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Abstract. We explore infinite sums involving Fibonacci and Lucas polynomial products,
and their Pell and Pell-Lucas implications.

1. Introduction

Extended gibonacci polynomials zn(x) are defined by the recurrence zn+2(x) = a(x)zn+1(x)+
b(x)zn(x), where x is an arbitrary integer variable; a(x), b(x), z0(x), and z1(x) are arbitrary
integer polynomials; and n ≥ 0.

Suppose a(x) = x and b(x) = 1. When z0(x) = 0 and z1(x) = 1, zn(x) = fn(x), the
nth Fibonacci polynomial ; and when z0(x) = 2 and z1(x) = x, zn(x) = ln(x), the nth Lucas
polynomial. They can also be defined by the Binet-like formulas

fn(x) =
αn(x)− βn(x)

α(x)− β(x)
and ln(x) = αn(x) + βn(x),

where α(x) =
x+

√
x2 + 4

2
and β(x) =

x−
√
x2 + 4

2
. Clearly, fn(1) = Fn, the nth Fibonacci

number; and ln(1) = Ln, the nth Lucas number [1, 2].
Pell polynomials pn(x) and Pell-Lucas polynomials qn(x) are defined by pn(x) = fn(2x) and

qn(x) = ln(2x), respectively. They also can be defined by the Binet-like formulas

pn(x) =
γn(x)− δn(x)

γ(x)− δ(x)
and qn(x) = γn(x) + δn(x),

where γ(x) = x +
√
x2 + 1 and δ(x) = x −

√
x2 + 1. In particular, the Pell numbers Pn and

Pell-Lucas numbers Qn are given by Pn = pn(1) = fn(2) and 2Qn = qn(1) = ln(2), respectively
[2].

In the interest of brevity, clarity, and convenience, we omit the argument in the functional
notation, when there is no ambiguity; so zn will mean zn(x). In addition, we let α = α(1),

β = β(1), γ = γ(1), δ = δ(1), and ∆ = α(x)−β(x) =
√
x2 + 4, and omit a lot of basic algebra.

2. Sums of Reciprocals of Fibonacci Polynomial Products

Our discourse hinges on the Cassini-like identity fn+kfn−k − f2
n = (−1)n+k+1f2

k , Gelin-
Cesàro-like identity fn+2fn+1fn−1fn−2 = f4

n− (−1)n(x2−1)f2
n−x2, addition formula fm−n =

(−1)n(fmfn−1 − fm−1fn), and the identities f2n = fnln, ln = fn+1 + fn−1, fn+2 + fn−2 =
(x2 + 2)fn, and xfn+3 = x2fn+2 + (x2 + 1)fn − fn−2 [2].

With this background, we embark on our explorations with the first infinite sum.

Theorem 2.1.
∞∑
n=0

x

f2
2n + 1

= α(x). (2.1)
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Proof. First, we will establish the formula

m∑
n=0

x

f2
2k + 1

=
f2m+2

f2m+1
, (2.2)

using a recursive technique [2]. To this end, let Am denote the left side of equation (2.2) and
Bm its right side. Using the addition formula and the Cassini-like identity, we have

Bm −Bm−1 =
f2m+2

f2m+1
− f2m

f2m−1

=
f2m+2f2m−1 − f2m+1f2m

f2m+1f2m−1

=
f(2m+2)−2m

f2
2m + 1

=
x

f2
2m + 1

= Am −Am−1.

Thus, Am−Am−1 = Bm−Bm−1; so Am−Bm = Am−1−Bm−1 = · · · = A0−B0 = x−x = 0.
This implies Am = Bm.

Because lim
m→∞

fm+1

fm
= α(x), it follows from equation (2.2) that

∞∑
n=0

x

f2
2n + 1

= α(x),

as desired. □

Equation (2.1) yields

∞∑
n=0

1

F 2
2n + 1

=
1 +

√
5

2
,

as in [4, 6].
Next, we establish a corresponding result for odd-numbered Fibonacci polynomials.

Theorem 2.2.
∞∑
n=0

x3 + 2x

f2
2n+1 + x2

= α(x)− β(x). (2.3)

Proof. First, we will confirm that

m∑
n=0

x3 + 2x

f2
2n+1 + x2

=
f4m+4

f2m+3f2m+1
, (2.4)

using recursion. Again, we let Am denote the left side of equation (2.4) and Bm its right side.
Using the addition formula fm−n = (−1)n(fmfn−1−fm−1fn), Cassini-like identity Cassini-like
identity fn+kfn−k − f2

n = (−1)n+k+1f2
k , and the identities f2m = fmlm, lm = fm+1 + fm−1,
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and fm+3 + fm−1 = (x2 + 2)fm+1, we get

