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Abstract. Let (w) = w(a, b) denote the second-order linear recurrence satisfying wn+2 =
awn+1 + bwn, where w0, w1, and a are integers, b = ±1, and D = a2 + 4b is the discriminant.
We distinguish the Lucas sequences u(a, b) and v(a, b) with initial terms u0 = 0, u1 = 1, and
v0 = 2, v1 = a, respectively. Let p be a prime. Given the recurrence w(a, b), let δw(p), called
the defect of w(a, b) modulo p, denote the number of residues not appearing in (w) modulo
p. It is known that for the recurrence w(a,±1), δw(p) ≥ 1 if p > 7 and p - D. Given the fixed
recurrence w(a, 1), where w(a, 1) = u(a, 1) or v(a, 1), we will show that limp→∞ δw(p) = ∞.
Further, given the arbitrary recurrence w(a,−1), we will demonstrate that limp→∞ δw(p) =∞
and limp→∞ δw(p)/p ≥ 1

2
. We will also prove that for the arbitrary recurrence w(a,±1), we

have that lim supp→∞δw(p)/p = 1.

1. Introduction

Given the set J of integers and a modulus p, where p is a prime, we say that J forms a
complete residue system modulo p if for all i ∈ {0, 1, . . . , p − 1} there exists j ∈ J such that
j ≡ i (mod p). Further, J forms a reduced residue system modulo p if for all i ∈ {1, . . . , p− 1}
there exists j ∈ J such that j ≡ i (mod p). Sets that do not form a complete residue system
modulo p are called p-defective. The p-defect of the set J , denoted by δJ(p) = δ(p), is the
number of distinct residues modulo p not appearing in J modulo p.

In this paper, we will be concerned with the situation in which the sets J are certain second-
order linear recurrence sequences. In many of these cases, we will show that limp→∞ δw(p) =
∞. Throughout this paper, p will denote a prime and ε will specify an element from {−1, 1}.

Let F(a, b) denote the set of all recurrences (w) = w(a, b) satisfying the recursion relation

wn+2 = awn+1 + bwn, (1.1)

where the parameters a and b and the initial terms w0 and w1 are all integers. The recurrence
w(a, b) is said to be trivial if w0 = w1 = 0. We distinguish two special recurrences in F(a, b),
the Lucas sequence of the first kind (LSFK) u(a, b) and the Lucas sequence of the second kind
(LSSK) v(a, b) with initial terms u0 = 0, u1 = 1 and v0 = 2, v1 = a, respectively. We will be
particularly interested in the case in which b = ±1. Associated with the recurrence w(a, b) is
the characteristic polynomial

f(x) = x2 − ax− b (1.2)

with characteristic roots α and β and discriminant D = (α − β)2 = a2 + 4b. By the Binet
formulas,

un =
αn − βn

α− β
, vn = αn + βn if D 6= 0, (1.3)

and

un = nαn−1, vn = 2αn if D = 0. (1.4)
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It was shown in [7, pp. 344–345] that w(a, b) is purely periodic modulo p if p - b. From here
on, we assume that p - b. In particular, we assume that b = −αβ 6= 0.

The period of w(a, b) modulo p, denoted by λ = λw(p), is the least positive integer m such
that wn+m ≡ wn (mod p) for all n ≥ 0. The restricted period of w(a, b) modulo p, denoted
by h = hw(p), is the least positive integer r such that wn+r ≡ Mwn (mod p) for some fixed
nonzero residue M modulo p. Here, M = Mw(p) is called the multiplier of w(a, b) modulo p.
It is seen that if h = hw(p), then

wn+hi ≡M iwn (mod p) (1.5)

for all n ≥ 0. Because the LSFK u(a, b) is purely periodic modulo p and has initial terms
u0 = 0, u1 = 1, it follows that hu(p) is the least positive integer r such that ur ≡ 0 (mod p).
It is proved in [7, pp. 354–355] that hw(p) | λw(p). Let

E = Ew(p) =
λw(p)

hw(p)
.

Then by [7, pp. 354–355], Ew(p) is the multiplicative order of Mw(p) modulo p. Given the
consecutive terms wn, wn+1 of w(a, b), the preceding term

wn−1 =
wn+1 − awn

b

is uniquely determined. Thus, we will treat {wn}∞n=−∞ as a doubly infinite sequence. Note
that when b = ±1, each term of {wn}∞n=−∞ is an integer.

Given the residue 0 ≤ d ≤ p − 1, we let Aw(d) denote the number of times that d appears
in a shortest period of (w) modulo p. We let

Nw(p) = #{d | 0 ≤ d ≤ p− 1 , Aw(d) > 0}.
Then

δw(p) = p−Nw(p). (1.6)

It is clear that

Nw(p) ≤ λw(p). (1.7)

It follows from (1.7) that if λ(p) ≤ p, then

δw(p) = p−Nw(p) ≥ p− λw(p). (1.8)

The recurrence w(a, b) with characteristic roots α and β is called degenerate if αβ = 0
or α/β is a root of unity. Given the LSFK u(a, b), it follows from the Binet formulas (1.3)
and (1.4) that un = 0 for n > 0 only if u(a, b) is degenerate. Theorem 1.1 characterizes the
degenerate recurrences w(a, b) when b = ±1.

Theorem 1.1. Consider the recurrence w(a, b) with discriminant D and characteristic roots
α and β, where b = ±1.

(i) w(a, b) is degenerate if and only if (a, b) = (0, 1), (0,−1), (1,−1), (−1,−1), (2,−1),
or (−2,−1).

(ii) If (a, b) = (0, 1), then w2n = w0, w2n+1 = w1 for n ≥ 0.
(iii) If (a, b) = (0,−1), then w4n = w0, w4n+1 = w1, w4n+2 = −w0, w4n+3 = −w1 for

n ≥ 0.
(iv) If (a, b) = (1,−1), then w6n = w0, w6n+1 = w1, w6n+2 = w1 − w0, w6n+3 = −w0,

w6n+4 = −w1, w6n+5 = −w1 + w0 for n ≥ 0.
(v) If (a, b) = (−1,−1), then w3n = w0, w3n+1 = w1, w3n+2 = −w1 − w0 for n ≥ 0.

(vi) If (a, b) = (2,−1), then α = β = 1, D = 0, and wn = nw1 − (n− 1)w0 for n ≥ 0.
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(vii) If (a, b) = (−2,−1), then αβ = −1, D = 0, and wn = n(−1)n−1w1 − (n − 1)(−1)nw0

for n ≥ 0.

Proof. Part (i) follows from [27, p. 613]. Parts (ii)–(vii) follow by induction. �

Corollary 1.2. Consider the nontrivial recurrence w(a,±1) with discriminant D and char-
acteristic roots α and β.

(i) w(a, 1) is nondegenerate if and only if |a| ≥ 1.
(ii) w(a,−1) is nondegenerate if and only if |a| ≥ 3.
(iii) If w(a,±1) is nondegenerate, then D > 0, D is not a square, and α and β are real and

irrational.

Proof. Parts (i) and (ii) follow from Theorem 1.1. Part (iii) follows from parts (i) and (ii) and
that the parameter b = ±1. �

We now define equivalence relations on F(a, b) and F(a, b) modulo p, respectively, where p
is a fixed prime. The recurrences w(a, b) and w′(a, b) are said to be equivalent if there exist
nonzero integers ` and m and fixed integer s such that `wn = mw′n+s for all nonnegative
integers n.

Let p be a fixed prime and let w(a, b) and w′(a, b) be recurrences. We say that w′(a, b) is
p-equivalent to w(a, b) if there exist a fixed integer s and nonzero residue g modulo p such
that w′n ≡ gwn+s (mod p) for all n ≥ 0.

It is evident that the following proposition holds.

Proposition 1.3. Let w(a, b) and w′(a, b) be p-equivalent recurrences. Then,

hw′(p) = hw(p), λw′(p) = λw(p), Ew′(p) = Ew(p),

Mw′(p) ≡Mw(p) (mod p), Nw′(p) = Nw(p), and δw′(p) = δw(p).

Suppose that w(a, b) is nontrivial modulo p and w′(a, b) is equivalent to w(a, b). It is
evident that w′(a, b) is trivial modulo p or w′(a, b) is p-equivalent to w(a, b). Noting that
δw′(p) = p − 1 if w′(a, b) is trivial modulo p, we see by Proposition 1.3 that the following
proposition is satisfied.

Proposition 1.4. Suppose that w(a, b) is nontrivial modulo p and w′(a, b) is equivalent to
w(a, b). Then,

δw′(p) ≥ δw(p).

Remark 1.5. Given the recurrence w(a, b), our main results will be concerned with lower
bounds for δw(p). Thus, by Proposition 1.4, in obtaining nontrivial lower bounds for δw(p), we
also get nontrivial lower bounds for δw′(p) whenever w′(a, b) is equivalent to w(a, b). Hence,
for example, if w′(a, b) is equivalent to u(a, b), we need only find nontrivial lower bounds for
δu(p) to obtain nontrivial lower bounds for δw′(p).

A recurrence w(a, b) is called regular modulo p, or p-regular for short, if

∆(w) = w2
1 − w0w2 = w2

1 − w0(aw1 + bw0) = w2
1 − aw0w1 − bw2

0 6≡ 0 (mod p). (1.9)

Otherwise, w(a, b) is called p-irregular. It is easy to see that w(a, b) is p-irregular if and only
if it satisfies a recursion relation modulo p of order less than two.

Remark 1.6. We observe by (1.9) that ∆(w) = 0 if and only if

w1 = w0
a±
√
a2 + 4b

2
, (1.10)
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which occurs if and only if w0 = 0, in which case w(a, b) is trivial, or D = a2 + 4b is a perfect
square. In these cases, w1 = w0α or w1 = w0β, where α and β are the characteristic roots of
w(a, b) and are both integers. We note that αβ = −b 6= 0.

