# GRAPH-THEORETIC CONFIRMATIONS OF FOUR SUMS OF GIBONACCI POLYNOMIAL PRODUCTS OF ORDER 4

#### THOMAS KOSHY

ABSTRACT. Using graph-theoretic techniques, we confirm four identities involving sums of gibonacci polynomial products of order 4, investigated in [2].

#### 1. INTRODUCTION

Gibonacci polynomials  $z_n(x)$  are defined by the recurrence  $z_{n+2}(x) = a(x)z_{n+1}(x) + b(x)z_n(x)$ , where x is an arbitrary complex variable; a(x), b(x),  $z_0(x)$ , and  $z_1(x)$  are arbitrary complex polynomials; and  $n \ge 0$ .

Suppose a(x) = x and b(x) = 1. When  $z_0(x) = 0$  and  $z_1(x) = 1$ ,  $z_n(x) = f_n(x)$ , the *n*th *Fibonacci polynomial*; and when  $z_0(x) = 2$  and  $z_1(x) = x$ ,  $z_n(x) = l_n(x)$ , the *n*th *Lucas polynomial*. Clearly,  $f_n(1) = F_n$ , the *n*th Fibonacci number; and  $l_n(1) = L_n$ , the *n*th Lucas number [1, 3, 4].

Pell polynomials  $p_n(x)$  and Pell-Lucas polynomials  $q_n(x)$  are defined by  $p_n(x) = f_n(2x)$  and  $q_n(x) = l_n(2x)$ , respectively. In particular, the Pell numbers  $P_n$  and Pell-Lucas numbers  $Q_n$  are given by  $P_n = p_n(1) = f_n(2)$  and  $2Q_n = q_n(1) = l_n(2)$ , respectively [3].

In the interest of brevity, clarity, and convenience, we omit the argument in the functional notation, when there is *no* ambiguity; so  $z_n$  will mean  $z_n(x)$ . We let  $g_n = f_n$  or  $l_n, b_n = p_n$  or  $q_n$ , and also omit a lot of basic algebra.

Table 1 lists some well-known fundamental Fibonacci identities. We will employ them in our discourse [3].

| $f_{n+1} + f_{n-1} = l_n$                    | $f_{2n} = f_n l_n$                   |
|----------------------------------------------|--------------------------------------|
| $f_{n+1}^2 + f_n^2 = f_{2n+1}$               | $f_{n+2} + f_{n-2} = (x^2 + 2)f_n$   |
| $f_{n+2} - f_{n-2} = x l_n$                  | $f_{a+b} = f_{a+1}f_b + f_a f_{b-1}$ |
| $f_{n+k}f_{n-k} - f_n^2 = (-1)^{n-k+1}f_k^2$ |                                      |

Table 1: Fundamental Fibonacci Identities

The last two identities are the *Fibonacci addition formula* and the *Cassini-like formula*, respectively.

1.1. Sums of Gibonacci Polynomial Products of Order 4. Several sums of gibonacci polynomial products of order 4 are studied in [2]; in the interest of brevity, we focus only on the sums in equations (2.9), (2.6), (2.24), and (2.26) in [2], and they play a major role in our

### MAY 2021

explorations:

$$x^{3}f_{4n} = f_{n+2}^{3}f_{n} - 2f_{n+2}^{2}f_{n}^{2} - f_{n+2}^{2}f_{n}f_{n-2} + 2(x^{2}+1)f_{n+2}f_{n}^{3} + f_{n+2}f_{n}f_{n-2}^{2} -2(x^{2}+1)f_{n}^{3}f_{n-2} + 2f_{n}^{2}f_{n-2}^{2} - f_{n}f_{n-2}^{3};$$
(1)

$$x^{4}f_{4n+1} = f_{n+2}^{4} - 4f_{n+2}^{3}f_{n} + 2(2x^{2}+3)f_{n+2}^{2}f_{n}^{2} - (x^{4}+6x^{2}+4)f_{n+2}f_{n}^{3} - 2x^{2}f_{n+2}f_{n}^{2}f_{n-2} + (x^{2}+1)^{2}f_{n}^{4} + (x^{4}+2x^{2})f_{n}^{3}f_{n-2};$$
(2)

