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Abstract. As n varies, we count the number of subsets of {1, 2, . . . , n} under different
conditions and study the sequences formed by these numbers.

1. Introduction

We define the α-Schreier condition. Given a natural number α, a set S is said to be α-
Schreier if minS/α ≥ |S|, where |S| is the cardinality of S. Schreier used 1-Schreier sets to
solve a problem in Banach space theory [3]. These sets were also independently discovered
in combinatorics and are connected to Ramsey-type theorems for subsets of N. Next, we
define the β-Zeckendorf condition. In 1972, Zeckendorf proved that every positive integer
can be uniquely written as a sum of nonconsecutive Fibonacci numbers [4]. We focus on
the important requirement for uniqueness of the Zeckendorf decomposition; that is, our set
contains no two consecutive Fibonacci numbers. We generalize this condition to a finite set of
natural numbers.

Definition 1.1. Let S = {s1, s2, . . . , sk} (s1 < s2 < · · · < sk) for some k ∈ N≥2. The
difference set of S, denoted by D(S), is {s2 − s1, s3 − s2, . . . , sk − sk−1}. The difference set of
the empty set and a set with exactly one element is empty.

Definition 1.2. Fix a natural number β. A finite set S of natural numbers is β-Zeckendorf
if minD(S) ≥ β; that is, each pair of numbers in S is at least β apart. The empty set, and a
set with exactly one element, vacuously satisfy this condition.

Chu, et al. proved the linear recurrence of the sequence obtained by counting subsets of
{1, 2, . . . , n} that are α-Schreier [2]. In particular, [2, Theorem 1.1] states that the recurrence
has order α+ 1. On the other hand, it is well known that the sequence obtained by counting
subsets of {1, 2, . . . , n} that are β-Zeckendorf has a linear recurrence of order β. A notable
example is β = 2, which gives the Fibonacci sequence. A natural extension of these results is
to consider sets that are both α-Schreier and β-Zeckendorf. For each n ∈ N, define

aα,β,n = #{S ⊂ {1, 2, . . . , n} : S is α-Schreier and β-Zeckendorf}.

Our first result shows a linear recurrence for this sequence (aα,β,n).

Theorem 1.3. Fix natural numbers α and β. For n ≥ 1, we have

aα,β,n =


1, for n ≤ α− 1;

n− α+ 2, for α ≤ n ≤ 2α+ β − 1;

aα,β,n−1 + aα,β,n−(α+β), for n ≥ 2α+ β.

Remark 1.4. Theorem 1.3 says that the order of our recurrence relation is the sum α + β.
Substituting β = 1, we have [2, Theorem 1.1]. Interestingly, the number of 1’s in the sequence
is independent of β.
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The next results involve the Fibonacci sequence. Let the Fibonacci sequence be F0 = 0,
F1 = 1, and Fn = Fn−1 + Fn−2 for all n ≥ 2. Let (Hn)n≥0 be the sequence obtained by
applying the partial sum operator twice to the Fibonacci sequence. In particular,

Hn =
n∑
i=0

(n+ 1− i)Fi.

The first few terms of (Hn) are 0, 1, 3, 7, 14, 26, and 46. We prove the following identity.

Proposition 1.5. For n ≥ 0, we have

Fn+4 = Hn + n+ 3. (1.1)

We then use the identity to prove the following theorem.

Theorem 1.6. Let (an)n≥1 be the number of subsets of {1, 2, . . . , n} that

(i) have at least two elements; and
(ii) have their difference sets only contain odd numbers.

Then an = Hn−1.

Our last result is a companion of [1, Theorem 8], which considers subsets of {1, 2, . . . , n}
whose difference set only contains odd numbers. Surprisingly, the number of such subsets is
related to the Fibonacci sequence. For convenience, we include the theorem below.

Theorem 1.7. Fix n ∈ N. The number of subsets of {1, 2, . . . , n}
(1) that contain n and whose difference sets only contain odd numbers is Fn+1,
(2) whose difference sets only contain odd numbers (the empty set and sets with exactly

one element vacuously satisfy this requirement) is Fn+3 − 1.

To complete the picture, we consider subsets whose difference set only contains even num-
bers.

Theorem 1.8. Fix n ∈ N. The number of subsets of {1, 2, . . . , n}
1. that contain n and whose difference sets only contain even numbers is 2b(n−1)/2c,
2. whose difference sets only contain even numbers (the empty set and sets with exactly

one element vacuously satisfy this requirement) is{
3 · 2(n−1)/2 − 1, if n is odd;

2 · 2n/2 − 1, if n is even.

The following corollary is immediate.

Corollary 1.9. Let

Sn = {S ⊂ {1, 2, . . . , n} : D(S) only has odd numbers or only has even numbers};
Sn,1 = {S ⊂ {1, 2, . . . , n} : D(S) only has odd numbers};
Sn,2 = {S ⊂ {1, 2, . . . , n} : D(S) only has even numbers}.

Then limn→∞
|Sn,1|
|Sn| = 1; that is, as n → ∞, almost all sets in Sn have their difference sets

only contain odd numbers.

