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Abstract. This paper takes a historical view of some long-standing issues associated with
polynomials developed from sums of Fibonacci numbers in which the latter have powers of
integers as coefficients. The sequences of coefficients of these polynomials are arrayed in
matrices with links to The On-Line Encyclopedia of Integer Sequences. Problems for further
study are conjectured, including inhomogeneous gibonacci difference equations.

1. Introduction

Ledin [9] studied Fibonacci sums of the form

S(m,n) =
n
∑

k=1

kmFk (1.1)

for integers m,n ≥ 0 and where Fk is the kth Fibonacci number, and generalized the calcu-
lations of them up to a point. Number sums in n for the particular cases S(0, n) [2], S(1, n)
[3], and S(3, n) [7] were known at the time of publication of his paper. Ledin’s method was
generalizable to somewhat analogous problems, such as Fibonacci convolutions, but there were
aspects of the computations that were limited, possibly because the current version of The
On-Line Encyclopedia of Integer Sequences (OEIS) [10] was not then available.

It is the purpose of this note to open up, from Ledin’s original paper, some number and
combinatorial issues for further exploration: the results presented in this note can be used
as undergraduate project exercises [12] and ideas for further research [11]. In relation to the
former, there are tables here that invite further exploration, and in relation to the latter, there
are a number of conjectures that are plausible enough to invite further exploration.

2. Notation

Ledin showed that (1.1) can be expressed in the form

S(m,n) = P1(m,n)Fn + P2(m,n)Fn+1 + C(m), (2.1)

in which C(m) is a constant depending only on m, and P1(m,n) and P2(m,n) are polynomials
in n of degree m of the form

Pi(m,n) =
m
∑

j=0

(−1)j
(

m

j

)

Mi,jn
m−j, i = 1, 2, (2.2)

where “M1,j and M2,j are certain numbers, the law of formation of which is yet to be deter-
mined” [9]. The following examples, from Ledin for m = 0, 1, 2, 3, will make the subsequent
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discussion clearer.

S(0, n) = (1)Fn + (1)Fn+1 − 1;

S(1, n) = (n− 1)Fn + (n − 2)Fn+1 + 2;

S(2, n) = (n2 − 2n+ 5)Fn + (n2 − 4n + 8)Fn+1 − 8;

S(3, n) = (n3 − 3n2 + 15n − 31)Fn + (n3 − 6n2 + 24n− 50)Fn+1 + 50.

3. Patterns

We can see that M1,j and M2,j follow the patterns set out in Table 1.

j 0 1 2 3 4 5 6 7 OEIS

M1,j 1 1 5 31 257 2671 33305 484471 A000556

M2,j 1 2 8 50 416 4322 53888 783890 A000557

Table 1: M1,j and M2,j

We now express Pi(m,n) in an alternative manner, so that we can focus on the coefficients in
the polynomials. Let

Pi(m,n) =

m
∑

r=0

Qi(m, r)nr, i = 1, 2, (3.1)

in other words, the Qi(m, r) are the coefficients of nr in Pi(m,n). Examples of the Qi(m, r)
are set out in Tables 2 and 3 (The values shown below have been calculated using modern
software. Ledin provides formulas for S(m,n) up to m = 10, but some of the coefficients
given for S(10, n) are incorrect: ±5064892768 → ±5064992768, 586487120 → 586437120,
3130287705 → 3130337705.)

m/r 0 1 2 3 4 5 6 7 8

0 1

1 −1 1

2 5 −2 1

3 −31 15 −3 1

4 257 −124 30 −4 1

5 −2671 1285 −310 50 −5 1

6 33305 −16026 3855 −620 75 −6 1

7 −484471 233135 −56091 8995 −1085 105 −7 1

8 8054177 −3875768 932540 −149576 17990 −1736 140 −8 1

Table 2: Q1(m, r)
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m/r 0 1 2 3 4 5 6 7 8

0 1

1 −2 1

2 8 −4 1

3 −50 24 −6 1

4 416 −200 48 −8 1

5 −4322 2080 −500 80 −10 1

6 53888 −25932 6240 −1000 120 −12 1

7 −783890 377216 −90762 14560 −1750 168 −14 1

8 13031936 −6271120 1508864 −242032 29120 −2800 224 −16 1

Table 3: Q2(m, r)