$$x^{4}l_{4n+2} = (x^{2}+2)f_{n+2}^{4} - 8f_{n+2}^{3}f_{n} + (5x^{2}+12)f_{n+2}^{2}f_{n}^{2} - 2(x^{4}+6x^{2}+4)f_{n+2}f_{n}^{3} - 2x^{2}f_{n+2}f_{n}^{2}f_{n-2} + (2x^{4}+5x^{2}+2)f_{n}^{4} + 2(x^{4}+2x^{2})f_{n}^{3}f_{n-2} - x^{2}f_{n}^{2}f_{n-2}^{2} - (3)$$

$$x^{3}l_{4n+3} = (x^{2}+3)f_{n+2}^{4} - 4f_{n+2}^{3}f_{n} + x^{2}f_{n+2}^{2}f_{n}^{2} - (x^{4}+6x^{2}+4)f_{n+2}f_{n}^{3} + 4f_{n+2}f_{n}^{2}f_{n-2} + (x^{4}+3x^{2}+3)f_{n}^{4} + (x^{4}+2x^{2})f_{n}^{3}f_{n-2} - (x^{2}+2)f_{n}^{2}f_{n-2}^{2}.$$
 (4)

The remaining sums can be pursued in a similar manner.

It follows by identities (2.2) and (2.14) in [2] that

$$x^{3}f_{4n+4} = (x^{2}+2)f_{n+2}^{4} - 4f_{n+2}^{3}f_{n} + (x^{2}+3)f_{n+2}^{2}f_{n}^{2} - (x^{4}+6x^{2}+4)f_{n+2}f_{n}^{3} + 2f_{n+2}f_{n}^{2}f_{n-2} + (x^{4}+3x^{2}+2)f_{n}^{4} + (x^{4}+2x^{2})f_{n}^{3}f_{n-2} - (x^{2}+1)f_{n}^{2}f_{n-2}^{2}.$$
 (5)

We will employ this result in Subsection 3.4.

## 2. Some Graph-Theoretic Tools

Our goal is to confirm the polynomial identities (1) through (4) using graph-theoretic techniques. To this end, consider the *Fibonacci digraph* D in Figure 1 with vertices  $v_1$  and  $v_2$ , where a *weight* is assigned to each edge [3, 5].



FIGURE 1. Weighted Fibonacci Digraph  $D_1$ 

It follows from its weighted adjacency matrix 
$$Q = \begin{bmatrix} x & 1 \\ 1 & 0 \end{bmatrix}$$
 that  
$$Q^n = \begin{bmatrix} f_{n+1} & f_n \\ f_n & f_{n-1} \end{bmatrix},$$

where  $n \ge 1$  [3, 5].

A walk from vertex  $v_i$  to vertex  $v_j$  is a sequence  $v_i - e_i - v_{i+1} - \cdots - v_{j-1} - e_{j-1} - v_j$  of vertices  $v_k$ and edges  $e_k$ , where edge  $e_k$  is incident with vertices  $v_k$  and  $v_{k+1}$ . The walk is closed if  $v_i = v_j$ ; otherwise, it is open. The length of a walk is the number of edges in the walk. The weight of a walk is the product of the weights of the edges along the walk.

The *ij*th entry of  $Q^n$  gives the sum of the weights of all walks of length n from  $v_i$  to  $v_j$  in the weighted digraph D, where  $1 \leq i, j \leq n$  [3, 5]. Consequently, the sum of the weights of closed walks of length n originating at  $v_1$  in the digraph is  $f_{n+1}$  and that of those originating

### SUMS OF GIBONACCI POLYNOMIAL PRODUCTS OF ORDER 4

at  $v_2$  is  $f_{n-1}$ . So, the sum of the weights of all closed walks of length n in the digraph is  $f_{n+1} + f_{n-1} = l_n$ . These facts play a pivotal role in the graph-theoretic proofs.