Lemma 1.7. Consider the set F(a, b) of recurrences w(a, b) with characteristic roots α and
β. Suppose that w(a, b) is p-irregular. Then α and β are in the field Zp of integers modulo
p, and the Legendre symbol (D/p) = 0 or 1. Let ordpm denote the multiplicative order of m
modulo p. Then the following holds:

(i) Aw(0) ≥ 1 if and only if w0 ≡ 0 (mod p). In this case, (w) is the trivial recurrence
modulo p and wn ≡ 0 (mod p) for all n.

(ii) Suppose that w0 6≡ 0 (mod p). Then, either wn ≡ αnw0 (mod p) or wn ≡ βnw0

(mod p) for all n ≥ 0. Additionally, hw(p) = 1, Nw(p) = λw(p), where λw(p) = ordpα
or λw(p) = ordpβ, and δw(p) = p− λw(p).

This is proved in [5, pp. 694–695].

Lemma 1.8. Suppose that w(a, b) and w′(a, b) are both p-regular. Then hw(p) = hw′(p),
Mw(p) ≡Mw′(p) (mod p), λw(p) = λw′(p), and Ew(p) = Ew′(p).

This follows from the discussion in [5, p. 695].

Lemma 1.9. Let p be a prime and let w(a, b) and w′(a, b) be recurrences. Then, w′(a, b) is
p-regular if and only if w(a, b) is p-regular.

This follows from the discussion in [5, p. 694].

Theorem 1.10. Let w(a, b) be a p-regular recurrence with discriminant D such that p | D.
Then, δw(p) = 0.

This is proved in [4] and [28].

Remark 1.11. Consider the nondegenerate recurrence w(a,±1) with discriminant D. Our
main result will show in many cases that limp→∞ δw(p) =∞.

Suppose that w0 6≡ 0 (mod p), w(a,±1) is p-irregular, and ordpw1/w0 = p − 1. Then by
Lemma 1.7, δw(p) = 1. Furthermore, by Theorem 1.10, if p | D and w(a,±1) is p-regular, then
δw(p) = 0. However, by Corollary 1.2 and Remark 1.6, D · ∆(w) 6= 0. Thus, D · ∆(w) ≡ 0
(mod p) for only finitely many primes p. Hence, we can assume that p - D·∆(w) in establishing
that

lim
p→∞

δw(p) =∞.

Shah [14] proved that for the Fibonacci sequence {Fn} = u(1, 1), δ(p) ≥ 1 if p ≡ ±1 (mod 10)
or p ≡ 13 or 17 (mod 20). Bruckner [3] proved the remaining cases that δ(p) ≥ 1 for {Fn}
if p > 7 with p ≡ 3 or 7 (mod 20). Somer [16] partially generalized the results of Shah and
Bruckner by showing for the recurrence w(a, 1) that δw(p) ≥ 1 if p > 7, p - D = a2 + 4, and
p 6≡ 1 or 9 (mod 20). Schinzel [13] completely generalized the results of Shah and Bruckner
by proving that for the recurrence w(a, 1), δw(p) ≥ 1 if p - a2 + 4 and p > 7. Li [12] also
obtained Schinzel’s results by extending the methods of Somer [16]. Somer [16] also proved
that for the recurrence w(a,−1), δw(p) ≥ 1 if p ≥ 5 and p - D = a2 − 4. In Section 2, we will
considerably extend these results by showing for the Lucas sequences u(a,±1) and v(a,±1),
limp→∞ δw(p) =∞. Further results along these lines will also be presented in Section 2.
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2. Main Results

Theorem 2.1. Let w(a, b) with discriminant D be trivial or a degenerate recurrence for which
D 6= 0 and b = ±1. Then, either w0 = w1 = 0 or (a, b) = (0, 1), (0,−1), (1,−1), or (−1,−1).
Then, limp→∞ δw(p) =∞ and

lim
p→∞

δw(p)

p
= 1.

Moreover, the following hold:

(i) If w(a,±1) is trivial, then δw(p) = p− 1 for all p.
(ii) If (a, b) = (0, 1), then p− 2 ≤ δw(p) ≤ p− 1 for p ≥ 3.

(iii) If (a, b) = (0,−1), then δw(p) ≥ p− 4 for p ≥ 5.
(iv) If (a, b) = (1,−1), then δw(p) ≥ p− 6 for p ≥ 7.
(v) If (a, b) = (−1,−1), then δw(p) ≥ p− 3 for p ≥ 5.

This follows from Theorem 1.1 (i)–(v).

Theorem 2.2. Let w(a, b) be a nontrivial and degenerate recurrence with discriminant D = 0
and characteristic roots α and β, where b = ±1. Then, either (a, b) = (2,−1) and α = β = 1
or (a, b) = (−2,−1) and α = β = −1.

(i) Suppose that (a, b) = (2,−1) and α = β = 1.
(a) If w0 = w1, then limp→∞ δw(p) = ∞ and limp→∞ δw(p)/p = 1. Moreover,

δw(p) = p− 1 for all p.
(b) If w0 6= w1, then δw(p) = 0 for all p such that p - w1 − w0. In particular,

limp→∞ δw(p) = limp→∞ δw(p)/p = 0.
(ii) Suppose that (a, b) = (−2,−1) and α = β = −1.

(a) If w0 = −w1, then limp→∞ δw(p) = ∞ and limp→∞ δw(p)/p = 1. Moreover,
δw(p) = p− 2 for p ≥ 3.

(b) If w0 6= −w1, then δw(p) = 0 for all p such that p - w0 + w1. In particular,
limp→∞ δw(p) = limp→∞ δ(p)/p = 0.

Proof. This follows from Theorem 1.1 (vi) and (vii) and Theorem 1.10. �

Theorem 2.3. Let w(a,−1) be a nontrivial and nondegenerate recurrence with discriminant
D and characteristic roots α and β, where |α| ≥ |β|. Then, α and β are real, |α| > 1, and

β = α−1. Let 0 < ε ≤ 0.4 and s = 168/172. Let n1 = 1
se2/(εs).

(i) limp→∞ δw(p) = ∞ and lim infp→∞δw(p)/p ≥ 1
2 . Moreover, if p - D · ∆(w), then

δw(p) ≥ (p− 3)/2 for p ≥ 5.

(ii) lim supp→∞δw(p)/p = 1. Moreover, there exists a prime p′ ≤ b|α|n1/
√
Dc such that

δw(p′)/p′ ≥ 1− ε.
Theorem 2.4. Let w(a, 1) be a nontrivial and nondegenerate recurrence with discriminant
D and characteristic roots α and β. Then, α and β are real, |α| > 1, and β = −α−1. Let

0 < ε ≤ 0.4 and r = 22067/22071. Let n2 = 1
r e4/(εr).

(i) Let A1 = {p | p ≡ 3 (mod 4) or p ≡ 1 (mod 4) and (D/p) = −1}. Then,

lim
p∈A1, p→∞

δw(p) =∞.

(ii) Let A2 = {p | p ≡ 3 (mod 4) and (D/p) = 1}, where (D/p) denotes the Legendre
symbol and (D/p) = 0 if p | D. Then,

lim inf
p∈A2, p→∞

δw(p)/p ≥ 3

8
.
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Moreover, if p - ∆(w), then

δw(p) =


3p−1
8 , if p ≡ 3 (mod 8);

3p+3
8 , if p ≡ 7 (mod 8)

for p ≥ 3 and p ∈ A2.
(iii) Let A3 = {p | p ≡ 3 (mod 4) and (D/p) = −1}. Then, lim infp∈A3, p→∞δw(p)/p ≥ 1

4 .
Moreover,

δw(p) ≥


p−3
4 , if p ≡ 3 (mod 8);

p−7
4 , if p ≡ 7 (mod 8)

for p ≥ 3 and p ∈ A3.
(iv) Let A4 = {p | p ≡ 1 (mod 4) and (D/p) = −1}. Let C be a positive integer. Then,

δw(p) ≥ C for p ∈ A4 if

p > 22b
C+2
2
c+3
(⌊C + 2

2

⌋
+ 1
)
− 3 and p - ∆(w).

(v) Let A5 = {p | p ≡ 1 (mod 4) and (D/p) = 1}. If p ∈ A5, p ≥ 13, and p - ∆(w), then
δw(p) ≥ 5.

(vi) lim supp→∞δw(p)/p = 1. Moreover, there exists a prime

p′′ ≤
⌈
|α|n2

√
D

⌉
such that δw(p′′)/p′′ ≥ 1− ε.

Theorem 2.5. Let w(a, 1) be a nontrivial and nondegenerate recurrence with discriminant D
such that w(a, 1) is equivalent to u(a, 1) or v(a, 1).

(i) limp→∞ δw(p) =∞.
(ii) Let A5 = {p | p ≡ 1 (mod 4) and (D/p) = 1}. Then, lim infp∈A5, p→∞δw(p)/p ≥ 1

2 .
Moreover, if p - ∆(w), then

δw(p) ≥


p−1
2 , if p ≡ 1 (mod 8);

p−3
2 , if p ≡ 5 (mod 8)

for p ≥ 13 and p ∈ A5.

3. Preliminaries

In this section, we present some results and definitions that will be needed for the proofs of
the main results in Section 6.

Theorem 3.1. Let p be a fixed odd prime. Consider the p-regular recurrence w(a, b) with
discriminant D and characteristic roots α and β. Let h = hw(p) and λ = λw(p). Let P be a

prime ideal in Q(
√
D) dividing p. If (D/p) = 1, we will identify P with p.

(i) h | p− (D/p).
(ii) If (D/p) = 0, then h = p.

(iii) If p - D, then h | (p− (D/p))/2 if and only if (−b/p) = 1.
(iv) If w(a, b) = u(a, b), then un ≡ 0 (mod p) if and only if h | n.
(v) If (D/p) = 1, then λ | p− 1.
(vi) λ is the least common multiple of the multiplicative orders of α and β modulo P .
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(vii) Aw(0) ≥ 1 if and only if w(a, b) is p-equivalent to u(a, b).