We observe several properties. By abs(·), we mean the absolute value of the elements in that
set, as we see in the first row of Table 4.

abs(Q1(m, 0)) = A000556 abs(Q2(m, 0)) = A000557

Q1(m,m) = 1 Q2(m,m) = 1

Q1(m,m− 1) = −m Q2(m,m− 1) = −2m

Q1(m,m− 2) = 5
(

m
2

)

Q2(m,m− 2) = 8
(

m
2

)

Table 4: Some properties of Q

that suggest

Q1(m,m− n) = (−1)nM1,n

(

m
n

)

Q2(m,m− n) = (−1)nM2,n

(

m
n

)

which can be related to polygonal numbers [13]. Other obvious row properties include

m
∑

r=0

abs(Q1(m, r)) = abs(Q2(m, 0)),

m
∑

r=0

Q2(m, r) = Q1(m, 0),

m
∑

r=0

abs(Q2(m, r)) → A005923,

to which we shall refer in the next section. There are diagonal and column properties that
may also be explored.
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4. Related Ideas

If we consider S(0, 2) and S(1, 3), we see that they can be rewritten as

F3 = F2 + F1 and F4 = F3 + F2,

respectively, which raises the question whether equation (2.1) can generally be turned into
(inhomogeneous) gibonacci recurrence relations [8].

Let C(m) = C1 + C2 such that Fn+2 | (S(m,n)− C1). Then, (2.1) can be expressed as

P3(m,n)Fn+2 = P1(m,n)Fn + P2(m,n)Fn+1 + C2, (4.1)

which has the form of an inhomogeneous recurrence relation. This leads into extending some
of the work of Asveld [1], who solved the inhomogeneous difference equation

Gn = Gn−1 +Gn−2 +

k
∑

j=0

αjpj(n) (4.2)

with the expression

Gn = (1 + Λk)Fn + λkFn−1 −
k
∑

j=0

αjpj(n),

in which

Λk =

k
∑

j=0

a0,jαj , λk =

k
∑

j=1

j
∑

i=1

ai,jαj, pj(n) =

j
∑

i=0

ai,jn
i,

which have been explored further by Horadam and Shannon [6]. What is relevant to the theme
of this note can be seen in the constant term a0,j in pj(n):

m
∑

r=0

abs(Q2(m, r)) → {a0,j}.

The coefficients are set out in Table 5, in which the second column (a0,j) is A005923 [10].

j a0,j a1,j a2,j a3,j a4,j a5,j a6,j

0 1

1 3 1

2 13 6 1

3 81 39 9 1

4 673 324 78 12 1

5 6993 3365 810 130 15 1

6 87193 41958 10095 1620 195 18 1

Table 5: Coefficients in Asveld’s pj(n)
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5. Recurrence Relation

A recurrence relation for S(m,n) may also be developed. For integers m,n ≥ 0, let

p(m,n) =
n
∑

k=1

km =
m+1
∑

j=0

am+1,jn
j,

where am+1,j = 1
(m+1)

(

m+1
j

)

B+
m+1−j (j > 0) and B+

i are the appropriately signed Bernoulli

numbers. The constant term am+1,0 of the polynomial in n is zero, but is included for conve-
nience in the derivation. The recurrence relation is then

1

m+ 1
S(m+ 1, n) = p(m,n+ 1)Fn + p(m,n)Fn+1 −

m
∑

j=0

bm+1,jS(j, n) (5.1)

with S(0, n) = Fn + Fn+1 − 1, and where

bm+1,j =
m+1
∑

r=j

(

r

j

)

am+1,r (j 6= m)

with, for j = m, b1,0 = 2 (m = 0) and bm+1,m = 5
2 (m > 0).

Proof.

S(m,n) =

n
∑

k=1

kmFk =

2
∑

k=1

kmFk +

n
∑

k=3

km

(

1 +

k−2
∑

i=1

Fi

)

= 1 + 2m +
n
∑

k=3

km +
n−2
∑

k=1

(k + 2)m
k
∑

i=1

Fi

= p(m,n) +
n−2
∑

i=1

Fi

n−2
∑

k=i

(k + 2)m = p(m,n) +
n−2
∑

i=1

Fi

n
∑

k=i+2

km

= p(m,n) +
n−2
∑

i=1

Fi(p(m,n)− p(m, i+ 1))

= p(m,n)

(

1 +
n−2
∑

i=1

Fi

)