Let A, B, C, and D denote the sets of walks of varying lengths originating at a vertex v, respectively. Then, the sum of the weights of the elements (a, b, c, d) in the product set  $A \times B \times C \times D$  is defined as the product of the sums of weights from each component [5].

With these tools at our finger tips, we are now ready for the graph-theoretic proofs.

## 3. GRAPH-THEORETIC PROOFS

### 3.1. Confirmation of Identity (1).

*Proof.* Let S denote the sum of the weights of closed walks of length 4n - 1 in the digraph D originating (and ending) at  $v_1$ . Then  $S = f_{4n}$ , and hence  $x^3S = x^3f_{4n}$ .

We will now compute the sum  $x^3S$  in a different way. To this end, let w be an arbitrary closed walk of length 4n - 1 from  $v_1$  to  $v_1$ . It can land at  $v_1$  or  $v_2$  at the *n*th, 2*n*th, and 3*n*th steps:

$$w = \underbrace{v_1 - \cdots - v}_{\text{subwalk of length } n} \underbrace{v - \cdots - v}_{\text{subwalk of length } n} \underbrace{v - \cdots - v}_{\text{subwalk of length } n} \underbrace{v - \cdots - v_1}_{\text{subwalk of length } n-1},$$

where  $v = v_1$  or  $v_2$ .

Table 2 shows the various possible cases and the respective sums of weights of closed walks originating at  $v_1$  of length 4n - 1.

| $w$ lands at $v_1$ at | sum of the weights           |
|-----------------------|-----------------------|-----------------------|-----------------------|------------------------------|
| the $n$ th step?      | the $2n$ th step?     | the $3n$ th step?     | the $(4n-1)$ st step? | of walks $w$                 |
| yes                   | yes                   | yes                   | yes                   | $f_{n+1}^3 f_n$              |
| yes                   | yes                   | no                    | yes                   | $\int_{n+1}^{2} f_n f_{n-1}$ |
| yes                   | no                    | yes                   | yes                   | $f_{n+1}f_n^3$               |
| yes                   | no                    | no                    | yes                   | $f_{n+1}f_n f_{n-1}^2$       |
| no                    | yes                   | yes                   | yes                   | $f_{n+1}f_n^3$               |
| no                    | yes                   | no                    | yes                   | $f_n^3 f_{n-1}$              |
| no                    | no                    | yes                   | yes                   | $\int_{n}^{3} f_{n-1}$       |
| no                    | no                    | no                    | yes                   | $f_n f_{n-1}^3$              |

Table 2: Sums of the Weights of Closed Walks Originating at  $v_1$  of Length 4n - 1.

It follows from the table that the sum S of the weights of all walks w is given by

$$S = f_{n+1}^3 f_n + f_{n+1}^2 f_n f_{n-1} + 2f_{n+1} f_n^3 + f_{n+1} f_n f_{n-1}^2 + 2f_n^3 f_{n-1} + f_n f_{n-1}^3 + x^3 S = A + B + C + D + E + F,$$

MAY 2021

where

Consequently,

$$x^{3}S = f_{n+2}^{3}f_{n} - 2f_{n+2}^{2}f_{n}^{2} - f_{n+2}^{2}f_{n}f_{n-2} + 2(x^{2}+1)f_{n+2}f_{n}^{3} + f_{n+2}f_{n}f_{n-2}^{2} - 2(x^{2}+1)f_{n}^{3}f_{n-2} + 2f_{n}^{2}f_{n-2}^{2} - f_{n}f_{n-2}^{3}.$$

Equating this value of  $x^3S$  with its earlier value yields identity (1), as desired.

# 3.2. Confirmation of Identity (2).

*Proof.* Let S' denote the sum of the weights of closed walks of length 4n originating at  $v_1$  in the digraph. Then  $S' = f_{4n+1}$ , and hence  $x^4S' = x^4f_{4n+1}$ . We will now compute  $x^4S'$  in a different way, and then equate the two values. To achieve

We will now compute  $x^4S'$  in a different way, and then equate the two values. To achieve this, we let w be an arbitrary closed walk of length 4n originating at  $v_1$ . It can land at  $v_1$  or  $v_2$  at the nth, 2nth, and 3nth steps:

 $w = \underbrace{v_1 - \cdots - v}_{\text{subwalk of length } n} \underbrace{v - \cdots - v}_{\text{subwalk of length } n} \underbrace{v - \cdots - v}_{\text{subwalk of length } n} \underbrace{v - \cdots - v_1}_{\text{subwalk of length } n},$ 

where  $v = v_1$  or  $v_2$ .

