
GRAPH-THEORETIC CONFIRMATIONS OF FOUR SUMS OF

GIBONACCI POLYNOMIAL PRODUCTS OF ORDER 4

THOMAS KOSHY

Abstract. Using graph-theoretic techniques, we confirm four identities involving sums of
gibonacci polynomial products of order 4, investigated in [2].

1. Introduction

Gibonacci polynomials zn(x) are defined by the recurrence zn+2(x) = a(x)zn+1(x)+b(x)zn(x),
where x is an arbitrary complex variable; a(x), b(x), z0(x), and z1(x) are arbitrary complex
polynomials; and n ≥ 0.

Suppose a(x) = x and b(x) = 1. When z0(x) = 0 and z1(x) = 1, zn(x) = fn(x), the
nth Fibonacci polynomial ; and when z0(x) = 2 and z1(x) = x, zn(x) = ln(x), the nth Lucas
polynomial. Clearly, fn(1) = Fn, the nth Fibonacci number; and ln(1) = Ln, the nth Lucas
number [1, 3, 4].

Pell polynomials pn(x) and Pell-Lucas polynomials qn(x) are defined by pn(x) = fn(2x) and
qn(x) = ln(2x), respectively. In particular, the Pell numbers Pn and Pell-Lucas numbers Qn

are given by Pn = pn(1) = fn(2) and 2Qn = qn(1) = ln(2), respectively [3].
In the interest of brevity, clarity, and convenience, we omit the argument in the functional

notation, when there is no ambiguity; so zn will mean zn(x). We let gn = fn or ln, bn = pn or
qn, and also omit a lot of basic algebra.

Table 1 lists some well-known fundamental Fibonacci identities. We will employ them in
our discourse [3].

fn+1 + fn−1 = ln f2n = fnln
f2
n+1 + f2

n = f2n+1 fn+2 + fn−2 = (x2 + 2)fn
fn+2 − fn−2 = xln fa+b = fa+1fb + fafb−1

fn+kfn−k − f2
n = (−1)n−k+1f2

k

Table 1: Fundamental Fibonacci Identities

The last two identities are the Fibonacci addition formula and the Cassini-like formula, re-
spectively.

1.1. Sums of Gibonacci Polynomial Products of Order 4. Several sums of gibonacci
polynomial products of order 4 are studied in [2]; in the interest of brevity, we focus only on
the sums in equations (2.9), (2.6), (2.24), and (2.26) in [2], and they play a major role in our
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explorations:

x3f4n = f3
n+2fn − 2f2

n+2f
2
n − f2

n+2fnfn−2 + 2(x2 + 1)fn+2f
3
n + fn+2fnf

2
n−2

−2(x2 + 1)f3
nfn−2 + 2f2

nf
2
n−2 − fnf

3
n−2; (1)

x4f4n+1 = f4
n+2 − 4f3

n+2fn + 2(2x2 + 3)f2
n+2f

2
n − (x4 + 6x2 + 4)fn+2f

3
n − 2x2fn+2f

2
nfn−2

+ (x2 + 1)2f4
n + (x4 + 2x2)f3

nfn−2; (2)

x4l4n+2 = (x2 + 2)f4
n+2 − 8f3

n+2fn + (5x2 + 12)f2
n+2f

2
n − 2(x4 + 6x2 + 4)fn+2f

3
n

− 2x2fn+2f
2
nfn−2 + (2x4 + 5x2 + 2)f4

n + 2(x4 + 2x2)f3
nfn−2 − x2f2

nf
2
n−2; (3)

x3l4n+3 = (x2 + 3)f4
n+2 − 4f3

n+2fn + x2f2
n+2f

2
n − (x4 + 6x2 + 4)fn+2f

3
n

+ 4fn+2f
2
nfn−2 + (x4 + 3x2 + 3)f4

n + (x4 + 2x2)f3
nfn−2 − (x2 + 2)f2

nf
2
n−2. (4)

The remaining sums can be pursued in a similar manner.
It follows by identities (2.2) and (2.14) in [2] that

x3f4n+4 = (x2 + 2)f4
n+2 − 4f3

n+2fn + (x2 + 3)f2
n+2f

2
n − (x4 + 6x2 + 4)fn+2f

3
n

+ 2fn+2f
2
nfn−2 + (x4 + 3x2 + 2)f4

n + (x4 + 2x2)f3
nfn−2 − (x2 + 1)f2

nf
2
n−2. (5)

We will employ this result in Subsection 3.4.

