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Abstract. We prove an infinite family of lacunary recurrences for the Lucas numbers using
combinatorial means.

1. Introduction

A recurrence relation involving only terms of a given sequence with indices in arithmetic
progression is called a lacunary recurrence. The gap of such a lacunary recurrence is the
common difference in the indices in arithmetic progression. Several such lacunary recurrences
are known for sequences including but not limited to Bernoulli numbers, Euler numbers, k-
Fibonacci numbers, etc. We refer the reader to the recent paper of Ballantine and Merca [1]
for relevant references and other examples.

Ballantine and Merca [1] proved an infinite family of lacunary recurrences for Fibonacci
numbers. They closed the paper by asking the natural question of whether such an infinite
family of lacunary recurrences can be found for the Lucas numbers. The aim of this article is
to prove such an infinite family of lacunary recurrences. Before stating and proving our result,
let us recall some definitions and relations.

The Fibonacci sequence {Fn}n≥0 is defined by the recurrence relation

Fn = Fn−1 + Fn−2,

with F0 = 0 and F1 = 1. We use the convention Fn = 0 when n < 0. Similarly, the Lucas
sequence {Ln}n≥0 is defined by the recurrence relation

Ln = Ln−1 + Ln−2,

with L0 = 2 and L1 = 1. We use the convention Ln = 0 when n < 0. These two sequences are
related by the identity

Ln = Fn−1 + Fn+1. (1.1)

Several interesting relationships between Fibonacci numbers are known; two of them, which
are relevant for this paper, are

Fm+n = FmFn+1 + Fm−1Fn (1.2)

and

(−1)nFm−n = FmFn+1 − Fm+1Fn. (1.3)

For these and many other identities, we refer the reader to Honsberger’s book [4, Chapter
8] and to the more recent book by Koshy [5, Chapter 5]. Identity (1.3) is called d’Ocagne’s
identity.
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In 1876, Lucas proved a lacunary recurrence of gap 2 for the Fibonacci numbers in the
following equivalent form

Fn =
1 + (−1)n

2
+ Fn−2 +

bn−1
2
c∑

k=1

Fn−2k.

This was generalized by Ballantine and Merca [1] to the following

Theorem 1.1. [1, Theorem 1] Given a positive integer N ≥ 2, we have

Fn = FN · F
bn−1

N
c+1

N−1 · F(n−1) mod N + FN+1 · Fn−N + F 2
N ·
bn−1

N
c∑

k=2

F k−2
N−1 · Fn−kN ,

for all n ≥ N .

This result is also valid for Pell numbers (as remarked in Section 3).
It is quite natural to ask, as Ballantine and Merca [1] did, if a similar result holds for the

Lucas numbers? We now present such a result in the following theorem.

Theorem 1.2. Given a positive integer N ≥ 2, we have

Ln = LN

d∑
i=1

(−1)(N+1)(i+1)Ln−(2i−1)N + (−1)(N+1)(d+2)Ln−2dN , (1.4)

where d =
⌊⌊ n

N

⌋
/2
⌋
and

n

2
≥ N ≥ 0.

A simple consequence of Theorem 1.2 is the following congruence.

Corollary 1.3. For a given integer N ≥ 2 we have

Ln − (−1)(N+1)(d+2)Ln−2dN ≡ 0 (mod LN ),

where d =
⌊⌊ n

N

⌋
/2
⌋
and

n

2
≥ N ≥ 0.

2. A Combinatorial Proof of Theorem 1.2

It is well-known that the Fibonacci numbers can be interpreted as tilings of an 1×n board
with squares and dominoes. We call such a board an n-board. If the number of such tilings is
fn, then it can be proved that Fn+1 = fn (see for instance, the book by Benjamin and Quinn
[3]). With this notation, (1.2) and (1.3) become

fmfn + fm−1fn−1 = fm+n (2.1)

and
fm−1fn − fmfn−1 = (−1)nfm−n−1. (2.2)