Table 3 summarizes the possible cases and the sums of the weights of the closed walks originating at  $v_1$  of length 4n.

| $w$ lands at $v_1$ at | sum of the weights     |
|-----------------------|-----------------------|-----------------------|-----------------------|------------------------|
| the $n$ th step?      | the $2n$ th step?     | the $3n$ th step?     | the $4n$ th step?     | of walks $w$           |
| yes                   | yes                   | yes                   | yes                   | $f_{n+1}^4$            |
| yes                   | yes                   | no                    | yes                   | $f_{n+1}^2 f_n^2$      |
| yes                   | no                    | yes                   | yes                   | $f_{n+1}^2 f_n^2$      |
| yes                   | no                    | no                    | yes                   | $f_{n+1}f_n^2 f_{n-1}$ |
| no                    | yes                   | yes                   | yes                   | $f_{n+1}^2 f_n^2$      |
| no                    | yes                   | no                    | yes                   | $f_n^4$                |
| no                    | no                    | yes                   | yes                   | $f_{n+1}f_n^2 f_{n-1}$ |
| no                    | no                    | no                    | yes                   | $f_n^2 f_{n-1}^2$      |

SUMS OF GIBONACCI POLYNOMIAL PRODUCTS OF ORDER 4

Table 3: Sums of the Weights of Closed Walks Originating at  $v_1$  of Length 4n.

It follows from the table that

$$\begin{array}{rcl} S' &=& f_{n+1}^4 + 3f_{n+1}^2f_n^2 + 2f_{n+1}f_n^2f_{n-1} + f_n^4 + f_n^2f_{n-1}^2; \\ x^4S' &=& G+H+I+J+K, \end{array}$$

where

Thus,

$$x^{4}S' = f_{n+2}^{4} - 4f_{n+2}^{3}f_{n} + 3(x^{2}+2)f_{n+2}^{2}f_{n}^{2} - 4(x^{2}+1)f_{n+2}f_{n}^{3} - 2x^{2}f_{n+2}f_{n}^{2}f_{n-2} + (x^{2}+1)^{2}f_{n}^{4} + x^{2}f_{n}^{2}f_{n-2}^{2}.$$
(6)

Now let

$$L = x^2 f_{n+2}^2 f_n^2 - (x^4 + 2x^2) f_{n+2} f_n^3 + (x^4 + 2x^2) f_n^3 f_{n-2} - x^2 f_n^2 f_{n-2}^2.$$
(7)

Using the identity  $f_{n+2} + f_{n-2} = (x^2 + 2)f_n$ , we have

$$L = x^{2} f_{n+2} f_{n}^{2} \left[ f_{n+2} - (x^{2}+2) f_{n} \right] + x^{2} f_{n}^{2} f_{n-2}^{2} \left[ (x^{2}+2) f_{n} - f_{n-2} \right]$$
  
= 0.

MAY 2021

Consequently, adding the value of L in equation (7) to that of  $x^4S'$  in equation (6), we get

$$\begin{aligned} x^4 S' &= f_{n+2}^4 - 4f_{n+2}^3 f_n + 2(2x^2+3)f_{n+2}^2 f_n^2 - (x^4+6x^2+4)f_{n+2}f_n^3 - 2x^2 f_{n+2}f_n^2 f_{n-2} \\ &+ (x^2+1)^2 f_n^4 + (x^4+2x^2)f_n^2 f_{n-2}^2. \end{aligned}$$

This value of  $x^4S'$ , coupled with its original value, yields identity (2), as expected.

### 3.3. Confirmation of Identity (3).

*Proof.* Let  $S^*$  denote the sum of the weights of all closed walks of length 4n+2 in the digraph. Then  $S^* = l_{4n+2}$ , and hence  $x^4S^* = x^4l_{4n+2}$ .