Proof. Because 3 · 2(n−1)/2 > 2 · 2n/2 and by Theorem 1.7, it suffices to prove that

lim
n→∞

3 · 2(n−1)/2 − 1

Fn+3 − 1
= 1,

which we can prove by using Binet’s formula for Fn+3. �
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Remark 1.10. Intuitively, the above corollary says that sets in Sn,1 dominate sets in Sn,2.
The reason is that for a set in S1, the difference between consecutive elements can be as small
as 1, which gives us much more freedom in constructing such a set than a set in S2.

Section 2 is devoted to proofs of our main results, whereas Section 3 generalizes Proposition
1.5 and raises several questions for future research.

2. Proofs

Proof of Theorem 1.3. For n ≤ α− 1, the only subset of {1, 2, . . . , n} that is α-Schreier is the
empty set, which is also β-Zeckendorf. Hence, aα,β,n = 1.

Consider α ≤ n ≤ 2α+β−1. Let S ⊂ {1, 2, . . . , n} be α-Schreier and β-Zeckendorf. Suppose
that |S| ≥ 2. Because minS/α ≥ |S| ≥ 2, we have minS ≥ 2α. Because S is β-Zeckendorf,
the other elements in S must be at least 2α + β, which contradicts n ≤ 2α + β − 1. Hence,
either S = ∅ or S = {k} for α ≤ k ≤ n. Therefore, aα,β,n = n− α+ 2.

Finally, consider n ≥ 2α+ β. Let

A = {S ⊂ {1, 2, . . . , n} : S is α-Schreier and β-Zeckendorf and maxS < n};
B = {S ⊂ {1, 2, . . . , n} : S is α-Schreier and β-Zeckendorf and maxS = n}.

Clearly, A = {S ⊂ {1, 2, . . . , n − 1} : S is α-Schreier and β-Zeckendorf}. Hence, |A| =
aα,β,n−1. It suffices to prove |B| = aα,β,n−(α+β). We show a bijection between B and C = {S ⊂
{1, 2, . . . , n− (α+ β)} : S is α-Schreier and β-Zeckendorf}.

Given a set S and k ∈ N, we let S − k = {s − k : s ∈ S}. Define the function f : B → C
such that

f(S) =

{
∅, if S = {n};
S\{n} − α, if |S| > 1.

We show that f is well-defined. If |S| > 1, we have

min f(S) = min(S\{n} − α) = minS − α ≥ α|S| − α = α|f(S)|.

Hence, f(S) is α-Schreier. Because S is β-Zeckendorf, f(S) is also β-Zeckendorf. Lastly, we
have

max f(S) = max(S\{n})− α ≤ (n− β)− α = n− (β + α).

Therefore, f(S) ∈ C. We know that f is injective by definition, and thus, |B| ≤ |C|. Next,
define the function g : C → B such that g(S) = (S + α) ∪ {n}. Because S is β-Zeckendorf and
maxS ≤ n− (α+ β), we know that g(S) is also β-Zeckendorf. To see why g(S) is α-Schreier,
we observe that

min g(S) = minS + α ≥ α(|S|+ 1) = α|g(S)|.

Hence, g is well-defined and is injective by definition. Therefore, |B| ≥ |C|. We conclude that
|B| = |C|, which completes our proof. �

Proof of Proposition 1.5. We prove the proposition by induction. Clearly, the identity holds
for n = 0. Suppose the identity holds for n = k for some k ≥ 0; that is, Fk+4 = Hk + k + 3.
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We show that Fk+5 = Hk+1 + k + 4. We have

Fk+5 = Fk+4 + Fk+3 = Hk + k + 3 + Fk+3

=

(
Hk+1 −

k+1∑
i=0

Fi

)
+ k + 3 + Fk+3

= (Hk+1 + k + 4) +

(
Fk+3 −

k+1∑
i=0

Fi − 1

)
.

It is well known that Fk+3−
∑k+1

i=0 Fi− 1 = 0; therefore, Fk+5 = Hk+1 +k+ 4. This completes
our proof. �

Proof of Theorem 1.6. By Theorem 1.7 and (1.1), we have

an = Fn+3 − 2− n = (Hn−1 + n+ 2)− 2− n = Hn−1.

This completes our proof. �

Proof of Theorem 1.8. We prove the first item by induction. Let Pn (and On, respectively)
be the number of subsets of {1, 2, . . . , n} (and the set of subsets of {1, 2, . . . , n}, resp.) that
satisfy our requirement.

Base cases. For n = 1, {1} is the only subset of {1} that satisfies our requirement. Hence,

P1 = 1 = 2b(1−1)/2c. Similarly, O2 = {{2}} and P2 = 1 = 2b(2−1)/2c.
Inductive hypothesis. Suppose that there exists a k ≥ 2 such that for all n ≤ k we have

Pn = 2b(n−1)/2c. We show that Pk+1 = 2bk/2c. Observe that taking the union of sets Ok+1−2i
for 1 ≤ i < (k+ 1)/2 with k+ 1 produces a set in Ok+1, and any set in Ok+1 is of the form of
a set in Ok+1−2i plus the element k + 1. Therefore,

Pk+1 = |Ok+1| = 1 +
∑

1≤i<(k+1)/2

|Ok+1−2i| = 1 +
∑

1≤i<(k+1)/2

Pk+1−2i.