Bm −Bm−1 =
f4m+4

f2m+3f2m+1
− f4m

f2m+1f2m−1

=
f2m+2(f2m+3 + f2m+1)

f2m+3f2m+1
− f2m(f2m+1 + f2m−1)

f2m+1f2m−1

=
f2m+3(f2m+2f2m−1 − f2m+1f2m)− f2m−1(f2m+3f2m − f2m+2f2m+1)

f2m+3f2m+1f2m−1

=
f2m+3f2 + f2m−1f2
f2m+3f2m+1f2m−1

=
x(f2m+3 + f2m−1)

f2m+3f2m+1f2m−1

=
(x3 + 2x)f2m+1

f2m+3f2m+1f2m−1

=
x3 + 2x

f2m+3f2m−1

=
x3 + 2x

f2
2m+1 + x2

= Am −Am−1.

Consequently, Am − Bm = Am−1 − Bm−1 = · · · = A0 − B0 =
x3 + 2x

f2
1 + x2

− f4
f3f1

= 0. So,

Am = Bm.
It then follows from equation (2.4) that

∞∑
n=0

x3 + 2x

f2
2n+1 + x2

= lim
m→∞

f2m+2l2m+2

f2m+3f2m+1

= lim
m→∞

f2m+2(f2m+3 + f2m+1)

f2m+3f2m+1

= α(x) +
1

α(x)

= α(x)− β(x),

as expected. □

Theorem 2.2 implies that
∞∑
n=0

1

F 2
2n+1 + 1

=

√
5

3
,

as in [6].
Thus,

∞∑
n=0

1

F 2
n + 1

=

∞∑
n=0

1

F 2
2n + 1

+

∞∑
n=0

1

F 2
2n+1 + 1

=
3 + 5

√
5

6
, (2.5)

as in [4, 6].
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The next result is interesting in its own right. It hinges on a finite sum of reciprocals of
Fibonacci polynomial products studied in [3].

Theorem 2.3. Let α = α(x) and β = β(x). Then,
∞∑
n=3

(x2 + 1)(x3 + 2x)

f4
n − (−1)n(x2 − 1)f2

n − x2
=

2(x4 + 4x2 + 2)

x3 + x
+ 2∆2β − 1

x3 + 2x
. (2.6)

Proof. With Wn = fn, k = 1, and l = 0, it follows from formula (23) in [3] that

m−1∑
n=1

x3 + x

fnfn+1fn+2fn+3
=

x4 + 4x2 + 2

x3 + x
−
(
fm−1

fm
+

(x2 + 2)fm
fm+1

+
fm+1

fm+2

)
.

Consequently,
∞∑
n=3

x3 + x

fn−2fn−1fnfn+1
=

x4 + 4x2 + 2

x3 + x
−
(
1

α
+

x2 + 2

α
+

1

α

)
=

x4 + 4x2 + 2

x3 + x
+∆2β; (2.7)

∞∑
n=3

x3 + x

fn−1fnfn+1fn+2
=

x4 + 4x2 + 2

x3 + x
+∆2β − 1

x3 + 2x
. (2.8)

Because fn+2 + fn−2 = (x2 + 2)fn and

fn−2fn−1fn+1fn+2 =
[
f2
n − (−1)nx2

] [
f2
n + (−1)n

]
= f4

n − (−1)n(x2 − 1)f2
n − x2,

we then have

x2 + 2

f4
n − (−1)n(x2 − 1)f2

n − x2
=

x2 + 2

fn−2fn−1fn+1fn+2

=
(x2 + 2)fn

fn−2fn−1fnfn+1fn+2

=
fn+2 + fn−2

fn−2fn−1fnfn+1fn+2

=
1

fn−2fn−1fnfn+1
+

1

fn−1fnfn+1fn+2
.

Using equations (2.7) and (2.8), we then get
∞∑
n=3

(x2 + 1)(x3 + 2x)

f4
n − (−1)n(x2 − 1)f2

n − x2
=

2(x4 + 4x2 + 2)

x3 + x
+ 2∆2β − 1

x3 + 2x
,

as desired. □

It follows from formula (2.6) that
∞∑
n=3

1

F 4
n − 1

=
1

6

(
2 · 7
2

+ 10β − 1

3

)

=
35

18
− 5

√
5

6
, (2.9)

as in [4, 6].

240 VOLUME 59, NUMBER 3



SUMS OF POLYNOMIAL PRODUCTS

2.1. An Interesting Byproduct. Using equations (2.5) and (2.9), we can evaluate the sum
∞∑
n=3

1

F 2
n − 1

:

1

F 2
n − 1

=
2

F 4
n − 1

+
1

F 2
n + 1

;

∞∑
n=3

1

F 2
n − 1

=

∞∑
n=3

2

F 4
n − 1

+

∞∑
n=3

1

F 2
n + 1

=
35− 15

√
5

9
+

(
−3 + 5

√
5

6
− 1

)

=
43

18
− 5

√
5

6
,

as in [4, 6].
Next, we extract the Pell consequences of the above polynomial sums.

