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Abstract. The properties of a pair of integer valued sequences, similar to those of Lucas,
are used to produce a sufficiency test for the primality of numbers N such that N2 +N + 1
is divisible by a large power of a prime p. The test will run in O((logN)3) time, provided
that a small prime q (≡ 1 (mod p)) is given such that N is a cubic nonresidue of q. It is also
shown how this test can be converted to one that is necessary and sufficient. A short table of
prime values of such N is also provided.

1. Introduction

In the 19th century, Ed. Lucas devised a number of primality tests that were derived from the
properties of certain second order linear recurrence sequences, now called the Lucas sequences.
These tests were for numbers N such that N ± 1 could be mostly factored; in particular, he
worked with values of N such that some large prime power pn divides N ± 1. Although he
restricted the value of p to be 2, 3, or 5, it is possible to extend his tests to any prime p. This
is discussed is some detail in Roettger, et al. [13], where it is also shown that a particular
extension of the Lucas sequences can be used to test the primality of numbers N such that pn

divides N2 + 1. For a brief history of primality testing and how the tests of Lucas fit into the
broader history of primality testing, see [10].

As mentioned in [13], Lucas often speculated on the existence of higher order variants of his
sequences, based on the roots of third or fourth degree polynomials, which might possess many
of the features of his sequences to “arrive at important new properties of prime numbers.” It
is not clear what such new properties might have been, but likely they involved the places
in the sequence where a prime might divide a particular term. It appears that Lucas never
succeeded in finding such sequences, but in Müller, et al. [8] and the more detailed Roettger
[11], it is argued that he could have discovered the sequences (Cn) and (Wn), which are the
cubic analogues of his (quadratic) sequences. For the sequence (Cn), we know that if the
corresponding polynomial f(x) is irreducible modulo some prime r, then r must be a divisor
of Cn, where n = r2 + r + 1; this is a different condition from that of the Lucas sequence
(un), where in the analogous situation, we would have r | ur+1. In this paper, which should
be regarded as a lengthy addendum to [13], we will use the properties of (Cn) and (Wn) to
derive primality tests for numbers N such that some pn divides N2 + N + 1. Because such
values of N tend to be different from those for which pn divides N2 − 1, these primality tests
would be for numbers distinct from those to which Lucas’ methods could be applied.

We begin with a brief characterization of these values of N . We first denote by λn(p) and
λ̄n(p) the two solutions of the congruence

x2 + x+ 1 ≡ 0 (mod pn) (1 < x < pn). (1.1)
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We will assume here that λn(p) < λ̄n(p). Notice that for such solutions to exist with n ≥ 2, it
is necessary and sufficient that p ≡ 1 (mod 3). We must also have

λn(p) + λ̄n(p) = pn − 1. (1.2)

Furthermore, λn(p)
2 ≡ λ̄n(p) (mod pn). Because by (1.2),

4((λn(p))
2 − λ̄n(p)) = [2λn(p) + 1]2 + 3− 4pn > 3− 4pn,

we see that (λn(p)
2 − λ̄n(p))/p

n > −1. Hence,

((λn(p))
2 − λ̄n(p))/p

n ≥ 0. (1.3)

If we know a value of γn(p) ∈ {λn(p), λ̄n(p)}, we can find a solution of (1.1) when the
modulus is pn+1 by the usual Hensel lifting process. We put κn(p) = (γn(p)

2+γn(p)+1)/pn and
solve the linear congruence νn(p)(2γn(p)+1) ≡ −κn(p) (mod p) for νn(p) with 0 ≤ νn(p) < p.
If we put γn+1(p) = γn(p) + νn(p)p

n, then γn+1(p) is a solution of (1.1) for the modulus pn+1.
Thus, if we select one of the two possible values for γ1(p), we can compute a fixed sequence
(γn(p))n≥1. Clearly, if p

n divides N2+N +1, then N must have the form Anp
n+γn(p), where

An is some integer and γn(p) ∈ {λn(p), λ̄n(p)}. In what follows, we will consider the primality
of

Nn = Apn + γn(p), (1.4)

where n ≥ 2, A is some fixed positive integer, and p ∤ A. These forms of N are analogous to
the forms Apn±1 studied by Lucas. (See [13].) Notice that if we define γ̄n(p) = pn−1−γn(p),
then γ̄n(p) is the other solution to (1.1).

