3 + 3x)

n∑
k=0

J3k(x) = J3n+3(x) + x3J3n(x)− x− 1.

Because J0(x) = 0 and J−1(x) = 1/x, it then follows by identity (4.1) that

n∑
k=0

J3
k+1(x) + x

n∑
k=0

J3
k (x)− x3

n∑
k=0

J3
k−1(x) =

n∑
k=0

J3k(x),

(x3 + 3x)

[
(1 + x− x3)

n∑
k=0

J3
k (x) + J3

n+1(x) + x3J3
n(x)− 1

]
= J3n+3(x) + x3J3n(x)− x− 1,

(x3 + 3x)

[
(1 + x− x3)

n∑
k=0

J3
k (x) + J3

n+1(x) + x3J3
n(x)

]
= J3n+3(x) + x3J3n(x)

+ x3 + 2x− 1. (4.4)

Case 2. Suppose cn = jn(x). By equation (4.3), we have

(x3 + 3x)
n∑

k=0

j3k(x) = j3n+3(x) + x3j3n(x) + 3x− 1.

Because j0(x) = 2 and j−1(x) = −1/x, it follows by identity (4.1) that

n∑
k=0

j3k+1(x) + x

n∑
k=0

j3k(x)− x3
n∑

k=0

j3k−1(x) = (4x + 1)

n∑
k=0

j3k(x),

(1 + x− x3)

n∑
k=0

j3k(x) + j3n+1(x) + x3j3n(x)− 7 =
4x + 1

x3 + 3x

[
j3n+3(x) + x3j3n(x) + 3x− 1

]
,

(x3 + 3x)

[
(1 + x− x3)

n∑
k=0

j3k(x) + j3n+1(x) + x3j3n(x)

]
= (4x + 1)

[
j3n+3(x) + x3j3n(x)

]
+ 7x3 + 12x2 + 20x− 1. (4.5)

Combining the two cases, we get the following result.

Theorem 4.1. Let cn = Jn(x) or jn(x). Then,

(x3 + 3x)

[
(1 + x− x3)

n∑
k=0

c3k(x) + c3n+1(x) + x3c3n(x)

]
= A

[
c3n+3(x) + x3c3n(x)

]
+ B, (4.6)

where

A =

{
1, if cn = Jn(x);

4x + 1, otherwise
and B =

{
x3 + 2x− 1, if cn = Jn(x);

7x3 + 12x2 + 20x− 1, otherwise.

294 VOLUME 58, NUMBER 4



EXTENDED GIBONACCI SUMS OF POLYNOMIAL PRODUCTS OF ORDER 3 REVISITED

Clearly, equation (2.7) follows from formula (4.6). When x = 2, using equation (4.2), it
yields

14

(
J3
n+1 + 8J3

n − 5
n∑

k=0

J3
k

)
= A∗J3n+3 + 8J3n + B∗; (4.7)

14

(
6J3

n + 8J3
n−1 − 5

n∑
k=0

J3
k

)
= A∗J3n+3 − 6J3n + B∗, (4.8)

where A∗ = A(2) and B∗ = B(2).
It follows, from identities (4.7) and (4.8), that J3n+3+8J3n ≡ 3 (mod 14) and j3n+3+8j3n ≡

9 (mod 14), respectively.
Next, we explore an extended gibonacci sum of polynomial products of order 3.

5. Second Gibonacci Sum of Polynomial Products of Order 3

Using the identity [5]

(x2 + 1)g3n + 3gn+1gngn−1 =

{
g3n, if gn = fn;

∆2g3n, otherwise,

we have

3
n∑

k=0

gk+1gkgk−1 = E
n∑

k=0

g3k − (x2 + 1)
n∑

k=0

g3k,

3(x3 + 3x)
n∑

k=0

gk+1gkgk−1 = E(x3 + 3x)
n∑

k=0

g3k − (x2 + 1)(x3 + 3x)
n∑

k=0

g3k, (5.1)

where

E =

{
1, if gn = fn;

∆2, otherwise.