The number 1 accounts for the set {k + 1}. If k is odd, we have

Pk+1 = 1 + Pk−1 + Pk−3 + · · ·+ P2

= 1 + 2b(k−2)/2c + 2b(k−4)/2c + · · ·+ 2b1/2c

= 1 + 2(k−3)/2 + 2(k−5)/2 + · · ·+ 20/2 = 2(k−1)/2 = 2bk/2c.

Similarly, if k is even, we also have Pk+1 = 2bk/2c. This completes our proof of the first item.
The second item follows from the first by noticing that the number of subsets of {1, 2, . . . , n}
whose difference sets only contain even numbers is equal to 1+

∑n
k=1 |Ok| = 1+

∑n
k=1 2b(k−1)/2c,

where the number 1 accounts for the empty set. It is an exercise to show that this formula
and the formula given in item 2 are the same. �

3. Generalizations and Questions

In this section, we generalize Proposition 1.5 and raise two questions for future research.
For each n ≥ 2, define the sequence (Fn,m)m≥0 as follows: Fn,0 = 0, Fn,1 = · · · = Fn,n = 1,
and Fn,m = Fn,m−1 +Fn,m−n for m ≥ n+ 1. Let (Kn,m) and (Hn,m) be the sequence obtained
by applying the partial sum operation to (Fn,m) once and twice, respectively. For example,
when n = 3, we have Table 1.
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m 0 1 2 3 4 5 6 7 8 9 10 11 12
Fn,m 0 1 1 1 2 3 4 6 9 13 19 28 41
Kn,m 0 1 2 3 5 8 12 18 27 30 49 77 118
Hn,m 0 1 3 6 11 19 31 49 76 106 155 232 350

Table 1. The sequences (F3,m), (K3,m), and (H3,m) for 0 ≤ m ≤ 12.

The following proposition generalizes Proposition 1.5.

Proposition 3.1. For n ≥ 2 and m ≥ 0, we have

(1)
∑k+1

i=0 Fn,i = Fn,k+1+n − 1 for k ≥ 0,
(2) Fn,m+2n = Hn,m +m+ (n+ 1).

Proof. We prove item (1). Fix n ≥ 2 and k ≥ 0. We have

Fn,k+1+n −
k+1∑
i=0

Fn,i − 1 = (Fn,k+1+n − Fn,k+1)−
k∑
i=0

Fn,i − 1

= Fn,k+n −
k∑
i=0

Fn,i − 1

= (Fn,k+n − Fn,k)−
k−1∑
i=0

Fn,i − 1

= Fn,k+n−1 −
k−1∑
i=0

Fn,i − 1

= · · · = Fn,n−1 − 1 = 0.

Hence, we have Fn,k+1+n −
∑k+1

i=0 Fn,i − 1 = 0, so
∑k+1

i=0 Fn,i = Fn,k+1+n − 1.
Next, we prove item (2). Fix n ≥ 2. We proceed by induction.
Base case. For m = 0, the identity is equivalent to Fn,2n = n+ 1, which is true.
Inductive hypothesis. Suppose that the identity is true for all 0 ≤ m ≤ k for some k ≥ 0.

We want to show that it is true for m = k + 1. We have

Fn,k+1+2n = Fn,k+2n + Fn,k+1+n

= (Hn,k + k + (n+ 1)) + Fn,k+1+n by the inductive hypothesis

= (Hn,k + Fn,k+1+n − 1) + (k + 1) + (n+ 1)

=

(
Hn,k +

k+1∑
i=0

Fn,i

)
+ (k + 1) + (n+ 1) by item (1)

= Hn,k+1 + (k + 1) + (n+ 1).

This completes our proof. �

Theorem 1.6 shows that (H2,m) is related to the number of certain subsets of {1, 2, . . . , n};
however, the author is unable to find such a combinatorial perspective of the sequence (Hn,m)
when m > 2. Is there a connection between the sequence (Hn,m) and the number of subsets
of {1, 2, . . . , n} restricted to certain conditions as in Theorem 1.6?

Fix k ≥ 2. Another way to generalize Theorem 1.6 is to look at the sequence formed by
counting subsets of {1, 2, . . . , n} satisfying two conditions: (i) have at least k elements, and
(ii) have their difference sets only contain odd numbers. When k = 2, Theorem 1.6 connects
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the sequence obtained by counting subsets to the Fibonacci sequence; however, the author is
unable to find such a connection for bigger values of k. For example, when k = 3, the sequence
we obtain is 0, 0, 1, 3, 8, 17, 34, 63, 113, 196, 334, 560, . . .. Is there a neat relation among
terms in this sequence?
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