2. Some Graph-theoretic Tools

Our goal is to confirm the polynomial identities (1) through (4) using graph-theoretic tech-
niques. To this end, consider the Fibonacci digraph D in Figure 1 with vertices v1 and v2,
where a weight is assigned to each edge [3, 5].

Figure 1. Weighted Fibonacci Digraph D1

It follows from its weighted adjacency matrix Q =

[
x 1
1 0

]
that

Qn =

[
fn+1 fn
fn fn−1

]
,

where n ≥ 1 [3, 5].
A walk from vertex vi to vertex vj is a sequence vi-ei-vi+1-· · · -vj−1-ej−1-vj of vertices vk

and edges ek, where edge ek is incident with vertices vk and vk+1. The walk is closed if vi = vj ;
otherwise, it is open. The length of a walk is the number of edges in the walk. The weight of
a walk is the product of the weights of the edges along the walk.

The ijth entry of Qn gives the sum of the weights of all walks of length n from vi to vj in
the weighted digraph D, where 1 ≤ i, j ≤ n [3, 5]. Consequently, the sum of the weights of
closed walks of length n originating at v1 in the digraph is fn+1 and that of those originating
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at v2 is fn−1. So, the sum of the weights of all closed walks of length n in the digraph is
fn+1 + fn−1 = ln. These facts play a pivotal role in the graph-theoretic proofs.

Let A, B, C, and D denote the sets of walks of varying lengths originating at a vertex
v, respectively. Then, the sum of the weights of the elements (a, b, c, d) in the product set
A×B × C ×D is defined as the product of the sums of weights from each component [5].

With these tools at our finger tips, we are now ready for the graph-theoretic proofs.

3. Graph-theoretic Proofs

3.1. Confirmation of Identity (1).
Proof. Let S denote the sum of the weights of closed walks of length 4n− 1 in the digraph D
originating (and ending) at v1. Then S = f4n, and hence x3S = x3f4n.

We will now compute the sum x3S in a different way. To this end, let w be an arbitrary
closed walk of length 4n− 1 from v1 to v1. It can land at v1 or v2 at the nth, 2nth, and 3nth
steps:

w = v1 − · · · − v︸ ︷︷ ︸
subwalk of length n

v − · · · − v︸ ︷︷ ︸
subwalk of length n

v − · · · − v︸ ︷︷ ︸
subwalk of length n

v − · · · − v1︸ ︷︷ ︸
subwalk of length n−1

,

where v = v1 or v2.
Table 2 shows the various possible cases and the respective sums of weights of closed walks

originating at v1 of length 4n− 1.

w lands at v1 at w lands at v1 at w lands at v1 at w lands at v1 at sum of the weights
the nth step? the 2nth step? the 3nth step? the (4n− 1)st step? of walks w

yes yes yes yes f3
n+1fn

yes yes no yes f2
n+1fnfn−1

yes no yes yes fn+1f
3
n

yes no no yes fn+1fnf
2
n−1

no yes yes yes fn+1f
3
n

no yes no yes f3
nfn−1

no no yes yes f3
nfn−1

no no no yes fnf
3
n−1

Table 2: Sums of the Weights of Closed Walks Originating at v1 of Length 4n− 1.