2. The Cn and Wn Functions

Let α, β, γ be the three roots of the cubic polynomial f(x) = x3 − Px2 + Qx − R, where
P , Q, R are any integers. We restrict the roots of f(x) to be distinct; hence, if

δ = (α− β)(β − γ)(γ − α), (2.1)

we have ∆ = δ2 = P 2Q2 − 4Q3 − 4RP 3 + 18PQR − 27R2, and we see that δ ̸= 0. In [8], the
functions that we will denote here by Cn or Cn(P,Q,R) and Wn or Wn(P,Q,R) are defined
by

δCn = (αn − βn)(βn − γn)(γn − αn)

= (αnβ2n + βnγ2n + γnα2n)− (α2nβn + β2nγn + γ2nαn),

Wn = (αnβ2n + βnγ2n + γnα2n) + (α2nβn + β2nγn + γ2nαn).

We have C0 = 0, C1 = 1, C2 = PQ−R; W0 = 6, W1 = PQ−3R, W2 = P 2Q2−2Q3−2P 3R+
4PQR − 3R2. Also, C−n = −R−2nCn and W−n = R−2nWn. Cn and Wn are symmetric
functions of α, β, γ and are therefore integers for all nonnegative values of n. It is these
functions that we will use as our extensions of the Lucas functions. Observe that (Cn) is a
divisibility sequence; also, both the sequences (Cn) and (Wn) satisfy the 6th order recurrence

Xn+6 = A1Xn+5 −A2Xn+4 +A3Xn+3 −A4Xn+2 +A5Xn+1 −A6Xn,

whereA1 = PQ−3R, A2 = RP 3+Q3−5PQR+6R2, A3 = R(P 2Q2−2Q3−RP 3+4PQR−7R2),
A4 = R2A2, A5 = R4A1, A6 = R6.

It is mentioned in [8] that Lucas was likely aware of the sequences (Cn) and (Wn) and it is
shown there that the theory of them exactly parallels that of the Lucas sequences, even down
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to the Euler criterion. There are addition formulas, multiplication formulas, and a number of
identity relations. For example,

C2n = Cn(Wn + 2Rn), 2W2n = ∆C2
n +W 2

n − 4RnWn

are the duplication formulas. What is particularly remarkable in this system is that, just as
in the case of the Lucas sequences, only the two sequences (Cn) and (Wn) are required for
its development. Furthermore, it is argued in [8] and [11] that Lucas had the mathematical
knowledge and ability needed to discover these results.

In Section 3 of Roettger and Williams [12], it is shown how to compute remote terms of (Cn)
and (Wn) modulo any N such that gcd(N,R) = 1. If k = logm, this technique requires 12k
modular multiplications to compute Cm and Wm modulo N . More specifically, if we define

Xn = Wn/(2R
n), D̃n = ∆C2

n/(4R
2n), and Ym,n = Cmn/(CnR

mn−n)

for any positive integers n and m, then there exist polynomials Fm, Gm ∈ Z[x, y] such that

Xmn = Fm(Xn, D̃n) and Ym,n = Gm(Xn, D̃n).

We have F0(x, y) = 3, F1(x, y) = x, F2(x, y) = x2 + y − 2x,
F3(x, y) = x3 + 3xy + 3y − 3x2 + 3 and G0(x, y) = 0, G1(x, y) = 1, G2(x, y) = 2x + 2,
G3(x, y) = 3x2 + y. Also, if we define the sextet Sm = {Fm, Fm+1, Fm+2, Gm, Gm+1, Gm+2},
then given any Sm, we can compute S2m+1 or S2m in 12 multiplications by using the formulas
in [12]. We remark here that there are some misprints in formulas (14) and (15) of [12]. For
our case, they should read

F2m+3 = Fm+1(Fm+2 − x) + yGm+1(Gm+2 + 1) + Fm,

G2m+3 = Fm+1(Gm+2 − 1) +Gm+1(Fm+2 + x)−Gm,

respectively. If x ≡ Xn and y ≡ D̃n (mod N), this allows us to compute Xmn ≡ Fm(x, y),
Ym,n ≡ Gm(x, y) (mod N) in 12k modular multiplications modulo N , where k = ⌈logN⌉.
Notice that D̃nm ≡ D̃nG

2
m (mod N).