Proof. Parts (i)–(v) are proven in Theorem 3.15 of [25]. Part (vi) is proved in Theorem 6 of
[15]. Part (vii) is proved in Lemma 2.4 of [23]. �

Theorem 3.2. Let w(a, 1) be a p-regular recurrence with discriminant D. Then,

(i) Ew(p) ∈ {1, 2, 4}.
(ii) Ew(p) = 1 if and only if hw(p) ≡ 2 (mod 4). Moreover, if Ew(p) = 1, then (D/p) = 1.

(iii) Ew(p) = 2 if and only if hw(p) ≡ 0 (mod 4). Moreover, if Ew(p) = 2, then (D/p) =
(−1/p).

(iv) Ew(p) = 4 if and only if hw(p) is odd. Moreover, if Ew(p) = 4, then p ≡ 1 (mod 4).
(v) If p ≡ 3 (mod 4) and (D/p) = 1, then hw(p) ≡ 2 (mod 4) and Ew(p) = 1.
(vi) If p ≡ 3 (mod 4) and (D/p) = −1, then hw(p) ≡ 0 (mod 4) and Ew(p) = 2.
(vii) If p ≡ 1 (mod 4) and (D/p) = −1, then hw(p) is odd and Ew(p) = 4.

(viii) If (D/p) = −1, then hw(p) | 2(p+ 1).

This is proved in Theorem 3.16 of [25].

Theorem 3.3. Let w(a,−1) be a p-regular recurrence with discriminant D. Then,

(i) Ew(p) ∈ {1, 2}.
(ii) Suppose that hw(p) is odd. Then, Ew(p) ∈ {1, 2}. If Ew(p) = 1, then λw(p) is odd. If

Ew(p) = 2, then λw(p) ≡ 2 (mod 4).
(iii) Suppose that hw(p) is even. Then, Ew(p) = 2 and λw(p) ≡ 0 (mod 4).
(iv) If p - D, then hw(p) | (p− (D/p))/2 and λw(p) | p− (D/p).

This is proved in Theorem 3.17 of [25].

Theorem 3.4. Let w(a, b) be a p-regular recurrence, and let w′(a, b) be another recurrence.
Then,

λw′(p) | λw(p). (3.1)

Proof. If w′(a, b) is trivial modulo p, then (3.1) is clearly satisfied. The result now follows from
Theorem 3.1 (vi), Lemma 1.7, and Lemma 1.8. �

Suppose that p is an odd prime for which hu(a, b) is even and (−b/p) = 1. In this case, we
specify a third recurrence t(a, b) in the set F(a, b), in addition to the recurrences u(a, b) and
v(a, b), with initial terms t0 = 1 and t1 = b′, where (b′)2 ≡ −b (mod p) and 1 ≤ b′ ≤ (p−1)/2.
We note that if in place of b′, in the definition of t(a, b), we use the square root b′′ of −b
modulo p satisfying (p− 1)/2 < b′′ ≤ p− 1, then by [20, pp. 534–535], the resulting sequence
is p-equivalent to t(a, b).

Lemma 3.5. Let p be an odd prime. Consider the recurrences u(a, b), v(a, b), and t(a, b)
modulo p with discriminant D.

(i) u(a, b) is p-regular for all p.
(ii) v(a, b) is p-regular if and only if p - D.
(iii) t(a, b) is p-regular when it is defined.

Proof. (i) We note that
∆(u) = u21 − u0u2 = 12 − 0 · a = 1,

and u(a, b) is p-regular for all p odd.

(ii) We observe that

∆(v) = v21 − v0v2 = a2 − 2(a2 + 2b) = −a2 − 4b = −D,
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and v(a, b) is p-regular if and only if p - D.

(iii) This follows from [23, p. 7]. �

Lemma 3.6. Let p be an odd prime. Consider the recurrences u(a, 1), v(a, 1), and t(a, 1)
modulo p with discriminant D, where p - D. Then, u(a, 1), v(a, 1), and t(a, 1) are all p-
regular. Let h = hu(p) = hv(p) = ht(p) and M ≡Mu(p) ≡Mv(p) ≡Mt(p) modulo p.

(i) uhi−n ≡ (−1)n+1M iun (mod p) for 0 ≤ n ≤ hi.
(ii) vhi−n ≡ (−1)nM ivn (mod p) for 0 ≤ n ≤ hi.
(iii) uhi+n ≡ (−1)n+1uhi−n (mod p) for 0 ≤ n ≤ hi.
(iv) vhi+n ≡ (−1)nvhi−n (mod p) for 0 ≤ n ≤ hi.
(v) th+1−n ≡ (−1)nb′Mtn (mod p) for 0 ≤ n ≤ h+ 1.

Proof. Parts (i), (ii), and (v) follow from Lemma 5 of [20] and can be established by induction.
Parts (iii) and (iv) follow from Lemmas 2.6 (ii) and 2.7 (ii) of [12]. �

Lemma 3.7. Let w(a, 1) = u(a, 1) or v(a, 1). Let p be an odd prime, and let h = hu(p). Let
n and c be integers such that 0 ≤ n < n+ c ≤ h and wnwn+cwh−nwh−n−c 6≡ 0 (mod p). Then,

wn+c
wn

wh−n
wh−n−c

≡ (−1)c (mod p).

Proof. This follows from Theorem 3.6 (i) and (ii). �

Lemma 3.8. Let w(a, b) be a p-regular recurrence with restricted period h modulo p. Let c be
a fixed integer such that 1 ≤ c ≤ h− 1. Let

Rn,c ≡
wn+c
wn

(mod p),

where we let Rn,c ≡ ∞ (mod p) if wn ≡ 0 (mod p). Then, the ratios Rr,c are distinct modulo
p for 0 ≤ r ≤ h− 1. Moreover, Rn+h,c ≡ Rn,c (mod p) for all n.

This is proved in Lemma 2 of [20].

Lemma 3.9. Let w(a, b) and w′(a, b) be p-regular recurrences. Then, h = hw(p) = hw′(p).
Let c be an integer such that 1 ≤ c ≤ h − 1. If w(a, b) and w′(a, b) are p-equivalent, then the
sets {wi+c

wi

}h−1
i=0

and
{w′i+c
w′i

}h−1
i=0

are identical modulo p. If w′(a, b) is not p-equivalent to w(a, b), then the sets{wi+c
wi

}h−1
i=0

and
{w′i+c
w′i

}h−1
i=0

are disjoint modulo p.

This is proved in Lemma 3 of [20].

Lemma 3.10. Suppose that the recurrence t(a, 1) is defined modulo p. Then, p ≡ 1 (mod 4)
and (D/p) = 1.

Proof. By the definition of t(a, 1), we have (−1/p) = 1. Then, p ≡ 1 (mod 4). Moreover,
by Theorem 3.1 (iii), ht(p) | (p − (D/p))/2. Because ht(p) is even by definition, we see that
(D/p) = 1. �

Lemma 3.11. Consider the recurrences u(a, 1), v(a, 1), and t(a, 1) with discriminant D. Let
p be an odd prime such that p - D. Then, u(a, b), v(a, b), and t(a, b) are all p-regular and
h = hu(p) = hv(p) = ht(p).
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(i) u(a, b) and v(a, b) are p-equivalent if and only if h is even.
(ii) t(a, b) is not p-equivalent to u(a, b) or v(a, b).

Proof. Part (i) is proved in Lemma 2 (i) of [21], whereas part (ii) is proved in Lemma 6 (vi)
of [20]. �

Lemma 3.12. Let p be an odd prime. Let u(a, b) be a LSFK with discriminant D such that
p - D and restricted period h = hu(p). Then, h | p− (D/p). Let

i(p) =
p− (D/p)

h
.

(i) There exist exactly i(p) p-equivalence classes of p-regular recurrences in F(a, b).
(ii) Suppose that i(p) = 1 and w(a, b) is p-regular. Then, w(a, b) is p-equivalent to u(a, b).

(iii) Suppose that i(p) = 2 and w(a, b) is p-regular. Then, Aw(0) ≥ 1 if and only if(∆(w)

p

)
= 1.

(iv) Suppose that i(p) = 2 and h is odd. If w(a, b) is p-regular, then w(a, b) is p-equivalent
to u(a, 1) or v(a, 1).

(v) Suppose that i(p) = 2, p ≡ 1 (mod 4), and h is even. If w(a, b) is p-regular, then
w(a, b) is p-equivalent to u(a, b) or t(a, b).

(vi) If w(a, b) is p-regular and w(a, b) is not p-equivalent to u(a, b), v(a, b), or t(a, b), then
i(p) ≥ 3 and hw(p) ≤ (p− (D/p))/3.

Proof. Part (i) is proved in Theorem 2.14 of [5], Parts (ii), (iv), and (v) follow from (i) of this
lemma and from Lemma 3.11. Part (iii) follows from Theorem 1.4 of [23]. Part (vi) follows
from parts (ii), (iv), and (v). �

Lemma 3.13. Let p ≡ 1 (mod 4) be a prime. Consider the Lucas sequences u(a, 1) and
v(a, 1) with discriminant D such that (D/p) = −1. Then, u(a, 1) and v(a, 1) are p-regular,

and h = hu(p) = hv(p). Suppose that h = (p+ 1)/2. Then, the set {uiu−1i−1}
h−1
i=2 ∪ {viv

−1
i−1}hi=1

form a reduced residue system modulo p.

Proof. Because p - D and h is odd, we see that u(a, 1) and v(a, 1) are p-regular, v(a, 1) is not
p-equivalent to u(a, 1), and Av(0) = 0. Moreover, by Theorem 3.1 (iv), ui 6≡ 0 (mod p) for

1 ≤ i ≤ h−1. By Lemma 3.9 and inspection, the sets {uiu−1i−1}
h−1
i=2 and {viv−1i−1}hi=1 are disjoint

modulo p and together, contain p− 1 elements. The result now follows. �

Lemma 3.14. Let w(a, 1) = u(a, 1) or v(a, 1). Let p ≡ 1 (mod 4) be a prime such that
(D/p) = −1. Then, h = hw(p) ≡ 1 (mod 2). Moreover, wn 6≡ ±wn+2c (mod p) for any
integer n and c such that 0 ≤ n < n+ 2c ≤ h.

