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Abstract. A problem proposed by E. Lehmer about Bernoulli polynomials is solved, using
a classic theorem of D. H. Lehmer. A similar result is obtained for Euler polynomials.

1. Introduction

The Bernoulli numbers Bn and the Bernoulli polynomials Bn(x) are defined, respectively,
by
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Thus, B0(x) = 1, B1(x) = x − 1
2 , B2(x) = x2 − x + 1
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From the above definitions, we have

Bn(x) =
n
∑

r=0

(
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)

Brx
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In particular, Bn(0) = Bn. Note that Bn = 0, whenever n > 1 is odd.
The following evaluations of Bn(x) are well-known (cf. [5, Section 24.4]) and can be derived

directly from (1) and (2):
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1−2n − 21−2n)B2n, (6)

B2n(
1
6 ) = B2n(

5
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1−2n − 31−2n − 21−2n + 1)B2n. (7)

In [3], E. Lehmer used (4)–(7) to derive a large class of important congruences involving
arithmetic sums, Bernoulli numbers, Fermat quotients, and Wilson quotients. E. Lehmer
pointed out that the number q = 1, 2, 3, 4, 6 are characterized by φ(q) ≤ 2 (φ is Euler’s totient
function), and asked whether similar evaluations of Bn(

a
q ) exist for other q. In [1], some mod p

evaluations of Bp−1(
a
q ) were extended to other q.

In this paper, we show that similar evaluations of Bn(
a
q ) do not exist for other q (see

Theorem 2.1). This is closely connected with the following classic result (cf. [2] and [4, p. 37])
of D. H. Lehmer:
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Theorem 1.1 (D. H. Lehmer). Let a
q be a rational number, where q > 2 and (a, q) = 1. Then,

2 cos 2aπ
q is an algebraic integer of degree φ(q)/2, and 2 sin 2aπ

q is an algebraic integer of degree

φ(q), φ(q)/4, or φ(q)/2, according to (q, 8) < 4, (q, 8) = 4, or (q, 8) > 4, respectively.

In particular, we have:

Corollary 1.2. Let a
q be a rational number, where q > 0 and (a, q) = 1. Then, cos 2aπ

q is

rational if and only if q = 1, 2, 3, 4, or 6.

A similar question can be proposed for Euler numbers En and Euler polynomials En(x),
which are defined respectively by
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We note that each En ∈ Z and En = 0, whenever n is odd.
There are only two known evaluations of En(x) at rational points (cf. [5, Section 24.4]):

En(
1
2 ) = 2−nEn, (10)

E2n(
1
6 ) = E2n(

5
6) = 2−2n−1(1 + 3−2n)E2n. (11)

We show that similar evaluations of En(
a
q ) do not exist for other q (see Theorem 2.2), using

another corollary of Theorem 1.1.

Corollary 1.3. Let a
q be a rational number, where q > 0 and (a, q) = 1. Then, sin aπ

q is

rational if and only if q = 1, 2, or 6.

2. Proof of the Main Results

The main result of this paper is the following:

Theorem 2.1. Assume that there exist k nonzero real numbers a1, a2, . . . , ak, k distinct pos-
itive numbers b1, b2, . . . , bk, two even integers s > t ≥ 0, and a rational number a

q with q > 0

and (a, q) = 1, such that

Bn(
a
q ) = (a1b

n
1 + a2b

n
2 + · · ·+ akb

n
k)Bn, (12)

whenever n ≡ t (mod s). Then, we have q = 1, 2, 3, 4, or 6, and ai, bi ∈ Q for 1 ≤ i ≤ k.

Proof. Assume that (12) is valid. Then by (1) and (2), we have
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where ζ = e2πi/s and f(x, z) = zs−t+1exz

ez−1 .
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where Lr is the circle |z| = r. Note that we always assume that Lr does not contain any pole
of the integrand. By Cauchy’s residue theorem,
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where [u] denotes as usual, the greatest integer not exceeding u. Combining (14), (15), and
(16) immediately implies that
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Using (17), we shall show that b1, b2, . . . , bk ∈ Q. Assume that bl is the maximal irrational
number among b1, b2, . . . , bk. Let g(r) be the right side of (17). Then, one checks directly that

g(2πbl + ǫ)− g(2πbl − ǫ) = 2alb
t−s
l 6= 0, (18)

when ǫ > 0 is sufficiently small. Hence, r = 2π
bl

is a jump discontinuity of g(r). Thus, we arrive

at a contradiction that the left side of (17) is continuous at r = 2π
bl
.

Note that (12) implies that a1b
n
1 + a2b

n
2 + · · · + akb

n
k ∈ Q if n ≡ t (mod s). By the

Vandermonde determinant |{bsji }i,j | 6= 0, we also have a1, a2, . . . , ak ∈ Q.
Now, we are in the last step of the proof. Assume that q 6= 1, 2, 3, 4, and 6. Then, the

left side of (17) is 2 cos 2aπ
q for 2π < r < 4π, whereas the right side of (17) is rational. This

contradicts Corollary 1.2. �

The same proof, using Corollary 1.3, leads to a similar result about Euler polynomials.

Theorem 2.2. Assume that there exist k nonzero real numbers a1, a2, . . . , ak, k distinct pos-
itive numbers b1, b2, . . . , bk, two even integers s > t ≥ 0, and a rational number a

q with q > 0

and (a, q) = 1, such that

En(
a
q ) = (a1b

n
1 + a2b

n
2 + · · ·+ akb

n
k)En, (19)

whenever n ≡ t (mod s). Then, q = 1, 2, or 6, and ai, bi ∈ Q for 1 ≤ i ≤ k.
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