Suppose for any positive integer n, we define

Dn = gcd(Cn,Wn − 6Rn).

In [8], it is shown that the sequence (Dn) is a divisibility sequence. It is also proved that if m
is any positive integer such that gcd(m,R) = 1, then there exists a rank of apparition of m in
(Dn); this is the least positive integer ω = ω(m) such that m | Dω. Furthermore, if m | Dn,
then ω | n.

Now, let r be any prime. From results in Chapter 5 of [11], we know that if r ∤ 6∆R, then
ω(r) must divide either r − 1, r2 − 1, or r2 + r + 1. If the Legendre symbol (∆/r) = 1, then
ω(r) | r2 + r + 1 if and only if f(x) is irreducible modulo r and ω(r) | r − 1, otherwise. As in
[8], we will call a prime r such that f(x) is irreducible modulo r an I-prime w.r.t. f(x). This
brings us to the question of, given any prime r, how to construct a polynomial f(x) that is
irreducible modulo r? It is pointed out by Lehmer in [6] that if q (̸= r) is a prime congruent to

1 modulo 3 and r(q−1)/3 ̸≡ 1 (mod q), then the cubic polynomial f1(x) = x3−P1x
2+Q1x−R1,

where P1 = 0, Q1 = −3q, and R1 = qt, is irreducible modulo r, whenever r ∤ tu. Here, the
values of t and u are determined from the quadratic partition 4q = t2 + 27u2, where t ≡ 1
(mod 3). We can also put δ1 = 27qu. In what follows, we will assume that the primes r and
q satisfy the above conditions.

From the theory of finite fields (see Lidl and Niederreiter [7]), we know that if f(x) is an

irreducible cubic modulo r, then in Fr[x], we have f(x) | g(x), where g(x) = xr
3 − 1. Since

the splitting field of g(x) over Fr is Fr3 , we see (as is well known) that the splitting field of
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f(x) must be Fr3 . Because |Fr3 | = r3, we see that if α1 is any root of f1(x) in Fr3 and α is
any root of f(x) over Fr, there must exist a, b, c ∈ Fr such that

α = a+ bα1 + cα2
1. (2.2)

Note that we cannot have b = c = 0 here, because α ̸∈ Fr. Thus, if we put

P = 3a− 2cQ1, Q = 3a2 − 4acQ1 + b2Q1 − 3bcR1 + c2Q2
1, (2.3)

R = a3 + b3R1 + c3R2
1 − 3abcR1 + (ab2 − 2a2c)Q1 + ac2Q2

1 + bc2Q1R1,

then f(x) = x3 − Px2 + Qx − R must be irreducible modulo r, whenever (b, c) ̸= (0, 0) and
r ∤ R; furthermore, if f(x) = x3−Px2+Qx−R is irreducible modulo r, then there must exist
a, b, c ∈ Fr with (b, c) ̸= (0, 0) such that P , Q, and R can be determined by (2.3). For P , Q,
R given as above, it is easy to show, from (2.1), that

δ = δ1(b
3 + bc2Q1 − c3R1) ∈ Fr; (2.4)

and r ∤ ∆.

3. A Sufficiency Test for the Primality of Nn

In this section, we will develop a sufficiency test for the primality of numbers of the form
(1.4). We begin with a useful lemma.

Lemma 3.1. Let N be any positive integer such that gcd(N, 2R) = 1 and n be any positive
integer such that gcd(N,n) = 1. If m is any positive integer such that N | Cmn/Cm, then
gcd(N,Dm) = 1.

Proof. This is easy to show from the proof of Lemma 7.7 of [8]. □

We can now prove a theorem analogous to Theorem 2.4 of [13].

Theorem 3.2. Let N be any positive integer such that gcd(N, 2R) = 1. Suppose that n is
any positive integer such that gcd(N,n) = 1 and that for some positive integer m, we have
N | Dmn and N | Cmn/Cm. If t is any prime divisor of N , then ω(t) | mn and ω(t) ∤ m.

Proof. Clearly, we must have ω(t) | mn, as t | Dmn. Also, by Lemma 3.1, we see that t cannot
divide Dm; hence, ω(t) ∤ m. □

We now turn our attention to the case of N , given as Nn of (1.4). We will assume that

(1) neither γn(p) nor γ̄n(p) is a divisor of Nn;
(2) A ̸= 4pn − 4γn(p) + κn(p)− 4, where κn(p) = (γn(p)

2 + γn(p) + 1)/pn.