3. Pell Implications

Because pn(x) = fn(2x), it follows from equations (2.1), (2.3), (2.7), (2.8), and (2.6) that

∞∑
n=1

2x

p22n + 1
= γ(x);

∞∑
n=0

4(2x3 + x)

p22n+1 + 4x2
= γ(x)− δ(x);

∞∑
n=3

4x3 + x

pn−2pn−1pnpn+1
=

8x4 + 8x2 + 1

2(4x3 + x)
+ 2(x2 + 1)δ(x);

∞∑
n=3

4x3 + x

pn−1pnpn+1pn+2
=

8x4 + 8x2 + 1

2(4x3 + x)
+ 2(x2 + 1)δ(x)− 1

8(2x3 + x)
;

∞∑
n=3

2(2x2 + 1)(4x3 + x)

p4n − (−1)n(4x2 − 1)p2n − 4x2
=

8x4 + 8x2 + 1

4x3 + x
+ 4(x2 + 1)δ(x)− 1

8(2x3 + x)
,

respectively.
Consequently, we have

∞∑
n=1

1

P 2
2n + 1

=
1 +

√
2

2
;

∞∑
n=0

1

P 2
2n+1 + 4

=

√
2

6
;

∞∑
n=3

1

Pn+1PnPn−1Pn−2
=

57− 40
√
2

50
;

∞∑
n=3

1

Pn+2Pn+1PnPn−1
=

679− 480
√
2

600
;
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∞∑
n=3

1

P 4
n − 3(−1)nP 2

n − 4
=

1363− 960
√
2

3600
,

respectively.
Next, we explore the Lucas versions of the sums in equations (2.1), (2.4), and (2.6).

4. Lucas Companions

The identity l2n − ∆2f2
n = 4(−1)n [2, p. 37] plays a pivotal role in our explorations. For

example, it follows from equation (2.2) that

m∑
n=0

x

∆2f2
2n +∆2

=
f2m+2

∆2f2m+1
;

m∑
n=0

x

l22n − 4 + ∆2
=

f2m+2

∆2f2m+1
;

m∑
n=0

x

l22n + x2
=

f2m+2

∆2f2m+1
. (4.1)

Similarly, it follows from equation (2.4) that

m∑
n=0

x3 + 2x

l22n+1 + (x2 + 2)2
=

f4m+4

∆2f2m+3f2m+1
. (4.2)

Thus,

∞∑
n=0

x

l22n + x2
=

α(x)

x2 + 4
; (4.3)

∞∑
n=0

x3 + 2x

l22n+1 + (x2 + 2)2
=

1√
x2 + 4

. (4.4)

Similarly, equation (2.6) yields

∞∑
n=3

(x2 + 1)(x3 + 2x)∆4

d(x)
=

2(x4 + 4x2 + 2)

x3 + x
+ 2∆2β(x)− 1

x3 + 2x
, (4.5)

where d(x) = l4n − (−1)n[(x2 − 1)∆2 + 8]l2n − x2(x2 + 2)2.
In particular, we get

∞∑
n=0

1

L2
2n + 1

=
α

5
;

∞∑
n=0

1

L2
2n+1 + 9

=

√
5

15
;

∞∑
n=3

1

L4
n − 8(−1)nL2

n − 9
=

7

90
−

√
5

30
.

Next, we develop the Lucas counterpart of Theorem 2.3.
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Theorem 4.1.

∞∑
n=3

(x2 + 2)(x4 + x2)

l4n + (−1)n(x2 − 1)∆2l2n −∆4x2
=

(x2 + 1)(x6 + 6x4 + 10x2 + 3)

(x2 + 2)(x2 + 3)(x4 + 4x2 + 2)
− x

∆
. (4.6)

Proof. With Wn = ln, k = 1, and l = 0, it follows from formula (23) in [3] that

m−1∑
n=1

x2(x2 + 1)∆2

lnln+1ln+2ln+3
=

(
fm−1

lm
+

l2fm
lm+1

+
fm+1

lm+2

)
− ∆2f4

l2l3
;

m−1∑
n=1

x4 + x2

lnln+1ln+2ln+3
=

1

∆2

[
fm−1

lm
+

(x2 + 2)fm
lm+1

+
fm+1

lm+2

]
− x3 + 2x

(x2 + 2)(x3 + 3x)

=
1

∆2

[
fm−1

lm
+

(x2 + 2)fm
lm+1

+
fm+1

lm+2

]
− 1

x2 + 3
.