This follows from Lemma 7 (ii) of [16], in the case in which w(a, 1) = u(a, 1) and from
Lemma 7 of [21], in the case in which w(a, 1) = v(a, 1).

Lemma 3.15. Let w(a, 1) = u(a, 1) or v(a, 1). Let p ≡ 1 (mod 4) be a prime such that
(D/p) = −1. Then, there do not exist three integers i, j, and k such that 0 ≤ i < j < k ≤ h,
wj ≡ ±wi (mod p), and wk ≡ ±wi (mod p).

Proof. Suppose that wj ≡ ±wi (mod p) and wk ≡ ±wi (mod p), where 0 ≤ i < j < k ≤ h.
Then by Lemma 3.14, j − i ≡ 1 (mod 2) and k − j ≡ 1 (mod 2). Hence, k − i ≡ 0 (mod 2),
which contradicts Lemma 3.14. �
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Lemma 3.16. Let w(a, b) be a p-regular recurrence. Let M ≡ Mw(p) (mod p), E = Ew(p),
h = hw(p), and λ = λw(p).

(i) If w(a, b) is p-equivalent to u(a, b), then Nw(p) ≡ 1 (mod E) and δw(p) ≡ p − 1
(mod E).

(ii) If w(a, b) is not p-equivalent to u(a, b), then Nw(p) ≡ 0 (mod E) and δw(p) ≡ p
(mod E).

Proof. We observe that E = ordpM and λ = Eh. Consider the term wn, where wn 6≡ 0
(mod p) and 0 ≤ n ≤ λ−1 = Eh−1. By (1.5), wn+hi ≡M iwn for i = 0, 1, . . . , E−1. We also
observe that if n+ hi ≥ λ = Eh, then wn+hi−λ ≡ wn (mod p), where 0 ≤ n+ hi− λ ≤ λ− 1.
Noting that Aw(0) ≥ 1 if and only if w(a, b) is p-equivalent to u(a, b), we see that Nw(p) ≡ 1
(mod E), if w(a, b) is p-equivalent to u(a, b) and Nw(p) ≡ 0 (mod E), if w(a, b) is not p-
equivalent to u(a, b). The consequences for δw(p) modulo E now follow upon noting that
δw(p) = p−Nw(p). �

Theorem 3.17. Let p ≥ 5, and let w(a, 1) be a p-regular recurrence such that (D/p) = 1
and w(a, 1) is not p-equivalent to u(a, 1). Then, λw(p) | p − 1 and Aw(0) = 0. Furthermore,
{w0, w1, . . . , wλ−1} does not form a reduced residue system modulo p. In particular, Nw(p) <
p− 1 and δw(p) ≥ 2.

This follows from Proposition 4.2 of [12]. A proof of Theorem 3.17 is given in the case of
the Fibonacci sequence in Theorem 4.2 of [2].

Lemma 3.18. Let p ≡ 1 (mod 4). Let w(a, 1) be a p-regular recurrence such that w(a, 1) is
not p-equivalent to u(a, 1), (D/p) = 1, hw(p) = (p− 1)/4, and Ew(p) = 4. Then, δw(p) ≥ 5.

Proof. We observe that λ = λw(p) = 4h = p − 1. It follows, from Theorem 3.17 and Lemma
3.16, that Nw(p) < p − 1 and Nw(p) ≡ 0 (mod 4). Thus, Nw(p) ≤ p − 5, because p ≡ 1
(mod 4). Hence, δw(p) = p−Nw(p) ≥ 5. �

Lemma 3.19. Suppose that the recurrence t(a, 1) is defined modulo p. Then, p ≡ 1 (mod 4)
and (D/p) = 1. Suppose further that E = Et(p) = 2, M ≡ Mt(p) (mod p), and h = ht(p) =
(p− 1)/2. Then, δt(p) ≡ 1 (mod 4) and δt(p) ≥ 5.

Proof. Because t(a, 1) is defined modulo p, it follows, from the definition of t(a, 1) and Lemma
3.10, that h is even, (−1/p) = 1, and (D/p) = 1. Thus, p ≡ 1 (mod 4). It follows, from
Lemma 3.11 (ii) and Theorem 3.1 (vii), that At(0) = 0. Because E = 2, λ = 2h = p − 1.
Let r2 ≡ −1 (mod p), where 0 ≤ r ≤ (p − 1)/2. Then, ordpr = 4. We will prove that if
0 ≤ n ≤ λ − 1 and 1 ≤ j ≤ 3, then there exists an integer m such that 0 ≤ m ≤ λ − 1 and
tm ≡ rjtn (mod p). It will then follow that Nt(p) ≡ 0 (mod 4). Noting that p ≡ 1 (mod 4),
we then see that δt(p) ≡ 1 (mod 4). Because E = 2, we observe that M ≡ −1 (mod p) and
tn+h ≡ −tn (mod p). We now notice that

{t0, t1, th, th+1} ≡ {1, r,−1,−r} (mod p).

Thus, we can assume that n 6∈ {0, 1, h, h+ 1}. Suppose that 2 ≤ n ≤ 1. Then by Lemma 3.6
(v),

th+1−n ≡ (−1)nMrtn ≡ (−1)n+1 (mod p),

th+n ≡ −tn (mod p), and t2h+1−n ≡ −th+1−n (mod p).

Similarly, if h+ 2 ≤ n ≤ λ− 1 = 2h− 1, then t2h+1−n ≡ ±rtn (mod p), tn−h ≡ −tn (mod p),
and t3h+1−n ≡ −t2h+1−n (mod p). It now follows that Nt(p) ≡ 0 (mod 4) and δt(p) ≡ 1
(mod 4). By Theorem 3.17, δt(p) ≥ 2. Hence, δt(p) ≥ 5. �
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Lemma 3.20. Let w(a,−1) be a p-regular recurrence that is not p-equivalent to u(a,−1),
v(a,−1), or t(a,−1). Then, Aw(d) ≤ 1 for 0 ≤ d ≤ p − 1. Moreover, Nw(p) = λw(p) and
δw(p) = p− λw(p).

This follows from Theorem 2 (i) of [20].

Lemma 3.21. Consider the LSFK u(a, 1) and the LSSK v(a, 1) with discriminant D = a2+4.
Let D 6= 0 and e be a fixed positive odd integer. Let {u′n}, {u′′n}, {v′n}, and {v′′n} be defined by
u′n = un+e − un, u′′n = un+e + un, v′n = vn+e − vn, and v′′n = vn+e + vn. Then, {u′n}, {u′′n},
{v′n}, and {v′′n} all satisfy the same second-order recursion relation as u(a, 1). Moreover, the
following hold:

(i) u2n = unvn,
(ii) (u′n)2 − u′n−1u′n+1 = (−1)n(ue−1 + ue+1) = (−1)nve,

(iii) (u′′n)2 − u′′n−1u′′n+1 = (−1)n+1ve,

(iv) (v′n)2 − v′n−1v′n+1 = (−1)n+1(a2 + 4)ve = (−1)n+1Dve,

(v) (v′′n)2 − v′′n−1v′′n+1 = (−1)n(a2 + 4)ve = (−1)nDve.

Proof. It is evident that {u′n}, {u′′n}, {v′n}, and {v′′n} all satisfy the same recursion relation as
u(a, 1). Parts (i)–(v) follow from the Binet formulas given in (1.3). Parts (ii)–(v) also follow
from the results given in [12, pp. 276, 277, and 279]. �

Lemma 3.22. Consider the LSFK u(a, 1) and the LSSK v(a, 1) with discriminant D = a2+4.
Let p be a prime such that p ≡ 1 (mod 4), (D/p) = −1, and h = hu(p) = (p + 1)/2. Then,
u(a, 1) and v(a, 1) are p-regular and h = hv(p). Let e be an odd integer such that 1 ≤ e < h.
Let {u′n}, {u′′n}, {v′n}, and {v′′n} be defined as in Lemma 3.21. Let w(a, 1) = {u′n} or {u′′n},
and let w′(a, 1) = {v′n} or {v′′n}. Then,

(i) Aw(0) ≥ 1 if and only if (ve/p) = 1,
(ii) Aw′(0) ≥ 1 if and only if (ve/p) = −1.

Proof. By Lemmas 1.8 and 3.5, u(a, 1) and v(a, 1) are p-regular. We note, by Theorem 3.1
(vii), that Aw(0) ≥ 1 if and only if w(a, 1) is trivial modulo p or w(a, 1) is p-equivalent to
u(a, 1). Similarly, Aw′(0) ≥ 1 if and only if (w′) is trivial modulo p or (w′) is p-equivalent to
u(a, 1).

(i) Because e < h ≤ λu(p), we see that (w) and (w′) are nontrivial modulo p. By Lemma
3.12 (iii) and Lemma 3.21 (ii) and (iii), it follows that(∆(w)

p

)
= w2

1 − w0w2 =
(±1

p

)(ve
p

)
.

Because p ≡ 1 (mod 4) and thus, (−1/p) = 1, we observe that (i) holds.
(ii) Similar to the proof of part (i), we see that(∆(w′)

p

)
= (w′1)

2 − w′0w′2 =
(±1

p

)(a2 + 4

p

)(ve
p

)
.