Both these identities can be easily proved using the combinatorial interpretation of fk.
It is also known (see Chapter 2 of the book by Benjamin and Quinn [3]) that the number ln

of ways to tile a circular board composed of n labelled cells with curved squares and dominoes
is equal to Ln. We call such a tiling of the circular n-board to be an n-bracelet. There are two
types of bracelets, an in-phase or an out-of-phase. A bracelet is out-of-phase if a domino covers
the cells numbered n and 1, and it is called in-phase if it is not out-of-phase. An example of
an out-of-phase 4-bracelet and an in-phase 4-bracelet is shown in Figure 1, where dominoes
are colored black and squares are white. We note that an in-phase tiling of an n-bracelet can
be made into a tiling of an n-board. From this observation it is easy to see the validity of
(1.1). We are now in a position to prove Theorem 1.2.
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Figure 1. Examples of bracelets.

Figure 2. The two sets of bracelets considered in the proof of Theorem 1.2.

Proof of Theorem 1.2. Let us draw two sets of circular boards as shown in Figure 2, and call
them Set-1 and Set-2. We mark the cells as shown in Figure 2. The number of bracelets in
Set-1 is Ln and in Set-2 is LN × Ln−N , where n

2 ≥ N ≥ 0.
We can break the tilings of Set-2 into the following four parts:

(a) fN × fn−N . (Here both the N -bracelet and (n−N)-bracelets are in-phase.)
(b) fN−2 × fn−N . (Here only the N -bracelet is out-of-phase.)
(c) fN × fn−N−2. (Here only the (n−N)-bracelet is out-of-phase.)
(d) fN−2 × fn−N−2. (Here both are out-of-phase.)

Observe that the tilings of (a) can be made into tilings of the n-bracelet in such a way that
the N -board covers the cells of the n-bracelet from a1 to aN . And hence, the (n−N)-board
covers the remaining cells of the n-bracelet. In these tilings of the n-bracelet, there is no
domino which covers the cells a0 and a1 or aN and aN+1.

Observe that the tilings of (b) can be made into tilings of the n-bracelet in such a way that
a domino covers the cells a0 and a1, and the N -board covers the cells from a0 to aN−1. So,
the (n − N)-board covers the remaining cells of the n-bracelet. In these tilings, no domino
covers the cells aN−1 and aN .

There are only two types of tilings that remains in the set of all tilings of the n-bracelet,
apart from the ones discussed above.

(1) Tilings where one domino covers the cells a0 and a1 and another domino covers the
cells aN−1 and aN . The total number of such tilings is fN−3fn−N−1.

(2) Tilings where one domino covers the cells aN and aN+1, but no domino covers the cells
a0 and a1. The total number of such tilings is fn−2 − fN−2fn−N−2.
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Let us now compute the difference (say A) between the total tilings of (1) and (2) and those
of the total tilings in (c) and (d)

A = (fN−3fn−N−1 + fn−2 − fN−2fn−N−2)− (fNfn−N−2 + fN−2fn−N−2)

= fN−3fn−N−1 + f(N−1)+(n−N−1) − 2fN−2fn−N−2 − fNfn−N−2.

Using (2.1), we get

A =fN−3fn−N−1 + fN−1fn−N−1 + fN−2fn−N−2 − 2fN−2fn−N−2 − fNfn−N−2

=− (fn−N−2fN−2 − fn−N−1fN−3)− (fn−N−2fN − fn−N−1fN−1).

Using (2.2), we get

A =− (−1)N−2f(n−N−1)−(N−2)−1 − (−1)Nf(n−N−1)−N−1

=(−1)N−1fn−2N + (−1)N+1fn−2N−2

=(−1)N+1Ln−2N .

In the last step, we used (1.1). Hence,

fN−3fn−N−1 + fn−2 − fN−2fn−N−2 = fNfn−N−2 + fN−2fn−N−2 + (−1)N+1Ln−2N . (2.3)

Finally, adding the total number of the other tilings (namely those in (a) and (b)) to both
sides of (2.3), we get

Ln = LN × Ln−N + (−1)N+1Ln−2N . (2.4)

The left side follows because the number of tilings in (1), (2), (a), and (b) is Ln, while the right
side follows because the number of tilings in (a)–(d) is LN ×Ln−N . Replacing n by n− 2N in
(2.4), we get

Ln−2N = LNLn−3N + (−1)N+1Ln−4N . (2.5)

Therefore, from (2.4) and (2.5), we get

Ln = LNLn−N + (−1)N+1LNLn−3N + Ln−4N .

