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Abstract. In her 1938 paper on congruences involving Bernoulli numbers and the quotients
of Fermat and Wilson, Emma Lehmer expresses the residues modulo prime powers of many
power sums in terms of Bernoulli numbers and sometimes Euler numbers. The Euler numbers
often appear in the residues of alternating power sums. In this paper, we give a new congruence
for determining the residues of Euler numbers modulo a prime p. This congruence involves
about p/6 summands of an alternating power sum. Evaluating sums of reciprocal squares
modulo p, we found that there are eight Euler irregular pairs (p, p− 3) with p < 5 × 109.

1. Introduction

In memory of Emma Lehmer

Let p be an odd prime and k a positive integer. The congruence

(p−1)/2∑
r=1

(−1)rr2k ≡ (−1)(p−1)/2

22k+1
E2k (mod p2) (1.1)

can be used to determine the Euler number E2k (mod p2). If p− 16 | 2k, then the residue of E2k

(mod p) can be calculated using Glaisher’s congruence [7, eq. (20)]

bp/4c∑
r=1

r2k ≡ (−1)(p−1)/2

24k+2
E2k (mod p), (1.2)

where b p/4c denotes the greatest integer not exceeding p/4. A slightly more efficient formula,
discovered by the author in 2010, for calculating E2k (mod p) for p ≥ 5 is

bp/6c∑
r=1

(−1)rr2k ≡ (−1)(p−1)/2(32k + 1)

4 · 62k
E2k (mod p), (1.3)

provided that 32k + 1 6≡ 0 (mod p).
In her 1938 paper, Emma Lehmer [7] proved many congruences involving Bernoulli numbers

and power sums. Some of her congruences also involve Euler numbers. Since that time, many
papers on congruences for various power sums involving Bernoulli and Euler numbers have
been written. A paper by Zhi-Hong Sun [13] extends the work of Emma Lehmer. Congruence
(1.3) appears to be new. In this article, we will prove (1.3) and give an extension modulo p3.

Emma Lehmer [7, eq. (18)], proved that for odd primes p and positive integers k, with
2k 6≡ 2 (mod p− 1),

(p−1)/2∑
r=1

r2k ≡ −p 22k−1 − 1

22k
B2k (mod p3),
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where Bn is the nth Bernoulli number. When 2k ≡ 2 (mod p − 1), the congruence holds
modulo p2. By [7, eq. (9)], it follows that for p > 3,

bp/4c∑
r=1

r2k ≡ (−1)(p−1)/2

24k+2
E2k − p

22k−1 − 1

24k+1
B2k (mod p2).

(Modulo p, this reduces to Glaisher’s congruence (1.2).) Hence,

(p−1)/2∑
r=1

(−1)rr2k = −
(p−1)/2∑
r=1

r2k + 2

bp/4c∑
r=1

(2r)2k = −
(p−1)/2∑
r=1

r2k + 22k+1

bp/4c∑
r=1

r2k

≡ (−1)(p−1)/2

22k+1
E2k (mod p2),

which is (1.1). This congruence holds for all odd primes p and positive integers k.

2. Definitions and Formulas

The Euler polynomials En(x) are defined by the generating function

2ext

et + 1
=
∞∑
n=0

En(x)
tn

n!
, |t| < π,

and the nth Euler number is given by En = 2nEn(1/2). Thus,

sech t =
2

et + e−t
=
∞∑
n=0

En
tn

n!
, |t| < π

2
.

There are many properties satisfied by the Euler numbers and Euler polynomials. (For a list
of these properties, see [12], [1, pp. 804–806].) All Euler numbers are integers and Ek = 0 for
all odd k. For positive even integers k, Ek(0) = 0. The coefficients of the Euler polynomials
are rational numbers whose denominators are powers of 2. It is well known that power sums
can be evaluated using Bernoulli polynomials and alternating power sums can be evaluated
using Euler polynomials. In particular, for m, k ≥ 1,

m∑
r=1

(−1)rrk =
Ek(0) + (−1)mEk(m+ 1)

2
.

Because E2k(0) = 0 for k > 0, it follows that

m∑
r=1

(−1)rr2k =
(−1)m

2
E2k(m+ 1)

for m, k ≥ 1. The reason why the sum in (1.3) can be used to evaluate E2k (mod p) is because
the Euler polynomial E2k(x) at x = 1/6 is related to the value of the Euler number E2k by
the formula

2 · 62kE2k(1/6) = (32k + 1)E2k, k ≥ 0,

proved by equating coefficients in the power series expansion of

2ex

e6x + 1
+

2e−x

e−6x + 1
=

2

e3x + e−3x
+

2

ex + e−x
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or as the special case (n = 2k, m = 3, x = 1/6) of the general multiplication formula

En(mx) = mn
m−1∑
j=0

(−1)jEn(x+ j/m)

for n ≥ 0 and odd m ≥ 1. Therefore,

E2k

(
5

6

)
= E2k

(
1

6

)
=

32k + 1

2 · 62k
E2k

for k ≥ 0, where the first equality follows from the symmetry formula

En(1− x) = (−1)nEn(x).

3. Proof of Main Result

In addition to the above identities, we will use the expansion formula

En(x+ h) =
n∑

j=0

(
n

j

)
En−j(x)hj .