Because γn(p) and γ̄n(p) both exceed 1, (1) must hold if Nn is to be a prime. Also, if
A = 4pn−4γn(p)+κn(p)−4, then it is easy to see that Nn = (pn+ γ̄n(p))

2, which means that
Nn cannot be a prime. Before proving the main result of this section, we need the following
simple lemma.

Lemma 3.3. If k is an integer such that 1 ≤ k < n, then

Nn ̸= (pk + γ̄n(p))
2.

Proof. If Nn = (pk + γ̄n(p))
2, then

pn | (pk − 1− γn(p))
2 − γn(p),

which means that

pn | p2k − 2pk(γn(p) + 1).
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It follows that because p is odd and n > k ≥ 1, we must have p | γn(p) + 1, because p |
γn(p)

2 + γn(p) + 1, is impossible. □

We are now able to prove a sufficiency condition for the primality of Nn.

Theorem 3.4. Let Nn be given by (1.4) such that conditions (1) and (2) hold. Put m =
ph−1(N2

n +Nn + 1)/pn, where 1 ≤ h ≤ n. If gcd(Nn,∆R) = 1, ∆ is a perfect integral square,
Nn | Dpm, and Nn | Cpm/Cm, then Nn is a prime, when A < 2p2h−n.

Proof. Suppose that Nn is composite; then if t is any prime divisor of Nn and Nn = tT , we
must have T > 1. By Theorem 3.2, we must have ω(t) | pm and ω(t) ∤ m. Hence, ph | ω(t).
Because (∆/t) = 1, we know that ω(t) is a divisor of t − 1 or of t2 + t + 1. Thus, we must
have t ≡ 1 (mod ph) or t ≡ γn(p) or γ̄n(p) (mod ph). In the first case, we get t = u1p

h + 1,
where u1 must be even and greater than 0. Also, because Nn = tT , we must have T ≡ γn(p)
(mod ph) and therefore, T = u2p

h + γn(p), where u2 ≥ 1. It follows that because

Nn = Apn + γn(p) = (u1p
h + 1)(u2p

h + γn(p)),

we get pnA > u1u2p
2h, which means that A > 2p2h−n, a contradiction.

We must now address the case of t ≡ γn(p) or γ̄n(p) (mod ph). In the first case, we have
t = u1p

h + γn(p), where u1 ≥ 1. Also, because Tγn(p) ≡ γn(p) (mod ph), we get T ≡ 1
(mod ph) and because T must be odd, we find, as above, that A > 2p2h−n, a contradiction. If
t ≡ γ̄n(p) (mod ph), then T γ̄n(p) ≡ γn(p) (mod ph), which means that T ≡ γ̄n(p) (mod ph).
Hence,

t = u1p
h + γ̄n(p), T = u2p

h + γ̄n(p),

where u1, u2 ≥ 1. If u1 = u2 = 1, then Nn = (ph + γ̄n(p))
2, a case that is excluded by Lemma

3.3 unless h = n, but if h = n, we get a contradiction to condition (2). It follows that we must
have

Nn = Apn + γn(p) = (u1p
h + γ̄n(p))(u2p

h + γ̄n(p)),

where at least one of u1, u2 must exceed or equal 2. From the above equality, we see that

A = u1u2p
2h−n + γ̄n(p)p

h−n(u1 + u2) + (γ̄n(p)
2 − γn(p))/p

n > u1u2p
2h−n,

by (1.3). Because u1u2 ≥ 2, we once again get A > 2p2h−n, a contradiction. □

Notice that if Nn is a prime, q ( ̸= Nn) is a prime congruent to 1 modulo 3 such that

N
(q−1)/3
n ̸≡ 1 (mod q) and P , Q, R are selected using (2.3), then we must have that ∆ a

perfect integral square by (2.4) and, furthermore, Nn | Dm, where m = N2
n +Nn + 1.

Now, suppose that r is any I-prime w.r.t. f(x). We must have r | Dr2+r+1. If p is some
prime such that pn | r2 + r + 1, put

w = (r2 + r + 1)/pn

and suppose that r ∤ Dw; there must exist some minimal h such that 1 ≤ h ≤ n and r | Dwph .