Because lim
m→∞

fm
lm+1

=
1

∆α
= − β

∆
, this yields

∞∑
n=3

x4 + x2

ln−2ln−1lnln+1
=

1

∆2

(
1

∆α
+

x2 + 2

∆α
+

1

∆α

)
− 1

x2 + 3

= − β

∆
− 1

x2 + 3

= − ∆x−∆2

2∆2
− 1

x2 + 3

=
(x2 + 1)∆2 − (x3 + 3x)∆

2(x2 + 3)∆2
. (4.7)

Consequently,

∞∑
n=3

x4 + x2

ln−1lnln+1ln+2
=

(x2 + 1)∆2 − (x3 + 3x)∆

2(x2 + 3)∆2
− x4 + x2

l1l2l3l4

=
(x2 + 1)∆2 − (x3 + 3x)∆

2(x2 + 3)∆2
− x2 + 1

(x2 + 2)(x2 + 3)(∆2x2 + 2)
. (4.8)

Using the identities ln+2 + ln−2 = (x2 +2)ln [2, p. 57] and ln+kln−k − l2n = (−1)n+k∆2f2
k [2,

p. 58], we have

1

ln−2ln−1lnln+1
+

1

ln−1lnln+1ln+2
=

ln+2 + ln−2

ln−2ln−1lnln+1ln+2

=
x2 + 2

ln−2ln−1ln+1ln+2

=
x2 + 2

l4n + (−1)n(x2 − 1)∆2l2n −∆4x2
.
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Thus, by equations (4.7) and (4.8), we get

∞∑
n=3

(x2 + 2)(x4 + x2)

l4n + (−1)n(x2 − 1)∆2l2n −∆4x2
=

(x2 + 1)∆2 − (x3 + 3x)∆

(x2 + 3)∆2

− x2 + 1

(x2 + 2)(x2 + 3)(∆2x2 + 2)

=
x2 + 1

x2 + 3
− x

∆
− x2 + 1

(x2 + 2)(x2 + 3)(∆2x2 + 2)

=
(x2 + 1)(x6 + 6x4 + 10x2 + 3)

(x2 + 2)(x2 + 3)(x4 + 4x2 + 2)
− x

∆
,

as expected. □

It follows from equation (4.6) that

∞∑
n=3

1

L4
n − 25

=
1

6

(
2 · 20
3 · 4 · 7

− 1√
5

)

=
5

63
−

√
5

30
,

as in [5, 7].
Next, we extract the Pell-Lucas implications of identities (4.1) through (4.6).

5. Pell-Lucas Implications

Because qn(x) = ln(2x) and 2Qn = ln(2), equations (4.1) through (4.6) yield the following
results:

m∑
n=0

2x

q22n + 4x2
=

p2m+2

4(x2 + 1)p2m+1
;

∞∑
n=0

2x

q22n + 4x2
=

γ(x)

4(x2 + 1)
;

m∑
n=0

4(2x3 + x)

q22n+1 + 4(2x2 + 1)2
=

p4m+4

4(x2 + 1)p2m+3p2m+1
;

∞∑
n=0

4(2x3 + x)

q22n+1 + 4(2x2 + 1)2
=

1

2
√
x2 + 1

;

∞∑
n=3

4(2x3 + x)

e(x)
=

1

16(4x2 + 1)f2(x)

[
2(8x4 + 8x2 + 1)

4x3 + x
− 8f(x)

γ(x)
− 1

4(2x3 + x)

]
;

∞∑
n=3

32(2x2 + 1)(4x4 + x2)

h(x)
=

(x2 + 1)(4x2 + 1)g(2x)− (4x3 + 3x)[g(2x) + 1]
√
x2 + 1

(x2 + 1)(2x2 + 1)(4x2 + 3)(8x4 + 8x2 + 1)
,

where e(x) = q4n − 4(−1)n(4x4 + 3x2 + 1)q2n − 16(2x3 + x)2, f(x) = x2 + 1, h(x) = q4n +
4(−1)n(x2 + 1)(4x2 − 1)q2n − 64(x3 + x)2, and g(x) = x6 + 6x4 + 10x2 + 3.
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They imply the following results:
m∑

n=0

1

Q2
2n + 1

=
P2m+2

4P2m+1
;

∞∑
n=0

1

Q2
2n + 1

=
1 +

√
2

4
;

m∑
n=0

3

Q2
2n+1 + 9

=
P4m+4

8P2m+3P2m+1
;

∞∑
n=0

3

Q2
2n+1 + 9

=
1

2
√
2
;

∞∑
n=3

12

Q4
n − 8(−1)nQ2

n − 9
=

1367

1200
− 4

√
2

5
;

∞∑
n=3

1

Q4
n + 6(−1)nQ2

n − 16
=

29

306
−

√
2

15
,

respectively.
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