It follows from the table that the sum S of the weights of all walks w is given by

S = f3
n+1fn + f2

n+1fnfn−1 + 2fn+1f
3
n + fn+1fnf

2
n−1 + 2f3

nfn−1 + fnf
3
n−1;

x3S = A + B + C + D + E + F,
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where

A = x3f3
n+1fn

= (fn+2 − fn)3fn

= f3
n+2fn − 3f2

n+2f
2
n + 3fn+2f

3
n − f4

n;

B = x3f2
n+1fnfn−1

= (fn+2 − fn)2fn(fn − fn−2)

= f2
n+2f

2
n − f2

n+2fnfn−2 − 2fn+2f
3
n + 2fn+2f

2
nfn−2 + f4

n − f3
nfn−2;

C = 2x3fn+1f
3
n

= 2x2f3
n(fn+2 − fn)

= 2x2fn+2f
3
n − 2x4f4

n;

D = x3fn+1fnf
2
n−1

= (fn+2 − fn)fn(fn − fn−2)
2

= fn+2f
3
n − 2fn+2f

2
nfn−2 + fn+2fnf

2
n−2 − f4

n + 2f3
nfn−2 − f2

nf
2
n−2;

E = 2x3f3
nfn−1

= 2x2f3
n(fn − fn−2)

= 2x2f4
n − 2x2f3

nfn−2;

F = x3fnf
3
n−1

= fn(fn − fn−2)
3

= f4
n − 3f3

nfn−2 + 3f2
nf

2
n−2 − fnf

3
n−2.

Consequently,

x3S = f3
n+2fn − 2f2

n+2f
2
n − f2

n+2fnfn−2 + 2(x2 + 1)fn+2f
3
n + fn+2fnf

2
n−2

− 2(x2 + 1)f3
nfn−2 + 2f2

nf
2
n−2 − fnf

3
n−2.

Equating this value of x3S with its earlier value yields identity (1), as desired. �

3.2. Confirmation of Identity (2).
Proof. Let S′ denote the sum of the weights of closed walks of length 4n originating at v1 in
the digraph. Then S′ = f4n+1, and hence x4S′ = x4f4n+1.

We will now compute x4S′ in a different way, and then equate the two values. To achieve
this, we let w be an arbitrary closed walk of length 4n originating at v1. It can land at v1 or
v2 at the nth, 2nth, and 3nth steps:

w = v1 − · · · − v︸ ︷︷ ︸
subwalk of length n

v − · · · − v︸ ︷︷ ︸
subwalk of length n

v − · · · − v︸ ︷︷ ︸
subwalk of length n

v − · · · − v1︸ ︷︷ ︸
subwalk of length n

,

where v = v1 or v2.
Table 3 summarizes the possible cases and the sums of the weights of the closed walks

originating at v1 of length 4n.
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w lands at v1 at w lands at v1 at w lands at v1 at w lands at v1 at sum of the weights
the nth step? the 2nth step? the 3nth step? the 4nth step? of walks w

yes yes yes yes f4
n+1

yes yes no yes f2
n+1f

2
n

yes no yes yes f2
n+1f

2
n

yes no no yes fn+1f
2
nfn−1

no yes yes yes f2
n+1f

2
n

no yes no yes f4
n

no no yes yes fn+1f
2
nfn−1

no no no yes f2
nf

2
n−1

Table 3: Sums of the Weights of Closed Walks Originating at v1 of Length 4n.

It follows from the table that

S′ = f4
n+1 + 3f2

n+1f
2
n + 2fn+1f

2
nfn−1 + f4

n + f2
nf

2
n−1;

x4S′ = G + H + I + J + K,

where

G = x4f4
n+1

= (fn+2 − fn)4

= f4
n+2 − 4f3

n+2f
2
n + 6f2

n+2f
2
n − 4fn+2f

3
n + f4

n;

H = 3x4f2
n+1f

2
n

= 3x2f2
n(fn+2 − fn)2

= 3x2f2
n+2f

2
n − 6x2fn+2f

3
n + 3x2f4

n;

I = 2x4fn+1f
2
nfn−1

= 2x2f2
n(fn+2 − fn)(fn − fn−2)

= 2x2fn+2f
3
n − 2x2fn+2f

2
nfn−2 − 2x2f4

n + 2x2f3
nfn−2;

J = x4f4
n;

K = x4f2
nf

2
n−1

= x2f2
n(fn − fn−2)

2

= x2f4
n − 2x2f3

nfn−2 + x2f2
nf

2
n−2.