If we put m = ph−1w, we have r | Dpm and r ∤ Dm. We next need the following result.

Theorem 3.5. If r is an I-prime w.r.t. f(x), then r | Cn if and only if r | Dn.

Proof. This is Theorem 5.7 of [11]. □

We see, then, that if r ∤ Dm, then r ∤ Cm and because r | Dpm, we must have r | Cpm/Cm.
For r given as above, we will need an algorithm to determine h. We first observe that by

the definition of X and Y , we have

Xpiw ≡ Wpiw/(2R
piw), Yp,pi−1w ≡ Cpiw/(Cpi−1wR

piw−pi−1w) (mod r).
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It follows that h is the least value of i such that 0 ≤ i ≤ n, Xpiw ≡ 3, and Yp,pi−1w ≡ 0
(mod r).

Algorithm 3.6. For the prime r defined as above, this algorithm determines h, the least value
of i, if it exists, such that 1 ≤ i ≤ n, Xpiw ≡ 3, and Yp,pi−1w ≡ 0 (mod r).

(i) Put X1 ≡ W1/(2R), d1 = δ/(2R), D̃1 ≡ d21 (mod r), and w = (r2 + r + 1)/pn.
(ii) Use the technique mentioned in the previous section to compute Xw, Yw,1, dw ≡ d1Yw,1,

and D̃w ≡ d2w (mod r).
(iii) If Xw ≡ 3 and Yw,1 ≡ 0 (mod r), then h cannot exist and the algorithm terminates.
(iv) Initialize i to 1.
(v) Compute

Xpiw ≡ Fp(Xpi−1w, D̃pi−1w), Yp,pi−1w ≡ Gp(Xpi−1w, D̃pi−1w) (mod r).

(vi) If Xpiw ≡ 3 and Yp,pi−1w ≡ 0 (mod r), put h = i and terminate the algorithm.

(vii) If i < n, put dpiw ≡ dpi−1wYp,pi−1w and D̃piw ≡ (dpiw)
2 (mod r). Replace the value of

i by i+ 1 and go back to step (v).

From this material, we are now able to formulate the following test for the primality of
certain odd Nn given by (1.4).

Test 3.7. This algorithm tests the primality of odd Nn of form (1.4), where n ≥ 2 and A is
some fixed positive integer such that p ∤ A and A < 2pn.

(i) We first check that conditions (1) and (2) hold. If this is not the case, then Nn is not
a prime and we are finished.

(ii) Select some prime q such that q is congruent to 1 modulo 3 and N
(q−1)/3
n ̸≡ 1 (mod q).

(iii) Select some triple of integers (a, b, c) such that (b, c) ̸≡ (0, 0) (mod Nn) and use (2.3)
to compute P , Q, R.

(iv) Check that gcd(Nn,∆R) = 1. If not, then Nn is not a prime and we terminate the
test.

(v) Put w = (N2
n + Nn + 1)/pn. If Xw ≡ 3 and Yw,1 ≡ 0 (mod Nn), then terminate the

test and output: “Indeterminate, Circumstance 1” and include the values of a, b, c.
(vi) Use Algorithm 3.6, with r replaced by Nn, to find the least value of h such that 1 ≤

h ≤ n, Xphw ≡ 3, and Yp,ph−1w ≡ 0 (mod Nn). If no such h exists, then Nn cannot be
a prime.

(vii) If A < 2p2h−n, then Nn is a prime. If A ≥ 2p2h−n, then terminate the algorithm and
output: “Indeterminate, Circumstance 2”.

We do not learn anything about the primality of Nn when either Circumstance 1 or 2 holds.
In what follows, we will address this possibility.

4. Gaussian Periods

We first focus on the likelihood that Circumstance 1 holds. When Nn is a prime, we require
the following lemma.

Lemma 4.1. Let r be any prime such that r ∤ 2R∆ and let K be the splitting field of f(x)
over Fr. If α, β, γ are the roots of f(x) in K, then r | Dn if and only if αn = βn = γn in K.

Proof. This is proved as Lemma 5.4 in [11]. □
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Next, suppose r is an I-prime w.r.t. f(x); then the splitting field K of f(x) ∈ Fr[x] is Fr3 .
Also, in K, the three roots α, β, γ of f(x) satisfy:

β = αr, γ = βr, α = γr. (4.1)

We now have a simple condition for r | Dn.