We will now compute  $x^4S^*$  in a different way, and then equate the two values. Let w be an arbitrary closed walk of length 4n + 2.

Case 1. Suppose w originates (and ends) at  $v_1$ . It can land at  $v_1$  or  $v_2$  at the (n + 1)st, (2n + 2)nd, and (3n + 2)nd steps:

$$w = \underbrace{v_1 - \cdots - v}_{\text{subwalk of length } n+1 \text{ subwalk of length } n+1 \text{ subwalk of length } n} \underbrace{v - \cdots - v}_{\text{subwalk of length } n} \underbrace{v - \cdots - v}_{\text{subwalk of length } n} \underbrace{v - \cdots - v_1}_{\text{subwalk of length } n},$$

where  $v = v_1$  or  $v_2$ .

Using Tables 1 and 4, it follows that the sum  $S_1^*$  of the weights of all such walks w is given by

$$S_{1}^{*} = f_{n+2}^{2}f_{n+1}^{2} + f_{n+2}^{2}f_{n}^{2} + f_{n+2}f_{n+1}^{2}f_{n} + f_{n+2}f_{n+1}f_{n}f_{n-1} + f_{n+1}^{4} + 2f_{n+1}^{2}f_{n}^{2} + f_{n+1}f_{n}^{2}f_{n-1}$$

$$= (f_{n+2}^{2} + f_{n+1}^{2})(f_{n+1}^{2} + f_{n}^{2}) + f_{n+1}f_{n}(f_{n+2} + f_{n})(f_{n+1} + f_{n-1})$$

$$= f_{2n+3}f_{2n+1} + f_{2n+2}f_{2n}$$

$$= f_{4n+3}.$$

| $w$ lands at $v_1$ at | sum of the weights         |
|-----------------------|-----------------------|-----------------------|-----------------------|----------------------------|
| the $(n+1)$ st step?  | the $(2n+2)$ nd step? | the $(3n+2)$ nd step? | the $(4n+2)$ nd step? | of walks $w$               |
| yes                   | yes                   | yes                   | yes                   | $f_{n+2}^2 f_{n+1}^2$      |
| yes                   | yes                   | no                    | yes                   | $f_{n+2}^2 f_n^2$          |
| yes                   | no                    | yes                   | yes                   | $f_{n+2}f_{n+1}^2f_n$      |
| yes                   | no                    | no                    | yes                   | $f_{n+2}f_{n+1}f_nf_{n-1}$ |
| no                    | yes                   | yes                   | yes                   | $f_{n+1}^4$                |
| no                    | yes                   | no                    | yes                   | $f_{n+1}^2 f_n^2$          |
| no                    | no                    | yes                   | yes                   | $f_{n+1}^2 f_n^2$          |
| no                    | no                    | no                    | yes                   | $f_{n+1}f_n^2f_{n-1}^2$    |

Table 4: Sums of the Weights of Closed Walks Originating at  $v_1$  of Length 4n + 2

Case 2. Suppose w originates at  $v_2$ . It also can land at  $v_1$  or  $v_2$  at the (n+1)st, (2n+2)nd, and (3n+2)nd steps:

$$w = \underbrace{v_2 - \cdots - v}_{\text{subwalk of length } n+1 \text{ subwalk of length } n+1 \text{ subwalk of length } n} \underbrace{v - \cdots - v}_{\text{subwalk of length } n} \underbrace{v - \cdots - v_2}_{\text{subwalk of length } n},$$

where  $v = v_1$  or  $v_2$ .