Thus,

x4S′ = f4
n+2 − 4f3

n+2fn + 3(x2 + 2)f2
n+2f

2
n − 4(x2 + 1)fn+2f

3
n − 2x2fn+2f

2
nfn−2

+ (x2 + 1)2f4
n + x2f2

nf
2
n−2. (6)

Now let

L = x2f2
n+2f

2
n − (x4 + 2x2)fn+2f

3
n + (x4 + 2x2)f3

nfn−2 − x2f2
nf

2
n−2. (7)

Using the identity fn+2 + fn−2 = (x2 + 2)fn, we have

L = x2fn+2f
2
n

[
fn+2 − (x2 + 2)fn

]
+ x2f2

nf
2
n−2

[
(x2 + 2)fn − fn−2

]
= 0.
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Consequently, adding the value of L in equation (7) to that of x4S′ in equation (6), we get

x4S′ = f4
n+2 − 4f3

n+2fn + 2(2x2 + 3)f2
n+2f

2
n − (x4 + 6x2 + 4)fn+2f

3
n − 2x2fn+2f

2
nfn−2

+ (x2 + 1)2f4
n + (x4 + 2x2)f2

nf
2
n−2.

This value of x4S′, coupled with its original value, yields identity (2), as expected. �

3.3. Confirmation of Identity (3).
Proof. Let S∗ denote the sum of the weights of all closed walks of length 4n+2 in the digraph.
Then S∗ = l4n+2, and hence x4S∗ = x4l4n+2.

We will now compute x4S∗ in a different way, and then equate the two values. Let w be an
arbitrary closed walk of length 4n + 2.

Case 1. Suppose w originates (and ends) at v1. It can land at v1 or v2 at the (n + 1)st,
(2n + 2)nd, and (3n + 2)nd steps:

w = v1 − · · · − v︸ ︷︷ ︸
subwalk of length n+1

v − · · · − v︸ ︷︷ ︸
subwalk of length n+1

v − · · · − v︸ ︷︷ ︸
subwalk of length n

v − · · · − v1︸ ︷︷ ︸
subwalk of length n

,

where v = v1 or v2.
Using Tables 1 and 4, it follows that the sum S∗1 of the weights of all such walks w is given

by

S∗1 = f2
n+2f

2
n+1 + f2

n+2f
2
n + fn+2f

2
n+1fn + fn+2fn+1fnfn−1 + f4

n+1 + 2f2
n+1f

2
n + fn+1f

2
nfn−1

=
(
f2
n+2 + f2

n+1

) (
f2
n+1 + f2

n

)
+ fn+1fn(fn+2 + fn)(fn+1 + fn−1)

= f2n+3f2n+1 + f2n+2f2n

= f4n+3.

w lands at v1 at w lands at v1 at w lands at v1 at w lands at v1 at sum of the weights

the (n+ 1)st step? the (2n+ 2)nd step? the (3n+ 2)nd step? the (4n+ 2)nd step? of walks w

yes yes yes yes f2
n+2f

2
n+1

yes yes no yes f2
n+2f

2
n

yes no yes yes fn+2f2
n+1fn

yes no no yes fn+2fn+1fnfn−1

no yes yes yes f4
n+1

no yes no yes f2
n+1f

2
n

no no yes yes f2
n+1f

2
n

no no no yes fn+1f2
nf

2
n−1

Table 4: Sums of the Weights of Closed Walks Originating at v1 of Length 4n + 2

Case 2. Suppose w originates at v2. It also can land at v1 or v2 at the (n + 1)st, (2n + 2)nd,
and (3n + 2)nd steps:

w = v2 − · · · − v︸ ︷︷ ︸
subwalk of length n+1

v − · · · − v︸ ︷︷ ︸
subwalk of length n+1

v − · · · − v︸ ︷︷ ︸
subwalk of length n

v − · · · − v2︸ ︷︷ ︸
subwalk of length n

,

where v = v1 or v2.
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Using Tables 1 and 5, it follows that the sum S∗2 of the weights of all such walks w is given by