Case 1. Suppose gn = fn. Then, by formula (2.4), this yields

3(x3 + 3x)
n∑

k=0

fk+1fkfk−1 = (x3 + 3x)
n∑

k=0

f3k − (x2 + 1)(x3 + 3x)
n∑

k=0

f3
k

=
(
f3n+3 + f3n − x2 − 1

)
− (x2 + 1)

[
(f3n+3 + f3n + 2)− (x2 + 3)(f3

n+1 + f3
n)
]

= (x2 + 1)(x2 + 3)(f3
n+1 + f3

n)− x2(f3n+3 + f3n)− 3(x2 + 1).

Case 2. Let gn = ln. Again by formulas (2.4) and (5.1), we have

3(x3 + 3x)

n∑
k=0

lk+1lklk−1 = ∆2(x3 + 3x)

n∑
k=0

l3k − (x2 + 1)(x3 + 3x)

n∑
k=0

l3k

= ∆2(l3n+3 + l3n + x3 + 3x− 2)− (x2 + 1)
[
∆2(l3n+3 + l3n − 2)

]
+ (x2 + 1)

[
(x2 + 3)(l3n+1 + l3n)− 4(x + 2)(x2 + 3)

]
= (x2 + 1)(x2 + 3)(l3n+1 + l3n)− x2∆2(l3n+3 + l3n)

− 3(x5 + 2x4 + 4x3 + 7x2 + 4x + 4).

Combining the two cases yields the next result.
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Theorem 5.1. Let gn = fn or ln. Then,

3(x3 + 3x)
n∑

k=0

gk+1gkgk−1 = (x2 + 1)(x2 + 3)(g3n+1 + g3n)− Ex2(g3n+3 + g3n)− 3F, (5.2)

where

E =

{
1, if gn = fn;

∆2, otherwise
and F =

{
x2 + 1, if gn = fn;

x5 + 2x4 + 4x3 + 7x2 + 4x + 4, otherwise.

It follows from Theorem 5.1 that

12
n∑

k=0

Gk+1GkGk−1 = 8(G3
n+1 + G3

n)− E∗(G3n+3 + G3n)− 6F ∗, (5.3)

where E∗ = E(1) and F ∗ = F (1).
When Gn = Fn, this yields

12

n∑
k=0

Fk+1FkFk−1 = 8(F 3
n+1 + F 3

n)− F3n+3 − F3n − 6

= 8(F 3
n+1 + F 3

n)− (3F3n + 2F3n−1)− F3n − 6,

6

n∑
k=0

Fk+1FkFk−1 = 2F3n − F3n−1 + 4F 3
n−1 − 3,

using the Lucas identity F 3
n+1 + F 3

n − F 3
n−1 = F3n [5].

On the other hand, with Gn = Ln and the Long identity L3
n+1 + L3

n − L3
n−1 = 5L3n [5], we

get

12

n∑
k=0

Lk+1LkLk−1 = 8(L3
n+1 + L3

n)− 5(L3n+3 + L3n)− 66

= 8(5L3n + L3
n−1)− 5(3L3n + 2L3n−1)− 5L3n − 66,

6

n∑
k=0

Lk+1LkLk−1 = 10L3n − 5L3n−1 + 4L3
n−1 − 33.