−
n−2
∑

i=1

Fip(m, i+ 1)

= p(m,n)Fn −
n
∑

i=1

Fip(m, i+ 1) + Fn−1p(m,n) + Fnp(m,n+ 1)

= p(m,n+ 1)Fn + p(m,n)Fn+1 −
n
∑

i=1

Fi

m+1
∑

j=0

am+1,j(i+ 1)j

= p(m,n+ 1)Fn + p(m,n)Fn+1 −

n
∑

i=1

Fi

m+1
∑

j=0

a∗m+1,ji
j

= p(m,n+ 1)Fn + p(m,n)Fn+1 −

m+1
∑

j=0

a∗m+1,jS(j, n),
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where

a∗m+1,j =

m+1
∑

r=j

am+1,r

(

r

j

)

.

Therefore,

a∗m+1,m+1S(m+ 1, n) = p(m,n+ 1)Fn + p(m,n)Fn+1 −

m
∑

j=0

a∗m+1,jS(j, n)− S(m,n).

Therefore,

1

m+ 1
S(m+ 1, n) = p(m,n+ 1)Fn + p(m,n)Fn+1 −

m
∑

j=0

bm+1,jS(j, n),

where bm+1,j = a∗m+1,j (j 6= m), bm+1,m = a∗m+1,m + 1. �

Table 6 shows the initial rows of the bm+1,j coefficient array.

m (m+ 1)/j 0 1 2 3 4 5

0 1 b1,0 = 2 1

1 2 1 5/2 1/2

2 3 1 13/6 5/2 1/3

3 4 1 3 13/4 5/2 1/4

4 5 1 119/30 6 13/3 5/2 1/5

Table 6: Values of bm+1,j

Examples. (c.f. S(1, n) and S(2, n) in Section 2 above)

S(1, n) = p(0, n+ 1)Fn + p(0, n)Fn+1 −

0
∑

j=0

b1,jS(j, n)

= (n+ 1)Fn + nFn+1 − b1,0S(0, n)

= (n+ 1)Fn + nFn+1 − 2(Fn + Fn+1 − 1) = (n − 1)Fn + (n− 2)Fn+1 + 2;

1

2
S(2, n) = p(1, n+ 1)Fn + p(1, n)Fn+1 −

1
∑

j=0

b2,jS(j, n),

so

S(2, n) = (n+ 1)(n + 2)Fn + n(n+ 1)Fn+1 − 2b2,0S(0, n)− 2b2,1S(1, n)

= (n+ 1)(n + 2)Fn + n(n+ 1)Fn+1 − 2(Fn + Fn+1 − 1)− 5((n − 1)Fn + (n− 2)Fn+1 + 2)

= (n2 − 2n+ 5)Fn + (n2 − 4n+ 8)Fn+1 − 8.

Further, considering the bm+1,j coefficients themselves, it is well-known (although still surpris-
ing) that the inverse of the matrix of coefficients am+1,j (j > 0) of p(m,n) is a Pascal-like
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matrix [4]. It is then of interest to note that the values given in Table 6 (with an additional
value of b0,0 = 1 in the top-left position) produce:

{bm+1,j}
−1
6×6 =

















1
−2 1
8 −5 2

−50 31 −15 3
416 −257 124 −30 4

−4322 2671 −1285 310 −50 5

















,

in which the first and second columns are related to M2,j (and so C(m) and Table 3 for
Q1(m, r)) and M1,j , respectively. Columns 2 to 5 correspond with values in the columns of
Table 2 for Q1(m, r). Other than the first row, row sums are the negative of the corresponding
row entry of column 2 (i.e. −1, 5, −31, 257, . . .), and so are also related to M1,j.

6. Conjectures

Equations (5.1) and (2.1) yield

1

m+ 1
(P1(m+ 1, n)Fn + P2(m+ 1, n)Fn+1 + C(m+ 1))

= p(m,n+ 1)Fn + p(m,n)Fn+1 −
m
∑

j=0

bm+1,j(P1(j, n)Fn + P2(j, n)Fn+1 + C(j))

=



p(m,n+ 1)−
m
∑

j=0

bm+1,jP1(j, n)



Fn +



p(m,n)−
m
∑

j=0

bm+1,jP2(j, n)



Fn+1

−

m
∑

j=0

bm+1,jC(j),

from which we conjecture the following by identifying the corresponding “constant” terms and
coefficients of Fn and Fn+1.