For prime p ≥ 5, let ε = 1, if p ≡ 5 (mod 6) and ε = 5, if p ≡ 1 (mod 6). Then,

bp/6c∑
r=1

(−1)rr2k =
(−1)bp/6c

2
E2k(b p/6c+ 1)

=
(−1)(p−1)/2

2
E2k(b p/6c+ 1)

=
(−1)(p−1)/2

2
E2k

(
p+ ε

6

)
=

(−1)(p−1)/2

2

2k∑
j=0

(
2k

j

)(
p

6

)j
E2k−j

(
ε

6

)

≡ (−1)(p−1)/2

2
E2k

(
ε

6

)
=

(−1)(p−1)/2(32k + 1)

4 · 62k
E2k (mod p),

which completes the proof of (1.3).

4. Euler Irregular Pairs

Vandiver [14] proved that the first case of Fermat’s Last Theorem holds for a prime exponent
p, if p does not divide any of the Euler numbers E2k with 0 < 2k < p − 1. Such primes are
called Euler regular. For prime p and 0 < 2k < p − 1, the pair (p, 2k) is called an Euler
irregular pair if p|E2k. By (1.2), it follows that (p, 2k) is an Euler irregular pair if p is prime,
0 < 2k < p− 1, and

bp/4c∑
r=1

r2k ≡ 0 (mod p).
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From (1.3), we obtain the slightly more efficient test

bp/6c∑
r=1

(−1)rr2k ≡ 0 (mod p)

for the Euler irregularity of the pair (p, 2k), provided that 32k + 1 6≡ 0 (mod p).
By Fermat’s Little Theorem, the pair (p, p − 3), with p > 5, is Euler irregular if either of

the sums
bp/4c∑
r=1

1

r2
or

bp/6c∑
r=1

(−1)r

r2

vanish modulo p. For p < 5 × 109, it is known that (p, p − 3) is an Euler irregular pair if
p is equal to 149, 241, 2946901, 16467631, 17613227, 327784727, 426369739, or 1062232319.
The first two were found in [5], the next three were discovered by Cosgrave and Dilcher [3]
(Meštrović [10] also discovered the third prime in our list), and the last three were discovered
by the author in 2012 (and are listed in [3]).

In our search for Wolstenhome primes [9, pp. 2092–2093], we used a program written by
Montgomery [11] that evaluates the least two significant coefficients c0 and c1 (mod p) in the
polynomial

f(x) =
∏

p/6<r<p/4

(x+ r3)

by use of a polynomial scheme similar to the one developed in [4, p. 441]. The sum (mod p)
of the reciprocals of the roots of f(x) is given by −c1/c0. The value c1 = 0 would signify a
Wolstenholme prime. To search for Euler irregular pairs (p, p− 3), we modified this program
and replaced the above polynomial by

g(x) =
∏

0<r<p/4

(x+ r2).

The conguence
bp/6c∑
r=1

(−1)r

r2
≡ 0 (mod p)

was used (with MAPLE) to verify all Euler irregular pairs (p, p− 3) found by our program.
Bernoulli irregular pairs are defined in the same way as Euler irregular pairs, but with the

divisibility condition B2k ≡ 0 (mod p). The term irregular usually refers to Bernoulli irregular.
It turns out that the pair (p, p− 3) is (Bernoulli) irregular if and only if p is a Wolstenholme
prime [8], [9]. A Wolstenholme prime is a prime p satisfying(

2p− 1

p− 1

)
≡ 1 (mod p4).

For p ≥ 11, this is equivalent to ∑
p/6<k<p/4

1

k3
≡ 0 (mod p).

The only Wolstenholme primes p < 1010 are 16843 and 2124679. The first was found (although
not explicitly reported) by Selfridge and Pollak (Notices AMS 11 (1964), 97), and later con-
firmed by W. Johnson [6] and S. S. Wagstaff (Notices AMS 23 (1976), A-53). The second was
found by J. Buhler, R. Crandall, R. Ernvall, and T. Metsänkylä [2], and later, independently,
by the author.
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5. Concluding Remarks

Much of Lehmer’s work follows from her equation [7, eq. (2)]

bp/nc∑
r=1

(p− rn)k =
nk

k + 1

{
Bk+1

(
p

n

)
−Bk+1

(
s

n

)}
,

where n and p are positive integers with n < p, and s is the least nonnegative residue of p
modulo n. (A printing error in the original congruence has been corrected.) The analogous
equation for alternating sums is

bp/nc∑
r=1

(−1)r(p− rn)k =
nk

2

{
(−1)bp/ncEk

(
s

n

)
− Ek

(
p

n

)}
.

Lehmer [7, eq. (20)] proved that for odd primes p and positive integers k, with 2k 6≡ 2
(mod p− 1),

bp/4c∑
r=1

(p− 4r)2k ≡ (−1)(p−1)/2
E2k

4
+ p24k−2B2k (mod p3).

When 2k ≡ 2 (mod p − 1), the congruence holds modulo p2. Using similar methods, we can
show that for odd primes p and positive integers k, with 2k 6≡ 2 (mod p− 1),

bp/6c∑
r=1

(−1)r(p− 6r)2k ≡ (−1)(p−1)/2(32k + 1)
E2k

4
+ p62k−1(22k − 1)B2k (mod p3).

When 2k ≡ 2 (mod p− 1), the congruence holds modulo p2.
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