S∗2 = fn+2f
2
n+1fn + fn+2fn+1fnfn−1 + 2f2

n+1f
2
n + f2

n+1f
2
n−1 + fn+1f

2
nfn−1 + f4

n + f2
nf

2
n−1

= fn+1fn(fn+2 + fn)(fn+1 + fn−1) +
(
f2
n+1 + f2

n

) (
f2
n + f2

n−1
)

= f2n+2f2n + f2n+1f2n−1

= f4n+1.

w lands at v1 at w lands at v1 at w lands at v1 at w lands at v2 at sum of the weights
the (n+ 1)st step? the (2n+ 2)nd step? the (3n+ 2)nd step? the (4n+ 2)nd step? of walks w

yes yes yes yes fn+2f2
n+1fn

yes yes no yes fn+2fn+1fnfn−1

yes no yes yes f2
n+1f

2
n

yes no no yes f2
n+1f

2
n−1

no yes yes yes f2
n+1f

2
n

no yes no yes fn+1f2
nfn−1

no no yes yes f4
n

no no no yes f2
nf

2
n−1

Table 5: Sums of the Weights of Closed Walks Originating at v2 of Length 4n + 2

Using the identities (2.6) and (2.14)

x4f4n+1 = f4
n+2 − 4f3

n+2fn + 2(2x2 + 3)f2
n+2f

2
n − (x4 + 6x2 + 4)fn+2f

3
n − 2x2fn+2f

2
nfn−2

+ (x2 + 1)2f4
n + (x4 + 2x2)f3

nfn−2;

x4f4n+3 = (x2 + 1)f4
n+2 − 4f3

n+2fn + (x2 + 6)f2
n+2f

2
n − (x4 + 6x2 + 4)fn+2f

3
n

+ (x4 + 3x2 + 1)f4
n + (x4 + 2x2)f3

nfn−2 − x2f2
nf

2
n−2,

in [2], we get

x4S∗ = x4S∗1 + x4S∗2

= (x2 + 2)f4
n+2 − 8f3

n+2fn + (5x2 + 12)f2
n+2f

2
n − 2(x4 + 6x2 + 4)fn+2f

3
n

− 2x2fn+2f
2
nfn−2 + (2x4 + 5x2 + 2)f4

n + 2(x4 + 2x2)f3
nfn−2 − x2f2

nf
2
n−2.

Equating the two values of x4S∗ yields identity (3), as desired. �

Finally, we turn to the graph-theoretic confirmation of identity (4).

3.4. Confirmation of Identity (4).
Proof. Let S denote the sum of the weights of all closed walks of length 4n+3 in the digraph.
Then S = l4n+3; so x3S = x3l4n+3.

We will now compute x3S in a different way. To this end, let w be an arbitrary walk of
length 4n + 3.

Case 1. Suppose w originates (and ends) at v1. It can land at v1 or v2 at the (n + 1)st,
(2n + 2)nd, and (3n + 3)rd steps:

w = v1 − · · · − v︸ ︷︷ ︸
subwalk of length n+1

v − · · · − v︸ ︷︷ ︸
subwalk of length n+1

v − · · · − v︸ ︷︷ ︸
subwalk of length n+1

v − · · · − v1︸ ︷︷ ︸
subwalk of length n

,

where v = v1 or v2.
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It follows by Tables 1 and 6 that the sum S1 of the weights of all such walks w is given by