Because ((a2 + 4)/p) = −1, it follows that part (ii) also holds. �

Lemma 3.23. Let u(a,−1) be a nondegenerate LSFK with discriminant D = a2 − 4 and
characteristic roots α and β, where |α| > |β|. Then,

|un| =
⌊ |α|n√

D

⌋
. (3.2)

Proof. Because u(a,−1) is nondegenerate, |a| ≥ β, D > 0, α and β are real, α > 1, β = 1/α,
and |β| < 1, It now follows, from the Binet formula (1.3), that (3.2) holds. �
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Lemma 3.24. Let u(a, 1) be a nondegenerate LSFK with discriminant D = a2 + 4 and char-
acteristic roots α and β, where |α| > |β|. Then,

|un| =
⌈ |α|n√

D

⌉
≤ |un|+ 1. (3.3)

Proof. Since u(a, 1) is nondegenerate, |a| ≥ 1, D > 0, α and β are real, |α| > 1, β = −1/α,
and |β| < 1. We now see, by the Binet formula (1.3), that (3.3) holds. �

Lemma 3.25. Consider the LSFK u(a, b) with discriminant D > 0, where a 6= 0. Then, |un|
is strictly increasing for n ≥ 2.

This is proved in Lemma 3 of [9].

Lemma 3.26. Let w(a, 1) = u(a, 1) or v(a, 1). Let p ≡ 1 (mod 4) be a prime such that
(D/p) = −1 and h = hw(p) = (p + 1)/2. Then, E = Ew(p) = 4. Let λ = λw(p) and
M = Mw(p). Let A denote the number of positive odd integers e < h for which there exists an
integer n such that 0 ≤ n < n+ e ≤ h and wn+e ≡ ±wn (mod p). Then,

Nu(p) = 2(h− 1− 2A) + 1 = p− 4A, δu(p) = 4A, (3.4)

whereas

Nv(p) = 2(h+ 1− 2A) = p+ 3− 4A, δu(p) = 4A− 3. (3.5)

Proof. Because h = (p + 1)/2 is odd, it follows, from Theorem 3.1 (vii) and Lemma 3.11 (i),
that v(a, 1) is not p-equivalent to u(a, 1) and thus, Av(0) = 0. We also see, by Theorems 3.1
(iv) and 3.2 (iv), that E = 4 and un ≡ 0 (mod p) if and only if h | n. Thus, we cannot have
that ue ≡ ±u0 or uh ≡ ±uh−e (mod p) for any positive integer e < h. We also note, by Lemma
3.14, that if 0 ≤ n < n + c ≤ h and wn+c ≡ ±wn (mod p), then c is odd. Furthermore, by
Lemma 3.6 (iii) and (iv), if 0 ≤ n ≤ λ = 4h, then there exists an integer i such that 0 ≤ i ≤ h
and wi ≡ ±wn (mod p). Because E = 4, M2 ≡ −1 (mod p), and wn+2h ≡ −wn (mod p) for
all n. Moreover, by Lemmas 3.7 and 3.8, given a fixed positive integer e < h for which there
exists an integer i ∈ {0, 1, . . . , h− e} such that

wi+e
wi
≡ ε (mod p);

there also exists exactly one integer j ∈ {0, 1, . . . , h− e} such that

wj+e
wj
≡ −ε (mod p).

In particular, j = h − i − e. Additionally, by Lemma 3.15, given an integer i ∈ {0, 1, . . . , h},
there exists at most one integer j 6= i such that 0 ≤ j ≤ h and wj ≡ ±wi (mod p). It now
follows, from our above discussion, that (3.4) and (3.5) both hold. �

Lemma 3.27. Let w(a, 1) = u(a, 1) or v(a, 1). Let p ≡ 1 (mod 4) be a prime such that
(D/p) = −1 and h = hw(p) = (p + 1)/2 is odd. Let G1 denote the number of positive odd
integers e < h such that (ve/p) = 1, and let G2 denote the number of positive odd integers
e < h such that (ve/p) = −1. Then,

δu(p) = 2G1, (3.6)

whereas

δv(p) =

{
2G2 − 3, if p ≡ 1 (mod 8);

2G2 − 1, if p ≡ 5 (mod 8).
(3.7)
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Proof. Let B denote the number of positive odd integers e less than h for which there exists
an integer n such that 0 ≤ n ≤ h− 1 and wn+e ≡ ±wn (mod p). Then by Lemma 3.22,

B =

{
G1, if w(a, 1) = u(a, 1);

G2, if w(a, 1) = v(a, 1).
(3.8)

Let A be defined as in Lemma 3.26. We will show that

A =


B
2 , if w(a, 1) = u(a, 1);

B
2 , if w(a, 1) = v(a, 1) and p ≡ 1 (mod 8);

B+1
2 , if w(a, 1) = v(a, 1) and p ≡ 5 (mod 8).

(3.9)

It will then follow, from (3.8), (3.9), (3.4), and (3.5), that (3.6) and (3.7) both hold.
Let e < h be a fixed positive odd integer. First, suppose that 0 ≤ n < h < n + e = h + r

and wn+e ≡ ±wn (mod p), where r ≥ 1. Then by Lemma 3.6 (iii) and (iv),

wn ≡ ±wn+e = wh+r ≡ ±wh−r (mod p),

where 3 ≤ h − r ≤ h − 1, because 1 ≤ e ≤ h − 2. We shall find an integer i 6= n such that
0 ≤ i ≤ h− 1, wi ≡ ±wn (mod p) and |n− i| = e1 ≡ 1 (mod 2), and 1 ≤ e1 < e. We observe
that (h+ r)− (h− r) = 2r. Thus, h− r 6≡ n (mod 2), since h+ r−n = e ≡ 1 (mod 2). Hence,
|n− (h− r)| = e1 ≡ 1 (mod 2).

Now, suppose that h > h− r > n. Then,

e− e1 = (h+ r − n)− (h− r − n) = 2r > 0.

Next, suppose that h > n > h− r. Then,

e− e1 = 2(h− n) > 0

and again e > e1.
We next suppose that n is the largest integer such that 1 ≤ n − e < n ≤ h − 1 and

wn ≡ ±wn−e (mod p). By a similar argument to that given above, we can find an integer c
and an odd integer e2 such that 1 ≤ i ≤ h− 1, 1 ≤ e < e2 < h, i+ e2 > h, wi ≡ ±wn (mod p),
and wi+e2 ≡ ±wi (mod p).

We now treat the final case in which n = 0 or h, and

w0 ≡ εwe (mod p). (3.10)

By Lemma 3.7, (3.10) can occur if and only if

wh ≡ −εwh−e (mod p). (3.11)

By the proof of Lemma 3.26, we must then have that w0wh 6≡ 0 (mod p) and w(a, 1) = v(a, 1).
We now observe, by Lemmas 3.15 and 3.6 (ii), that

wi ≡ ±w0 (mod p) (3.12)

for i ∈ {0, 1, . . . , 2h} if and only if i ∈ {0, e, 2h− e, 2h}, whereas

wi ≡ ±wh (mod p) (3.13)

for i ∈ {0, 1, . . . , 2h} if and only if i ∈ {h− e, h, h+ e}.
We note, by Lemma 3.13, that for each positive odd integer e < h, there exists an integer n

such that 0 ≤ n ≤ h− 1 = (p− 1)/2 and either un+e ≡ ±un (mod p) or vn+e ≡ ±vn (mod p).
Let

E = #{e | 1 ≤ e < h, e ≡ 1 (mod 2)}.
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By our previous discussion, A = B/2, if E ≡ 0 (mod 2) and A = (B+1)/2, if E ≡ 1 (mod 2).
We observe that E = (p− 1)/4. Hence,

E ≡

{
0 (mod 2), if p ≡ 1 (mod 8);

1 (mod 2), if p ≡ 5 (mod 8).

From our argument above, we see that (3.9) holds and the result follows. �

Lemma 3.28. Let v(a, 1) be a LSSK. Let p ≡ 1 (mod 4) be a prime such that (D/p) = −1.
Let h = hv(p). Then, (vh/p) = 1.

Proof. By Theorem 3.2 (vii), E = 4. Thus, M ≡ ±
√
−1 (mod p) and vh ≡ Mv0 ≡ 2M

(mod p). By the law of quadratic reciprocity, (2/p) = 1, if p ≡ 1 (mod 8) and (2/p) = −1, if
p ≡ 5 (mod 8). Moreover, (M/p) = 1, if p ≡ 1 (mod 8) and (M/p) = −1, if p ≡ 5 (mod 8).
Thus, (vh/p) = 1. �

Lemma 3.29. Let pk denote the kth prime. Then,

pk ≥ k(ln k + ln ln k − 1) (3.14)

for k ≥ 2.

This is proved in [8].

Corollary 3.30. For k ≥ 2, we have

pk − 1 ≥ k ln k. (3.15)

Proof. By examination, (3.15) holds for 2 ≤ k ≤ 17. By Lemma 3.29,

pk − 1 ≥ k ln k + k(ln ln k − 1)− 1 for k ≥ 2. (3.16)

It suffices to prove that

ln ln k − 1− 1

k
≥ 0 for k ≥ 18. (3.17)

By inspection, (3.17) holds for k = 18. Clearly, this implies that (3.17) is also satisfied for
k ≥ 18. �

Let w(a, b) be a recurrence. Then p is a primitive prime divisor of wn, if p | wn and p - wi
for any i such that 0 ≤ i < n and wi 6= 0.

Theorem 3.31. Let u(a, b) be a nondegenerate LSFK for which gcd(a, b) = 1 and the char-
acteristic roots α and β are real. Then, there exist at most four indices n such that un has no
primitive prime divisor. Moreover, each of these indices is less than or equal to 12.

This is proved in Theorem XXI of [6].

Theorem 3.32. Let u(a, b) be a nondegenerate LSFK for which gcd(a, b) = 1. Then, there
exist at most nine indices n such that un has no primitive prime divisor. Further, each of
these indices is less than or equal to 30.

This follows from Theorem 1.4 and Tables 1 and 3 of [1].
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4. The Unboundedness of (p− (D/p))/h

Consider the nondegenerate LSFK u(a, b), where gcd(a, b) = 1. Recall, by Theorem 3.1 (i),
that hu(p) | p − (D/p). Theorem 4.1 shows that (p − (D/p))/hu(p) is unbounded as p grows
arbitrarily large.