Conjecture 1.

C(m+ 1) = −(m+ 1)
m
∑

j=0

bm+1,jC(j), C(0) = −1. (6.1)

Examples. (c.f. constant terms of the example S(m,n) functions in Section 2)

C(1) = −

0
∑

j=0

b1,jC(j) = −b1,0C(0) = −2C(0) = 2;

C(2) = −2

1
∑

j=0

b2,jC(j) = −2(b2,0C(0) + b2,1C(1)) = −2

(

C(0) +
5

2
C(1)

)

= −8;

C(3) = −3

2
∑

j=0

b3,jC(j) = −3(b3,0C(0) + b3,1C(1) + b3,2C(2))

= −3

(

C(0) +
13

6
C(1) +

5

2
C(2)

)

= 50.
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Conjecture 2.

P1(m+ 1, n) = (m+ 1)



p(m,n+ 1)−

m
∑

j=0

bm+1,jP1(j, n)



 , P1(0, n) = 1. (6.2)

Example. (c.f. S(1, n) in Section 2)

P1(1, n) = p(0, n + 1)−

0
∑

j=0

b0+1,jP1(j, n) = n+ 1− b1,0P1(0, n) = n+ 1− 2× 1 = n− 1.

Conjecture 3.

P2(m+ 1, n) = (m+ 1)



p(m,n)−

m
∑

j=0

bm+1,jP2(j, n)



 , P2(0, n) = 1. (6.3)

Example. (c.f. S(1, n) in Section 2)

P2(1, n) = p(0, n)−

0
∑

j=0

b0+1,jP2(j, n) = n− b1,0P2(0, n) = n− 2× 1 = n− 2.

Equations (6.2) and (2.2) (with i = 1) give the following equivalent polynomials in n:

m+1
∑

k=0

(−1)k
(

m+ 1

k

)

M1,kn
m+1−k

= (m+ 1)



p(m,n+ 1)−
m
∑

j=0

bm+1,j

j
∑

k=0

(−1)k
(

j

k

)

M1,kn
j−k



 .

Comparing constant terms gives the following conjecture.

Conjecture 4.

M1,m+1 = (−1)m(m+ 1)





m
∑

j=0

(−1)jbm+1,jM1,j − 1



 , M1,0 = 1.

Examples. (c.f. Table 1)

M1,1 = b1,0M1,0 − 1 = 2− 1 = 1;

M1,2 = 2





1
∑

j=0

(−1)jbm+1,jM1,j − 1



 = −2(b2,0M1,0 − b2,1M1,1 − 1)

= −2

(

1−
5

2
− 1

)

= 5.

Similarly, (6.3) and (2.2) (with i = 2) give

m+1
∑

k=0

(−1)k
(

m+ 1

k

)

M2,kn
m+1−k = (m+ 1)



p(m,n)−
m
∑

j=0

bm+1,j

j
∑

k=0

(−1)k
(

j

k

)

M2,kn
j−k



 .

Therefore, we have the following conjecture.
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Conjecture 5.

M2,m+1 = (−1)m(m+ 1)

m
∑

j=0

(−1)jbm+1,jM2,j, M2,0 = 1.

Examples. (c.f. Table 1)

M2,1 = b1,0M2,0 = 2;

M2,2 = −2

1
∑

j=0

(−1)jbm+1,jM2,j = −2(b2,0M2,0 − b2,1M2,1) = −2

(

1− 2×
5

2

)

= 8.

The recurrence relations for M1,m+1 also may be compared with those given for A000556
and A000557 in the OEIS.

7. Conclusion

Conjectures 1 and 5 indicate the following relationships:

C(m+ 1) = −(m+ 1)

m
∑

j=0

bm+1,jC(j), C(0) = −1;

M2,m+1 = (−1)m(m+ 1)

m
∑

j=0

(−1)jbm+1,jM2,j , M2,0 = 1.

In addition to the ideas for further study raised in the foregoing, Ledin essentially asked the
following three questions at the end of his paper (and in the notation of this paper):

a) Could the theory of S(m,n) be extended to negative m?
b) Could the theory of S(m,n) be extended to rational (and to real) m? [5]
c) What is the possibility of studying

S(m, r, n) =

n
∑

k=1

kmF r
k

with standard techniques?
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