Theorem 4.2. If r is an I-prime w.r.t. f(x), then r | Dn if and only if α(r−1)n = 1 in K.
Here, α denotes any of the three roots of f(x) in K.

Proof. If r | Dn, then in K, we have αn = γn by Lemma 4.1. Hence αrn = γrn, which means,

by (4.1), that αrn = γrn = αn, and therefore, α(r−1)n = 1.

If α(r−1)n = 1 in K, then αn = αrn, which by (4.1) means that αn = βn. By raising both
sides of this equality to the power r, we get αrn = βrn. By (4.1), we have γn = αn; hence,
r | Dn, by Lemma 4.1. □

If G is any finite cyclic group of order m, it is well known that if n | m, there are exactly n
elements x in G that satisfy xn = 1. Furthermore, the number of elements of order n in G is
ϕ(n), where ϕ is Euler’s totient function. Let p be any prime such that pn | r2+ r+1 (n ≥ 1).
Because F∗

r3 is a finite cyclic group, this means that there are exactly (r − 1)w elements α

of F∗
r3 such that α(r−1)w = 1, where w = (r2 + r + 1)/pn. Thus, for a randomly selected

admissible triple of integers (a, b, c) with 0 ≤ a, b, c < r such that (b, c) ̸= (0, 0), we expect, for

f(x) determined by using (2.3) and α a root of f(x) in F∗
r3 , that α

(r−1)w = 1 with probability
(r − 1)w/|F∗

r3 | = 1/pn. It follows from Theorem 4.2 that if pn is large, it would be unlikely
that r | Dw, when P , Q, R are determined by (2.3).

If Nn is composite and Circumstance 1 holds for many or all admissible (a, b, c), then Nn

would be a sort of pseudoprime with respect to the sequence (Dk)k≥0. As pseudoprimes tend
to be rarer than primes, it seems that Circumstance 1 would be an infrequent occurrence for
composite Nn, but as shown in Section 7, such values of Nn, although unusual, do exist.

We next focus on the possibility that Circumstance 2 does not hold; that is

A < 2p2h−n. (4.2)

Notice that if h = n, then (4.2) holds by selection of A. Also, if Nn is a prime, we expect that
for a randomly selected f(x), we would have h = n with probability ϕ(N3

n − 1)/(N3
n − 1), a

quantity that is mostly close to 1. (see Section 18.4 of Hardy and Wright [4]) Thus, if Nn is
a prime, then Test 3.7 will likely establish that this is so, but we will try to eliminate some of
the probabilistic aspects of the test.

Let f be some fixed integer and p be any prime such that p = 1 + ef . Also, let g be any
primitive root of p and ζp be any primitive pth root of unity. We define the e Gaussian periods
ηi for i = 0, 1, 2, . . . , e− 1 by

ηi =

f−1∑
j=0

ζg
ej+i

p .

It has been known since Gauss that the e Gaussian periods are the roots of the Gaussian
period equation H(x) = 0, where H(x) ∈ Z[x] and is of degree e.

Now, consider the case of f = 3. If we put s = ge, then p | s2 + s + 1 and the e Gaussian
periods are given by

ηi = ζg
i

p + ζsg
i

p + ζs
2gi

p (i = 0, 1, 2, . . . , e− 1). (4.3)

By making use of ζpp = 1, it is easy to see, for example, that in the case of p = 7, we have
H(x) = x2 + x+ 2 and in the case of p = 13, we have H(x) = x4 + x3 + 2x2 − 4x+ 3. More
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information concerning this polynomial can be found in Lehmer and Lehmer [5]. If we put
f = 6, the resulting Gaussian periods are the roots of H∗(x), where H∗(x) ∈ Z[x] and is of
degree (p − 1)/6. For example, H∗(x) = x + 1 for p = 7; H∗(x) = x2 + x − 3 for p = 13;
H∗(x) = x3 + x2 − 6x− 7 for p = 19.