Theorem 4.1. Let u(a, b) be a nondegenerate LSFK such that gcd(a, b) = 1. Then,

lim sup
p→∞

p− (D/p)

hu(p)
=∞.

Proof. Let α and β be the characteristic roots of u(a, b). Let

R =

{
4, if α and β are real;

9, if α and β are imaginary.

By Theorems 3.31 and 3.32, there exist at most R indices n for which un does not have a
primitive prime divisor. Let n > R be an arbitrary integer. It now follows that there are at
least n−R different primes that divide uk for k ∈ {1, . . . , n}.

Hence, there exists a prime pm such that hu(pm) ≤ n and m ≥ n − R. By Theorem 3.29,
we see that for every n > R,

pm − (D/p)

h(pm)
≥ pm − 1

h
≥ m lnm

n
≥ (n−R) ln(n−R)

n
(4.1)

and the theorem follows. �

Vinson [26] proved Theorem 4.1 in the case of the Fibonacci sequence. Our proof is adapted
from his proof. Two further proofs of Theorem 4.1, in the case of the Fibonacci numbers, are
given by [11] and [10].

Theorem 4.2. Let w(a, 1) be a nondegenerate recurrence with characteristic roots α and β,
where |α| > |β|. Then, α and β are real and

lim sup
p→∞

δw(p)

p
= 1. (4.2)

Let 0 ≤ ε ≤ 0.4, and let r = 22067/22071. Let

n1 =

⌈
1

r
e4/(εr)

⌉
.

Then, there exists a prime p′ such that

p′ ≤
⌈
|α|n1

√
D

⌉
and

δw(p′)

p′
≥ 1− ε. (4.3)

Proof. By Theorem 4.1, we have that

lim inf
p→∞

hu(p)

p
= 0. (4.4)

We claim that this suffices to establish that (4.2) holds. Because λu(p) ≤ 4hu(p), by The-
orem 3.2 (i) and λw(p) | λu(p) by Theorem 3.4 and Lemma 3.5 (i), it would then follow
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that lim infp→∞λw(p)/p = 0. Noting by (1.8) that δw(p) ≥ p − λw(p), it then follows that
lim supp→∞δw(p)/p = 1.

We now find a prime

p′ ≤
⌈
|α|n1

√
D

⌉
and

δw(p′)

p′
≥ 1− ε.

It suffices to show that
hw(p′)

p′
≤ ε

4
(4.5)

for such a prime p′, because δw(p′) = p′ −Nw(p′) and Nw(p′) ≤ λw(p′) ≤ 4hw(p′). Moreover,
(4.5) holds if and only if

p′

hw(p′)
≥ 4

ε
. (4.6)

Let n > 4 be an arbitrary integer. We note that hw(p′) | hu(p′) by Theorem 3.4. We now see,
by (4.1) in the proof of Theorem 4.1, that there exists m ≥ n− 4 such that hu(pm) ≤ n and

pm
hw(pm)

≥ pm
hu(pm)

≥ pm − 1

hu(pm)
≥ (n− 4) ln(n− 4)

n
. (4.7)

We wish to find n such that

(n− 4) ln(n− 4)

n
≥ 4

ε
≥ 4

0.4
= 10. (4.8)

We also observe that if n = n1, then

n1 =

⌈
1

r
e4/(εr)

⌉
≥
⌈

1

r
e4/(0.4r)

⌉
=

⌈
1

r
e10/r

⌉
= 22071.

We will show that if n = n1, then (4.8) holds. We observe that

n1 − 4

n1
ln
(n1 − 4

n1
n1

)
≥ 22067

22071
ln
(22067

22071
n1

)
= r ln(rn1). (4.9)

We claim that

r ln(rn1) ≥
4

ε
. (4.10)

We note that (4.10) holds if and only if

eln(rn1) = rn1 ≥ e4/(εr),

which is satisfied by the definition of n1.
By (4.7), there exists m > n1 − 4 such that hu(pm) = s ≤ n1 and

pm
hw(pm)

≥ pm
hu(pm)

≥ (n1 − 4) ln(n1 − 4)

n1
≥ 4

ε
.

Then, pm | us. Because |us| ≤ |un1 | by Lemma 3.25, we find, by Lemma 3.24, that

pm ≤ |un1 | ≤
⌈
|α|n1

√
D

⌉
.

The result follows upon letting p′ = pm. �
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Theorem 4.3. Let w(a,−1) be a nondegenerate recurrence with characteristic roots α and β,
where |α| > |β|. Then, α and β are real and

lim sup
p→∞

δw(p)

p
= 1. (4.11)

Let 0 ≤ ε ≤ 0.4 and let s = 168/172. Let

n2 =

⌈
1

s
e2/(εs)

⌉
.

Then, there exists a prime p′′ such that

p′′ ≤
⌊
|α|n2

√
D

⌋
and

δw(p′′)

p′′
≥ 1− ε.

Proof. We observe by Theorem 3.3 (i) that λw(p) ≤ 2hw(p). The remainder of the proof is
completely similar to that of Theorem 4.2. �

5. Values of δw(p) for w(a,±1) Modulo p

Theorems 5.1–5.11 will provide lower bounds for δw(p), given the prime p and the p-regular
sequence w(a,±1). The proof of these theorems make use of results that provide upper bounds
for Nw(p). We note that δw(p) = p−Nw(p). In the statements of Theorems 5.1–5.11, we will
accordingly frequently express δw(p) in the form p − c(p), where c(p) is an expression for
Nw(p). In Theorems 5.1–5.11, we let h = hw(p), λ = λw(p), M = Mw(p), E = Ew(p), and the
recurrence w(a,±1) will always be considered to be nondegenerate.

In Theorems 5.1–5.3, we consider the nondegenerate recurrence w(a,−1). We recall that
by Theorem 3.3, E = 1 or 2.

Theorem 5.1. Consider the p-regular recurrence w(a,−1) such that h is odd, E = 1, and
p - D. Then, h | (p− (D/p))/2.

(i) u(a,−1) is not p-equivalent to v(a,−1). Moreover, if h = (p−(D/p))/2, then w(a,−1)
is p-equivalent to u(a,−1) or v(a,−1).

(ii) If w(a,−1) is p-equivalent to u(a,−1), then δw(p) = p− h ≥ (p+ (D/p))/2.
(iii) If w(a,−1) is p-equivalent to v(a,−1), then

δw(p) = p− h+ 1

2
≥ 3p− 2 + (D/p)

4
.

(iv) Suppose that w(a,−1) is not p-equivalent to u(a,−1) or v(a,−1). Then,

h ≤ p− (D/p)

4
and δw(p) = p− λ ≥ 3p+ (D/p)

4
.

Theorem 5.2. Consider the p-regular recurrence w(a,−1) such that h is odd, E = 2, and
p - D. Then, h | (p− (D/p))/2.

(i) u(a,−1) is not p-equivalent to v(a,−1). Moreover, if h = (p−(D/p))/2, then w(a,−1)
is p-equivalent to u(a,−1) or v(a,−1).

(ii) If w(a,−1) is p-equivalent to u(a,−1), then δw(p) = p− h ≥ (p+ (D/p))/2.
(iii) If w(a,−1) is p-equivalent to v(a,−1), then

δw(p) = p− (h+ 1) ≥ p− 2 + (D/p)

2
.
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(iv) Suppose that w(a,−1) is not p-equivalent to u(a,−1) or v(a,−1). Then,

h ≤ p− (D/p)

4
and δw(p) = p− λ = p− 2h ≥ p+ (D/p)

2
.

Theorem 5.3. Consider the p-regular recurrence w(a,−1) such that h is even and p - D.
Then, E = 2, h | (p− (D/p))/2, and λ = 2h.

(i) v(a,−1) is p-equivalent to u(a,−1) and t(a,−1) is not p-equivalent to u(a,−1). More-
over, if h = (p− (D/p))/2, then w(a,−1) is p-equivalent to u(a,−1) or t(a,−1).

(ii) If w(a,−1) is p-equivalent to u(a,−1), then δw(p) = p− (h+ 1) ≥ (p− 2 + (D/p))/2.
(iii) If w(a,−1) is p-equivalent to t(a,−1), then δw(p) = p− h ≥ (p+ (D/p))/2.
(iv) Suppose w(a,−1) is not p-equivalent to u(a,−1) or t(a,−1). Then,

h ≤ p− (D/p)

4
and δw(p) = p− λ = p− 2h ≥ p+ (D/p)

2
.

Theorems 5.1–5.3 follow from Lemma 3.20, Theorem 7 of [18], Theorems 10–12 of [21], and
Theorem 3.8 (b) of [22].

Theorem 5.4. Let p ≡ 3 (mod 4). Consider the p-regular recurrence w(a, 1) such that
(D/p) = 1. Then, E = 1, λ = h, h ≡ 2 (mod 4), and h | p− 1, but h - (p− 1)/2.

(i) Suppose that h = p − 1. Then w(a, 1) is p-equivalent to u(a, 1). Further, δw(p) =
(3p− 1)/8, if p ≡ 3 (mod 8) and δw(p) = (3p+ 3)/8, if p ≡ 7 (mod 8).

(ii) Suppose that w(a, 1) is p-equivalent to u(a, 1) and h < p− 1. Then, h ≤ (p− 1)/3 and
δw(p) ≥ p− (3h+ 2)/4 ≥ (3p− 1)/4.

(iii) Suppose that w(a, 1) is not p-equivalent to u(a, 1). Then, h ≤ (p − 1)/3 and δw(p) ≥
(2p+ 1)/3.

Part (i) is proved in Theorem 2.7 of [25]. The remainder of Theorem 5.4 follows from (1.8)
and Theorem 6 of [17].

Theorem 5.5. Let p ≡ 3 (mod 4). Consider the p-regular recurrence w(a, 1) such that
(D/p) = −1. Then, E = 2, λ = 2h, h ≡ 0 (mod 4), and h | p+ 1, but h - (p+ 1)/2.