### SUMS OF GIBONACCI POLYNOMIAL PRODUCTS OF ORDER 4

Using Tables 1 and 5, it follows that the sum  $S_2^*$  of the weights of all such walks w is given by

$$S_{2}^{*} = f_{n+2}f_{n+1}^{2}f_{n} + f_{n+2}f_{n+1}f_{n}f_{n-1} + 2f_{n+1}^{2}f_{n}^{2} + f_{n+1}^{2}f_{n-1}^{2} + f_{n+1}f_{n}^{2}f_{n-1} + f_{n}^{4} + f_{n}^{2}f_{n-1}^{2}$$
  

$$= f_{n+1}f_{n}(f_{n+2} + f_{n})(f_{n+1} + f_{n-1}) + (f_{n+1}^{2} + f_{n}^{2})(f_{n}^{2} + f_{n-1}^{2})$$
  

$$= f_{2n+2}f_{2n} + f_{2n+1}f_{2n-1}$$
  

$$= f_{4n+1}.$$

| $w$ lands at $v_1$ at | $w$ lands at $v_1$ at | $w$ lands at $v_1$ at | $w$ lands at $v_2$ at | sum of the weights         |
|-----------------------|-----------------------|-----------------------|-----------------------|----------------------------|
| the $(n+1)$ st step?  | the $(2n+2)$ nd step? | the $(3n+2)$ nd step? | the $(4n+2)$ nd step? | of walks $w$               |
| yes                   | yes                   | yes                   | yes                   | $f_{n+2}f_{n+1}^2f_n$      |
| yes                   | yes                   | no                    | yes                   | $f_{n+2}f_{n+1}f_nf_{n-1}$ |
| yes                   | no                    | yes                   | yes                   | $f_{n+1}^2 f_n^2$          |
| yes                   | no                    | no                    | yes                   | $f_{n+1}^2 f_{n-1}^2$      |
| no                    | yes                   | yes                   | yes                   | $f_{n+1}^2 f_n^2$          |
| no                    | yes                   | no                    | yes                   | $f_{n+1}f_n^2f_{n-1}$      |
| no                    | no                    | yes                   | yes                   | $f_n^4$                    |
| no                    | no                    | no                    | yes                   | $f_n^2 f_{n-1}^2$          |

Table 5: Sums of the Weights of Closed Walks Originating at  $v_2$  of Length 4n + 2

Using the identities (2.6) and (2.14)

$$\begin{aligned} x^{4}f_{4n+1} &= f_{n+2}^{4} - 4f_{n+2}^{3}f_{n} + 2(2x^{2}+3)f_{n+2}^{2}f_{n}^{2} - (x^{4}+6x^{2}+4)f_{n+2}f_{n}^{3} - 2x^{2}f_{n+2}f_{n}^{2}f_{n-2} \\ &+ (x^{2}+1)^{2}f_{n}^{4} + (x^{4}+2x^{2})f_{n}^{3}f_{n-2}; \\ x^{4}f_{4n+3} &= (x^{2}+1)f_{n+2}^{4} - 4f_{n+2}^{3}f_{n} + (x^{2}+6)f_{n+2}^{2}f_{n}^{2} - (x^{4}+6x^{2}+4)f_{n+2}f_{n}^{3} \\ &+ (x^{4}+3x^{2}+1)f_{n}^{4} + (x^{4}+2x^{2})f_{n}^{3}f_{n-2} - x^{2}f_{n}^{2}f_{n-2}^{2}, \end{aligned}$$

in [2], we get

$$\begin{aligned} x^4 S^* &= x^4 S_1^* + x^4 S_2^* \\ &= (x^2 + 2) f_{n+2}^4 - 8 f_{n+2}^3 f_n + (5x^2 + 12) f_{n+2}^2 f_n^2 - 2(x^4 + 6x^2 + 4) f_{n+2} f_n^3 \\ &- 2x^2 f_{n+2} f_n^2 f_{n-2} + (2x^4 + 5x^2 + 2) f_n^4 + 2(x^4 + 2x^2) f_n^3 f_{n-2} - x^2 f_n^2 f_{n-2}^2. \end{aligned}$$

Equating the two values of  $x^4 S^*$  yields identity (3), as desired.

Finally, we turn to the graph-theoretic confirmation of identity (4).

## 3.4. Confirmation of Identity (4).

*Proof.* Let S denote the sum of the weights of all closed walks of length 4n + 3 in the digraph. Then  $S = l_{4n+3}$ ; so  $x^3S = x^3l_{4n+3}$ .