Thus,

6

n∑
k=0

Gk+1GkGk−1 = E∗(2G3n −G3n−1) + 4G3
n−1 − 3F ∗. (5.4)

Using the recurrence Gn+3 = 3Gn +2Gn−1 and identity (2.1), we can rewrite equation (5.4)
in a different way:

6

n∑
k=0

Gk+1GkGk−1 = 2(G3
n+1 + G3

n + G3
n−1)− E∗G3

3n−1 − 3F ∗. (5.5)

Formula (5.5), with Gn = Fn, appears in [1] in a slightly different form.
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5.1. Pell Implications. By virtue of the relationship bn(x) = gn(2x), Theorem 5.1 has a Pell
byproduct:

6(2x3 + 3x)
n∑

k=0

bk+1bkbk−1 = (4x2 + 1)(4x2 + 3)(b3n+1 + b3n)− 4Gx2(b3n+3 + b3n)− 3H, (5.6)

where

G =

{
1, if bn = pn;

4(x2 + 1), otherwise
and H =

{
4x2 + 1, if bn = pn;

4(8x5 + 8x4 + 8x3 + 7x2 + 2x + 1, otherwise.

It then follows that

30
n∑

k=0

Bk+1BkBk−1 = 35(B3
n+1 + B3

n)− 4G∗(B3n+3 + B3n)− 3H∗,

where G∗ = G(1) and H∗ = H(1).
Next, we investigate the Jacobsthal counterpart of Theorem 5.1.

6. Jacobsthal Companion

We have from [6] that

(x + 1)c3n + 3xcn+1cncn−1 =

{
c3n, if cn = Jn(x);

(4x + 1)c3n, otherwise;
(6.1)

c3n+1 − c3n − x3c3n−1 = 3xcn+1cncn−1. (6.2)

With A defined as in Theorem 4.1, it follows by identity (6.1) that

3x

n∑
k=0

ck+1ckck−1 = A

n∑
k=0

c3k − (x + 1)

n∑
k=0

c3k.

Case 1. Suppose cn = Jn(x). Then, by formulas (4.3) and (4.4), we have

3x

n∑
k=0

Jk+1JkJk−1 =

n∑
k=0

J3k − (x + 1)

n∑
k=0

J3
k ,

3x(x3 + 3x)(1 + x− x3)

n∑
k=0

Jk+1JkJk−1 = (1 + x− x3)(J3n+3 + x3J3n − x− 1)

= − (x + 1)(J3n+3 + x3J3n − x− 1)

+ (x + 1)(x3 + 3x)(J3
n+1 + x3J3

n − 1)

= −x3(J3n+3 + x3J3n)

+ (x + 1)(x3 + 3x)(J3
n+1 + x3J3

n)− 3x(x + 1).
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Case 2. Suppose cn = jn(x). With S =
n∑

k=0

jk+1jkjk−1 and jn = jn(x), again by formulas (4.3)

and (4.4), we get

3xS = (4x + 1)
n∑

k=0

j3k − (x + 1)
n∑

k=0

j3k ,

3x(x3 + 3x)(1 + x− x3)S = (4x + 1)(1 + x− x3)(j3n+3 + x3j3n + 3x− 1)

− (x + 1)
[
(4x + 1)(j3n+3 + x3j3n) + 7x3 + 12x2 + 20x− 1

]
+ (x + 1)(x3 + 3x)(j3n+1 + x3j3n)

= −(4x + 1)x3(j3n+3 + x3j3n)

+ (x + 1)(x3 + 3x)(j3n+1 + x3j3n)

− 3x(4x4 + 2x3 + 2x2 + 7x + 7).

Combining the two cases, we get the next result.

Theorem 6.1. Let cn = Jn(x) or jn(x), and A be as in Theorem 4.1. Then,

3x(x3+3x)(1+x−x3)
n∑

k=0

ck+1ckck−1 = (x+1)(x3+3x)(c3n+1+x3c3n)−Ax3(c3n+3+x3c3n)−3xK,

where

K =

{
x + 1, if cn = Jn(x);

4x4 + 2x3 + 2x2 + 7x + 7, otherwise.

Clearly, this yields formula (5.3). It also implies

210

n∑
k=0

Ck+1CkCk−1 = 4A∗(C3n+3 + 8C3n)− 21(C3
n+1 + 8C3

n)− 3K∗,

where A∗ = A(2) and K∗ = K(2).
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