(i) Suppose that h = p + 1. Then, w(a, 1) is p-equivalent to u(a, 1). Moreover, δw(p) =
(p− 3)/4, if p ≡ 3 (mod 8) and δw(p) = (p− 7)/4, if p ≡ 7 (mod 8).

(ii) Suppose that w(a, 1) is p-equivalent to u(a, 1) and h < p+ 1. Then, h ≤ (p+ 1)/3 and
δw(p) ≥ p− (h+ 1) ≥ (2p− 4)/3.

(iii) Suppose that w(a, 1) is not p-equivalent to u(a, 1). Then, h ≤ (p + 1)/3 and δw(p) ≥
p− λ = p− 2h ≥ (p− 2)/3.

This follows from (1.8) and Theorem 8 of [17].
In Theorems 5.6–5.8, we consider p-regular recurrences w(a, 1) for which p ≡ 1 (mod 4)

and (D/p) = 1. In this situation, we have that E can be equal 1, 2, or 4 and all possibilities
can occur. We will consider these three cases separately.

Theorem 5.6. Let p ≡ 1 (mod 4). Consider the p-regular recurrence w(a, 1) such that
(D/p) = 1 and E = 1. Then, λ = h, h ≡ 2 (mod 4), and h | (p− 1)/2.

(i) v(a, 1) is p-equivalent to u(a, 1) and t(a, 1) is not p-equivalent to u(a, 1). Moreover, if
h = (p− 1)/2, then w(a, 1) is p-equivalent to u(a, 1) or t(a, 1).

(ii) If w(a, 1) is p-equivalent to u(a, 1), then δw(p) ≥ p− (3h+ 2)/4 ≥ (5p− 1)/8.
(iii) If w(a, 1) is p-equivalent to t(a, 1), then δw(p) ≥ p− λ ≥ (p+ 1)/2.
(iv) Suppose that w(a, 1) is not p-equivalent to u(a, 1) or t(a, 1). Then, λ ≤ (p− 1)/4 and

δw(p) ≥ p− λ ≥ (3p+ 1)/4.
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This follows from (1.8) and Theorem 6 of [17].

Theorem 5.7. Let p ≡ 1 (mod 4). Consider the p-regular recurrence w(a, 1) such that
(D/p) = 1 and E = 2. Then, λ = 2h, h ≡ 0 (mod 4), and h | (p− 1)/2.

(i) v(a, 1) is p-equivalent to u(a, 1) and t(a, 1) is not p-equivalent to u(a, 1). Moreover, if
h = (p− 1)/2, then w(a, 1) is p-equivalent to u(a, 1) or t(a, 1).

(ii) If w(a, 1) is p-equivalent to u(a, 1), then δw(p) ≥ p− (h+ 1) ≥ (p− 1)/2.
(iii) If w(a, 1) is p-equivalent to t(a, 1) and h = (p− 1)/2, then δw(p) ≥ 5.
(iv) Suppose w(a, 1) is p-equivalent to t(a, 1) and h < (p − 1)/2 or that w(a, 1) is not p-

equivalent to u(a, 1) or t(a, 1). Then, h ≤ (p − 1)/4 and δw(p) ≥ p − λ = p − 2h ≥
(p+ 1)/2.

Part (iii) is proved in Lemma 3.19. The remainder of Theorem 5.7 follows from (1.8) and
Theorem 8 of [17].

Theorem 5.8. Let p ≡ 1 (mod 4). Consider the p-regular recurrence w(a, 1) such that
(D/p) = 1 and E = 4. Then, λ = 4h, h is odd, and h | (p− 1)/4.

(i) v(a, 1) is not p-equivalent to u(a, 1). Moreover, if h = (p − 1)/2, then w(a, 1) is
p-equivalent to u(a, 1) or v(a, 1).

(ii) If w(a, 1) is p-equivalent to u(a, 1), then δw(p) ≥ p− (2h− 1) ≥ (p+ 3)/2.
(iii) If w(a, 1) is p-equivalent to v(a, 1), then δw(p) ≥ p− (2h+ 2) ≥ (p− 3)/2.
(iv) Suppose that w(a, 1) is not p-equivalent to u(a, 1) or v(a, 1).

(a) If h = (p− 1)/4, then p ≡ 5 (mod 8) and δw(p) ≥ 5.
(b) If h < (p− 1)/4, then h ≤ (p− 1)/8 and δw(p) ≥ p− λ = p− 4h ≥ (p+ 1)/2.

Part (iv) (a) is proved in Lemma 3.18. The remainder of Theorem 5.8 follows from (1.8),
Theorem 10 of [17], and Theorem 9 of [21].

Theorem 5.9. Let p ≡ 1 (mod 4). Consider the p-regular recurrence w(a, 1) such that
(D/p) = −1 and h 6= (p+ 1)/2. Then, E = 4, λ = 4h, h | (p+ 1)/2, and h ≤ (p+ 1)/6.

(i) v(a, 1) is not p-equivalent to u(a, 1).
(ii) If w(a, 1) is p-equivalent to u(a, 1), then δw(p) ≥ p− (2h− 1) ≥ (2p+ 2)/3.
(iii) If w(a, 1) is p-equivalent to v(a, 1), then δw(p) ≥ p− (2h+ 2) ≥ (2p− 7)/3.
(iv) Suppose w(a, 1) is not p-equivalent to u(a, 1) or v(a, 1). Then, δw(p) ≥ p−λ = p−4h ≥

(p− 2)/3.

This follows from (1.8), Theorem 10 of [17], and Theorem 9 of [21].
We note, by Lemma 3.12 (ii), that if p ≡ 1 (mod 4) and w(a, 1) is a p-regular recurrence

such that (D/p) = −1 and hw(p) = (p+ 1)/2, then w(a, 1) is p-equivalent to u(a, 1) or v(a, 1).
In Theorems 5.10 and 5.11, we treat these cases separately. These theorems generalize results
given by Li [12].

Theorem 5.10. Let p ≡ 1 (mod 4). Consider the p-regular recurrence w(a, 1) such that
w(a, 1) is p-equivalent to u(a, 1), (D/p) = −1, and h = hw(p) = hu(p) = (p+ 1)/2. Consider
also the LSSK v(a, 1). Let C be a positive integer. Then, δw(p) ≥ C if

p > 22b
C−1
2
c+3
(⌊C − 1

2

⌋
+ 1
)
− 3.

Proof. We can assume, without loss of generality, that w(a, 1) = u(a, 1) by Proposition 1.4
and Remark 1.5. As in Lemma 3.27, let G1 denote the number of positive odd integers e < h
such that (ve/p) = 1. We will assume that δu(p) ≤ C − 1 and get a contradiction for large
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enough p. Because δu(p) = 2G1 by Lemma 3.27, we will assume that 2G1 ≤ C − 1, which
holds if and only if

G1 ≤
⌊C − 1

2

⌋
= C1.

By Theorem 3.1 (iv) and (vii) and Lemma 3.11 (i), vn 6≡ 0 (mod p) for all n ≥ 0 and un ≡ 0
(mod p) if and only if h | n. Let s = (h + 1)/2 = (p + 3)/4. We note, by Lemma 3.7, that if
1 < i < s, then

(uiu
−1
i−1)(uh−i+1u

−1
h−i) ≡ −1 (mod p) (5.1)

and i < h− i+ 1 < h. Moreover, by Lemma 3.7, if 1 ≤ i < s, then

(viv
−1
i−1)(vh−i+1v

−1
h−i) ≡ −1 (mod p) (5.2)

and i < h − i + 1 ≤ h. Since p ≡ 1 (mod 4) and thus, (−1/p) = 1, it follows from (5.1) and
(5.2) that (uiu−1i−1

p

)
=
(uh−i+1u

−1
h−i

p

)
(5.3)

for 1 < i < s and (viv−1i−1
p

)
=
(vh−i+1v

−1
h−i

p

)
(5.4)

for 1 < i < s.
First, suppose that p ≡ 1 (mod 8). We note, by Lemma 3.28 and the law of quadratic

reciprocity, that (v0
p

)
=
(2

p

)
=
(vh
p

)
= 1. (5.5)

We now see, by (5.4), that (v1/p) = (vh−i/p). By (5.4) and induction, it follows that(vi
p

)
=
(vh−i

p

)
(5.6)

for all i ∈ {0, 1, . . . , s}. We note that i is odd if and only if h− i is even. By assumption, there
are at most G1 ≤ C1 = b(C − 1)/2c positive odd integers e < h such that (ve/p) = 1. Hence,
there exist at most C1 positive even integers e < h such that (ve/p) = 1. Therefore, among
{viv−1i−1 | 1 ≤ i ≤ h}, there are at most 4C1 quadratic nonresidues modulo p. Thus, there are

at least (p+ 1)/2− 4C1 nonzero quadratic residues in {viv−1i−1 | 1 ≤ i ≤ h}.
We note, by the proof of Lemma 3.13, that {uiu−1i−1 | 1 < i < h} and {viv−1i−1 | 1 ≤ i ≤ h}

together contain exactly p − 1 distinct nonzero residues modulo p, and thus, form a reduced
residue system modulo p. Thus, we will get a contradiction if we find 4C1 nonzero quadratic
residues modulo p among {uiu−1i−1 | 1 < i < h}. Therefore, by (5.3), our claim will follow if

we can prove that there exist 2C1 integers i with 1 < i < s = (p+ 3)/4 such that uiu
−1
i−1 is a

nonzero quadratic residue modulo p.
By Lemma 3.21 (i), u2n = unvn. Suppose that e is even and (ve/p) = −1. Then, we have

that (u2e/p) = −(ue/p), and because e is even, it follows that there exists i with e < i ≤ 2e
such that (ui/p) = (ui−1/p). Hence, uiu

−1
i−1 is a nonzero quadratic residue modulo p. Thus,

our strategy is finding s large enough so that we can find 2C1 positive even integers e(i)
with 2e(i) = e(i + 1) for 1 ≤ i ≤ 2C1 − 1 and 2e(2C1) < s such that (ve(i)/p) = −1 for all
i ∈ {1, . . . , 2C1}. Because by assumption, there exist at most C1 positive even integers e such
that (ve/p) = 1, we see, by the argument given by Li in [12], that the worst case is that(v2

p

)
=
(v4
p

)
= . . . =

(v2C1

p

)
= 1.
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In this case, we can choose

e(1) = 2(C1 + 1), e(2) = 4(C1 + 1), . . . , e(2C1) = 22C1(C1 + 1).