We will now compute  $x^3S$  in a different way. To this end, let w be an arbitrary walk of length 4n + 3.

Case 1. Suppose w originates (and ends) at  $v_1$ . It can land at  $v_1$  or  $v_2$  at the (n + 1)st, (2n + 2)nd, and (3n + 3)rd steps:

$$w = \underbrace{v_1 - \cdots - v}_{v_1 - v_2} \underbrace{v - \cdots - v}_{v_1 - v_2} \underbrace{v - \cdots - v}_{v_1 - v_2} \underbrace{v - \cdots - v_1}_{v_1 - v_2},$$

subwalk of length n+1 subwalk of length n+1 subwalk of length n+1 subwalk of length n

where  $v = v_1$  or  $v_2$ .

MAY 2021

It follows by Tables 1 and 6 that the sum  $S_1$  of the weights of all such walks w is given by

$$S_{1} = f_{n+2}^{3} f_{n+1} + f_{n+2}^{2} f_{n+1} f_{n} + 2f_{n+2} f_{n+1}^{3} + f_{n+2} f_{n+1} f_{n}^{2} + 2f_{n+1}^{3} f_{n} + f_{n+1} f_{n}^{3}$$
  

$$= f_{n+1} \left( f_{n+2}^{2} + 2f_{n+1}^{2} + f_{n}^{2} \right) \left( f_{n+2} + f_{n} \right)$$
  

$$= f_{2n+2} \left( f_{n+2}^{2} + 2f_{n+1}^{2} + f_{n}^{2} \right)$$
  

$$= f_{2n+2} (f_{2n+3} + f_{2n+1})$$
  

$$= f_{4n+4}.$$

| $w$ lands at $v_1$ at | sum of the weights      |
|-----------------------|-----------------------|-----------------------|-----------------------|-------------------------|
| the $(n+1)$ st step?  | the $(2n+2)$ nd step? | the $(3n+3)$ rd step? | the $(4n+3)$ rd step? | of walks $w$            |
| yes                   | yes                   | yes                   | yes                   | $f_{n+2}^3 f_{n+1}$     |
| yes                   | yes                   | no                    | yes                   | $f_{n+2}^2 f_{n+1} f_n$ |
| yes                   | no                    | yes                   | yes                   | $f_{n+2}f_{n+1}^3$      |
| yes                   | no                    | no                    | yes                   | $f_{n+2}f_{n+1}f_n^2$   |
| no                    | yes                   | yes                   | yes                   | $f_{n+2}f_{n+1}^3$      |
| no                    | yes                   | no                    | yes                   | $f_{n+1}^3 f_n$         |
| no                    | no                    | yes                   | yes                   | $f_{n+1}^3 f_n$         |
| no                    | no                    | no                    | yes                   | $f_{n+1}f_n^3$          |

Table 6: Sums of the Weights of Closed Walks Originating at  $v_1$  of Length 4n + 3.

Case 2. Suppose w originates at  $v_2$ . It also can land at  $v_1$  or  $v_2$  at the (n+1)st, (2n+2)nd, and (3n+3)rd steps:

$$w = \underbrace{v_2 - \cdots - v}_{\text{subwalk of length } n+1 \text{ subwalk of length } n+1$$

where  $v = v_1$  or  $v_2$ .

It follows by Tables 1 and 7 that the sum  $S_2$  of the weights of all such walks w is given by  $S_2 = f_{n+2}^2 f_{n+1} f_n + f_{n+2} f_{n+1}^2 f_{n-1} + f_{n+2} f_{n+1} f_n^2 + f_{n+1}^3 f_n + 2 f_{n+1}^2 f_n f_{n-1} + f_{n+1} f_n^3 + f_n^3 f_{n-1}$   $= f_{n+1} (f_{n+2} f_n + f_{n+1} f_{n-1}) (f_{n+2} + f_n) + (f_{n+1}^2 + f_n^2) f_n (f_{n+1} + f_{n-1})$   $= f_{2n+1} (f_{2n+2} + f_{2n})$   $= f_{4n+2}.$ 