S1 = f3
n+2fn+1 + f2

n+2fn+1fn + 2fn+2f
3
n+1 + fn+2fn+1f

2
n + 2f3

n+1fn + fn+1f
3
n

= fn+1

(
f2
n+2 + 2f2

n+1 + f2
n

)
(fn+2 + fn)

= f2n+2

(
f2
n+2 + 2f2

n+1 + f2
n

)
= f2n+2(f2n+3 + f2n+1)

= f4n+4.

w lands at v1 at w lands at v1 at w lands at v1 at w lands at v1 at sum of the weights
the (n+ 1)st step? the (2n+ 2)nd step? the (3n+ 3)rd step? the (4n+ 3)rd step? of walks w

yes yes yes yes f3
n+2fn+1

yes yes no yes f2
n+2fn+1fn

yes no yes yes fn+2f3
n+1

yes no no yes fn+2fn+1f2
n

no yes yes yes fn+2f3
n+1

no yes no yes f3
n+1fn

no no yes yes f3
n+1fn

no no no yes fn+1f3
n

Table 6: Sums of the Weights of Closed Walks Originating at v1 of Length 4n + 3.

Case 2. Suppose w originates at v2. It also can land at v1 or v2 at the (n + 1)st, (2n + 2)nd,
and (3n + 3)rd steps:

w = v2 − · · · − v︸ ︷︷ ︸
subwalk of length n+1

v − · · · − v︸ ︷︷ ︸
subwalk of length n+1

v − · · · − v︸ ︷︷ ︸
subwalk of length n+1

v − · · · − v2︸ ︷︷ ︸
subwalk of length n

,

where v = v1 or v2.

It follows by Tables 1 and 7 that the sum S2 of the weights of all such walks w is given by

S2 = f2
n+2fn+1fn + fn+2f

2
n+1fn−1 + fn+2fn+1f

2
n + f3

n+1fn + 2f2
n+1fnfn−1 + fn+1f

3
n + f3

nfn−1

= fn+1 (fn+2fn + fn+1fn−1) (fn+2 + fn) +
(
f2
n+1 + f2

n

)
fn(fn+1 + fn−1)

= f2n+1(f2n+2 + f2n)

= f4n+2.

w lands at v1 at w lands at v1 at w lands at v1 at w lands at v2 at sum of the weights

the (n+ 1)st step? the (2n+ 2)nd step? the (3n+ 3)rd step? the (4n+ 3)rd step? of walks w

yes yes yes yes f2
n+2fn+1fn

yes yes no yes fn+2f2
n+1fn−1

yes no yes yes f3
n+1fn

yes no no yes f2
n+1fnfn−1

no yes yes yes fn+2fn+1f2
n

no yes no yes f2
n+1fnfn−1

no no yes yes fn+1f3
n

no no no yes f3
nfn−1

Table 7: Sums of the Weights of Closed Walks Originating at v2 of Length 4n + 3.

Using the result (2.2)

x3f4n+2 = f4
n+2 − 3f2

n+2f
2
n + 2fn+2f

2
nfn−2 + f4

n − f2
nf

2
n−2,
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in [2] and identity (5), we then have

x3S = x3S1 + x3S2

= x3f4n+4 + x3f4n+2

= (x2 + 3)f4
n+2 − 4f3

n+2fn + x2f2
n+2f

2
n − (x4 + 6x2 + 4)fn+2f

3
n

+ 4fn+2f
2
nfn−2 + (x4 + 3x2 + 3)f4

n + (x4 + 2x2)f3
nfn−2 − (x2 + 2)f2

nf
2
n−2.

This value of x3S, coupled with its earlier version, yields the desired result, as expected. �

4. Conclusion

Because gn(1) = Fn or Ln, the graph-theoretic confirmations of the numeric versions of
the gibonacci identities (1) through (4) follow from the above arguments; and so do their Pell
counterparts because bn(x) = gn(2x).
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