Hence, for s > 22C1+1(C1 + 1), we get a contradiction. Because p = 4s − 3, we then obtain
that

p > 22C1+3(C1 + 1)− 3 = 22b(C−1)/2c+3
(⌊C − 1

2

⌋
+ 1
)
− 3.

Next, suppose that p ≡ 5 (mod 8). We observe, by Lemma 3.28 and the law of quadratic
reciprocity, that (v0

p

)
=
(2

p

)
= −1 = −

(vh
p

)
.

Thus, by (5.4), (v1/p) = −(vh−i/p). We now see, by (5.4) and induction, that(vi
p

)
= −

(vh−i
p

)
(5.7)

for i ∈ {0, 1, . . . , s}. By assumption, there are at most G1 ≤ C1 positive odd integers less
than h such that (ve/p) = 1. Hence, there exist at most C1 positive even integers e < h such
that (ve/p) = −1. Thus, among {viv−1i−1 | 1 ≤ i ≤ h} modulo p, there are at most 4C1 nonzero
quadratic residues modulo p, so there are at least (p+1)/2−4C1 quadratic nonresidues modulo
p in {viv−1i−1 | 1 ≤ i ≤ h}. Therefore, by the same argument as above, our claim will follow
if we can prove for s large enough that 2C1 integers i with 1 < i < s = (p + 3)/4 such that
uiu
−1
i is a quadratic nonresidue modulo p. Suppose that e is odd and (ve/p) = −1. Then,

we have that (u2e/p) = −(ue/p), and it follows that there exists an integer i with 1 < i < s
such that (ui/p) = −(ui−1/p). Therefore, uiu

−1
i−1 is a quadratic nonresidue modulo p. Hence,

our strategy is to find s large enough so that we are able to discover 2C1 positive odd integers
e(i) with 2e(i) < e(i + 1) for 1 ≤ i ≤ 2C1 − 1 and 2e(2C1) < s such that (ve(i)/p) = −1 for
all i ∈ {1, . . . , 2C1}. Since, by assumption, there exist at most 2C1 odd integers e such that
(ve/p) = 1, the worst case is that(v1

p

)
=
(v3
p

)
= · · · =

(v2C1−1
p

)
= 1.

In this case, we can choose

e(1) = 2C1 + 1, e(2) = 4C1 + 3, . . . , e(2C1) = 22C1C1 + 22C1 − 1 < 22C1(C1 + 1).

Thus, for s > 22C1+1(C1 + 1), we get a contradiction. Noting that p = 4s − 3, we also have
that

p > 22C1+3(C1 + 1)− 3 = 22b(C−1)/2c+3
(⌊C − 1

2

⌋
+ 1
)
.

The result follows. �

Theorem 5.11. Let p ≡ 1 (mod 4). Consider the p-regular recurrence w(a, 1) such that
w(a, 1) is p-equivalent to v(a, 1), (D/p) = −1, and h = hw(p) = hv(p) = (p+ 1)/2. Consider
also the LSFK u(a, 1). Let C be a positive integer. Then, δw(p) ≥ C if

p > 22b(C+2)/2c+3
(⌊C + 2

2

⌋
+ 1
)
− 3.

Proof. The proof of Theorem 5.11 is similar in structure to that of Theorem 5.10. Without
loss of generality, we can assume that w(a, 1) = v(a, 1). As in Lemma 3.27, let G2 denote
the number of positive odd integers e < h such that (ve/p) = −1. We will assume that
δv(p) ≤ C − 1 and get a contradiction for large enough p. Let s = (h+ 1)/2 = (p+ 3)/4.
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First, suppose that p ≡ 1 (mod 8). Then by Lemma 3.27, δv(p) = 2G2 − 3 ≤ C − 1, which
holds if G2 ≤ b(C + 2)/2c = C2. It follows, by (5.6) in the proof of Theorem 5.10 for the case
in which p ≡ 1 (mod 8), that (vi/p) = (vh−i/p) for all i ∈ {0, . . . , s}. We observe that i is odd
if and only if h − i is even. By assumption, there are at most G2 ≤ C2 positive odd integers
e < h such that (ve/p) = −1. Hence, there exist at most C2 positive even integers e < h such
that (ve/p) = −1. Therefore, among {viv−1i−1 | 1 ≤ i ≤ h} there are at most 4C2 quadratic
nonresidues modulo p. Thus, there are at least (p + 1)/2 − 4C2 nonzero quadratic residues
modulo p in {viv−1i−1 | 1 ≤ i ≤ h}. Therefore, by the same argument as that given in the proof
of Theorem 5.10 for the case in which p ≡ 1 (mod 8), our claim will follow if we can prove
that for s large enough, there exist 2C2 integers with 1 ≤ i < s = (p + 3)/4 such that uiu

−1
i−1

is a nonzero quadratic residue modulo p. Suppose that e is odd and (ve/p) = 1. Then, we
have that (u2e/p) = (ue/p), and because e is odd, it follows that there exists i with e < i ≤ 2e
such that (ui/p) = (ui−1/p). Hence, uiu

−1
i−1 is a nonzero quadratic residue modulo p. Thus,

our strategy is finding s large enough so that we can discover 2C2 positive odd integers e(i)
with 2e(i) < e(i + 1) for 1 ≤ i ≤ 2C2 − 1 and 2e(C2) < s such that (ve(i)/p) = 1 for all
i ∈ {1, . . . , 2C2}. Because, by assumption, there exist at most C2 odd integers e < h such that
(ve/p) = −1, the worst case is that(v1

p

)
=
(v3
p

)
= · · · =

(v2C2−1
p

)
= −1.

In this case, we can choose

e(1) = 2C2 + 1, e(2) = 4C1 + 3, . . . , e(2C2) = 22C2C2 + 22C2 − 1 < 22C2(C2 + 1).

Thus, for s > 22C2+1(C2 + 1), we get a contradiction. Since p = 4s− 3, we also have that

p > 22C2+3(C2 + 1)− 3 = 22b(C+2)/2c+3
(⌊C + 2

2

⌋
+ 1
)
− 3.

Finally, suppose that p ≡ 5 (mod 8). Then by Lemma 3.27, δv(p) = 2G2−1 ≤ C−1 occurs
if and only if G2 ≤ bC/2c = C3. It follows, by (5.7) in the proof of Theorem 5.10 for the
case in which p ≡ 5 (mod 8), that (vi/p) = −(vh−i/p) for 0 ≤ i ≤ s. By assumption, there
exist at most C3 positive integers e < h such that (ve/p) = −1. Hence, there exist at most
C3 positive even integers less than h such that (ve/p) = 1. Thus, among {viv−1i−1 | 1 ≤ i ≤ h}
modulo p, there are at most 4C3 nonzero quadratic residues modulo p. So, there are at least
(p+1)/2−4C3 quadratic nonresidues modulo p in {viv−1i−1 | 1 ≤ i ≤ h}. Therefore, by the same
argument as that given in the proof of Theorem 5.10 for the case in which p ≡ 1 (mod 8),
our claim will follow if we can show that there exist 2C3 integers i with 1 ≤ i ≤ s such that
uiu
−1
i−1 is a quadratic nonresidue modulo p. Suppose that e is even and (ve/p) = −1. Then,

we have that (u2e/p) = −(ue/p), and it follows that there exists an integer i with e < i ≤ 2e
such that (ui/p) = −(ui−1/p). Therefore, uiu

−1
i−1 is a quadratic nonresidue modulo p. Hence,

our strategy is to find s large enough so that we are able to discover 2C3 positive even integers
e(i) with 2e(i) = e(i+ 1) for 1 ≤ i ≤ 2C3 − 1 and 2e(2C3) < s such that (ve(i)/p) = −1 for all
i ∈ {1, . . . , 2C3}. The worst case is that(v2

p

)
=
(v4
p

)
= · · · =

(v2C3

p

)
= 1.

In this case, we can choose

e(1) = 2(C3 + 1), e(2) = 4(C3 + 1), . . . , e(2C3) = 22C3(C3 + 1).
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Therefore, for s > 22C3+1(C3 + 1), we get a contradiction. Then,

p = 4s− 3 > 22C3+3(C3 + 1)− 3 = 22bC/2c+3
(⌊C

2

⌋
+ 1
)
− 3.

The result follows. �

6. Proofs of the Main Results

Proof of Theorem 2.3. This follows from Theorems 5.1–5.3, and Theorems 4.1 and 4.3. �

Proof of Theorems 2.4 and 2.5. These follow from Theorems 5.4–5.11, and Theorems 4.1
and 4.2. �

7. Concluding Remarks

We now address the issue regarding why we only consider the cases in which b = ±1.
Suppose that |b| > 1. Then by a generalization of the Artin conjecture, there exist infinitely

many odd primes p such that p−1
2 | ordp(−b). It then follows, from Theorem 7 of [19], that for

any LSFK u(a, b) for which (D/p) = −1, we have that Eu(p) = p − 1. In this case, we have
that uhi+1 ≡ M iu1 ≡ M i (mod p) for 1 ≤ i ≤ p − 2. Because ordpM = p − 1 and u0 = 0,
we see that Nu(p) = p and δu(p) = 0 for these primes. Hence, it would not be true that
limp→∞ δu(p) =∞ as stated in Theorems 2.3 and 2.5.
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