Again,

Ln−4N = LNLn−5N + (−1)N+1Ln−6N .

So, we have

Ln =LNLn−N + (−1)N+1LNLn−3N + LNLn−5N + (−1)N+1Ln−6N

=LNLn−N + (−1)N+1LNLn−3N + LNLn−5N + (−1)N+1LNLn−7N + Ln−8N

=LN

(
Ln−N + (−1)N+1Ln−3N + Ln−5N + (−1)N+1Ln−7N

)
+ Ln−8N .

This gives us

Ln = LN

(
(−1)(N+1)(1+1)Ln−N + (−1)(N+1)(2+1)Ln−3N

+(−1)(N+1)(3+1)Ln−5N + (−1)(N+1)(4+1)Ln−7N

)
+ (−1)(N+1)(5+1)Ln−8N .

We can proceed in this way up to the
⌊⌊ n

N

⌋
/2
⌋
th step. This proves (1.4). �
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3. Concluding Remarks

We can combine several known identities involving Lucas and Fibonacci numbers with
Theorems 1.1 and 1.2 to give several new results involving more complicated sums. We do not
explore this here.

A generalization of the Fibonacci sequence, called the Gibonacci sequence {Gn}n≥0, is given
by the same recurrence

Gn = Gn−1 + Gn−2
for all n ≥ 2. Changing the initial conditions for G0 and G1 gives rise to different sequences,
two of which are the Fibonacci and Lucas sequences. There exist combinatorial interpretations
for such a Gibonacci sequence, which are similar to the interpretation for the Lucas sequence.
It would seem that by tweaking our proofs, a more general lacunary recurrence could be found
for the Gibonacci sequence. We leave this as an open problem.

Another remark is that, Theorem 1.1 is actually valid also for Pell numbers. The sequence
of Pell numbers {Pn}n≥0 is given by the recurrence

Pn = 2Pn−1 + Pn−2,

with P0 = 1 and P1 = 1. This can be seen from the combinatorial interpretation of Pell
numbers given by Benjamin, Plott, and Sellers [2], and combining it with the proof of Bal-
lantine and Merca [1], where the proof is independent of whether we use the combinatorial
interpretation of the Fibonacci numbers or the Pell numbers. Thus, we have the following
result.

Theorem 3.1. Given a positive integer N ≥ 2, we have

Pn = PN · P
bn−1

N
c+1

N−1 · P(n−1) mod N + PN+1 · Pn−N + P 2
N ·
bn−1

N
c∑

k=2

P k−2
N−1 · Pn−kN ,

for all n ≥ N .

Acknowledgements

The authors are grateful to the anonymous referee for helpful comments.

References

[1] C. Ballantine and M. Merca, A family of lacunary recurrences for Fibonacci numbers, Miskolc Math. Notes,
20.2 (2019), 767–772.

[2] A. T. Benjamin, S. S. Plott, and J. A. Sellers, Tiling proofs of recent sum identities involving Pell numbers,
Ann. Comb., 12.3 (2008), 271–278.

[3] A. T. Benjamin and J. J. Quinn, Proofs That Really Count: The Art of Combinatorial Proof, Mathematical
Association of America, Washington, DC, 2003.

[4] R. Honsberger, Mathematical Gems III, Mathematical Association of America, Washington, DC, 1985.
[5] T. Koshy, Fibonacci and Lucas Numbers with Applications, vol. 1, John Wiley & Sons, Inc., Hoboken, NJ,

2018.

MSC2020: 11B39, 11B37, 05A19

Gonit Sora, Dhalpur, Assam 784165, India
Email address: pankaj@gonitsora.com

School of Mathematics, Cardiff University, Cardiff CF24 4AG, UK
Email address: SaikiaM@cardiff.ac.uk, manjil@gonitsora.com

360 VOLUME 58, NUMBER 4