| $w$ lands at $v_1$ at | $w$ lands at $v_1$ at | $w$ lands at $v_1$ at | $w$ lands at $v_2$ at | sum of the weights        |
|-----------------------|-----------------------|-----------------------|-----------------------|---------------------------|
| the $(n+1)$ st step?  | the $(2n+2)$ nd step? | the $(3n+3)$ rd step? | the $(4n+3)$ rd step? | of walks $w$              |
| yes                   | yes                   | yes                   | yes                   | $f_{n+2}^2 f_{n+1} f_n$   |
| yes                   | yes                   | no                    | yes                   | $f_{n+2}f_{n+1}^2f_{n-1}$ |
| yes                   | no                    | yes                   | yes                   | $f_{n+1}^3 f_n$           |
| yes                   | no                    | no                    | yes                   | $f_{n+1}^2 f_n f_{n-1}$   |
| no                    | yes                   | yes                   | yes                   | $f_{n+2}f_{n+1}f_n^2$     |
| no                    | yes                   | no                    | yes                   | $f_{n+1}^2 f_n f_{n-1}$   |
| no                    | no                    | yes                   | yes                   | $f_{n+1}f_n^3$            |
| no                    | no                    | no                    | yes                   | $f_{n}^{3}f_{n-1}$        |

Table 7: Sums of the Weights of Closed Walks Originating at  $v_2$  of Length 4n + 3.

Using the result (2.2)

$$x^{3}f_{4n+2} = f_{n+2}^{4} - 3f_{n+2}^{2}f_{n}^{2} + 2f_{n+2}f_{n}^{2}f_{n-2} + f_{n}^{4} - f_{n}^{2}f_{n-2}^{2}$$

VOLUME 59, NUMBER 2

in [2] and identity (5), we then have

$$\begin{aligned} x^{3}S &= x^{3}S_{1} + x^{3}S_{2} \\ &= x^{3}f_{4n+4} + x^{3}f_{4n+2} \\ &= (x^{2}+3)f_{n+2}^{4} - 4f_{n+2}^{3}f_{n} + x^{2}f_{n+2}^{2}f_{n}^{2} - (x^{4}+6x^{2}+4)f_{n+2}f_{n}^{3} \\ &+ 4f_{n+2}f_{n}^{2}f_{n-2} + (x^{4}+3x^{2}+3)f_{n}^{4} + (x^{4}+2x^{2})f_{n}^{3}f_{n-2} - (x^{2}+2)f_{n}^{2}f_{n-2}^{2}. \end{aligned}$$

This value of  $x^3S$ , coupled with its earlier version, yields the desired result, as expected.  $\Box$ 

## 4. Conclusion

Because  $g_n(1) = F_n$  or  $L_n$ , the graph-theoretic confirmations of the numeric versions of the gibonacci identities (1) through (4) follow from the above arguments; and so do their Pell counterparts because  $b_n(x) = g_n(2x)$ .

## 5. Acknowledgment

The author thanks the reviewer for a careful reading of the article and for encouraging words.

### References

- [1] M. Bicknell, A primer for the Fibonacci numbers: Part VII, The Fibonacci Quarterly, 8.4 (1970), 407–420.
- T. Koshy, A family of sums of gibonacci polynomial products of order 4, The Fibonacci Quarterly, 59.2 (2021), 98–107.
- [3] T. Koshy, Fibonacci and Lucas Numbers with Applications, Volume II, Wiley, Hoboken, New Jersey, 2019.
- [4] T. Koshy, Polynomial extensions of the Lucas and Ginsburg identities revisited, The Fibonacci Quarterly, 55.2 (2017), 147–151.
- [5] T. Koshy, A recurrence for gibonacci cubes with graph-theoretic confirmations, The Fibonacci Quarterly, 57.2 (2019), 139–147.

MSC2020: Primary 05C20, 11B37, 11B39, 11B38, 11C08.

DEPARTMENT OF MATHEMATICS, FRAMINGHAM STATE UNIVERSITY, FRAMINGHAM, MA 01701, USA *Email address*: tkoshy@emeriti.framingham.edu