Consider r to be an I-prime w.r.t. f(x). There must exist some nonzero λ ∈ Fr3 such that

F∗
r3 =< λ >; and if we put ζp = λ(r3−1)/p, then ζpp = 1 and ζmp ̸= 1, when p ∤ m. It follows that

if µ ∈ Fr3 and µp = 1, then µ = ζip for some nonnegative integer i (< p). We can use (4.3) to

define the Gaussian periods in Fpr , where s = r or s = r2. Note that by (4.3), we have ηri = ηi
and therefore, ηi ∈ Fr. Furthermore, we also observe that

Gj = ζjp + ζjsp + ζjs
2

p (4.4)

must be a Gaussian period (f = 3) when p ∤ j; thus, Gj ∈ Fr. Furthermore, it is not difficult

to see that Gj +G−j must be a solution of H∗(x) ≡ 0 (mod r). If we put ν1 = ζjp , ν2 = ζjsp ,

ν3 = ζjs
2

p , we have Gj = ν1 + ν2 + ν3, G−j = ν1ν2 + ν2ν3 + ν3ν1, and ν1ν2ν3 = 1. Thus, for
k ≥ 3, we have

Gkj = GjG(k−1)j −G−jG(k−2)j +G(k−3)j

with G0 = 3 and G2j = G2
j − 2G−j . For any nonnegative integer k, define the two variable

polynomial Kk(x, y) (∈ Z[x, y]) by K0(x, y) = 3, K1(x, y) = x, K2(x, y) = x2 − 2y, K3(x, y) =
x3 − 3xy + 3 and for k ≥ 3,

Kk(x, y) = xKk−1(x, y)− yKk−2(x, y) +Kk−3(x, y).

Notice that Kk(x, y) is of degree k, its coefficients depend only on k, and that Gkj =
Kk(Gj , G−j).

Next, we have a theorem that allows us to find some pair Gj , G−j ∈ Fr.

Theorem 4.3. Suppose that r and p are as above. If p | n, r | Dn, and r ∤ Dm, where
m = n/p, then for some i such that p ∤ i, we have that Gi = (Wm + δCm)/(2Rm) and
G−i = (Wm − δCm)/(2Rm) are Gaussian periods for f = 3 in Fr.

Proof. Because r | Dn, we know, by Lemma 4.1, that αn = βn = γn in K. Because Cm ̸= 0,
we can only have

αm = ζipβ
m, βm = ζjpγ

m, γm = ζkpα
m, (4.5)

where p ∤ ijk. However, because by multiplying the above expressions, we get Rm = ζi+j+k
p Rm

and R ̸= 0, we must have p | i+ j + k. Also, because αm − βm = βm(ζip − 1) and αm + βm =

βm(ζip + 1) with similar results for βm ± γm and γm ± αm, we get

δCm = Rm(ζip − 1)(ζjp − 1)(ζkp − 1)

= Rm(ζip + ζjp + ζkp − ζi+j
p − ζj+k

p − ζk+i
p ),

Wm = Rm(ζip + 1)(ζjp + 1)(ζkp + 1)− 2Rm

= Rm(ζip + ζjp + ζkp + ζi+j
p + ζj+k

p + ζk+i
p ).

By (4.5), we have αrm = ζirp βrm and by (4.1), βm = ζirp γm; similarly γm = ζir
2

p αm. It follows,

from (4.5), that j = ir and k = ir2. Because r + 1 = −r2, r2 + 1 = −r, and r2 + r = −1, we
get, for s = r that

δCm = Rm(Gi −G−i) and Wm = Rm(Gi +G−i).

□
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If we return to Algorithm 3.6 and put m = ph−1w, we have Wm/(2Rm) ≡ Xm, Cm/(2Rm) ≡
dm (mod r); thus, in this case, we have, for some j, that Gj = Xm + dm and G−j = Xm − dm
are both Gaussian periods for f = 3 in Fr. We can now replace Step (vii) in Test 3.7 by:

(vii)′ If A < 2p2h−n, then Nn is a prime; if A ≥ 2p2h−n, put
G ≡ Xm + dm (mod Nn) and Ḡ ≡ Xm − dm (mod Nn). If H(G) ̸≡ 0 or H(Ḡ) ̸≡ 0
(mod Nn), then Nn is not a prime. If H∗(G + Ḡ) ̸≡ 0 (mod Nn), then Nn is not a
prime.

Thus, if h exists, the resulting algorithm will establish whether or not Nn is a prime or, for
f = 3, find two particular solutions G and Ḡ to H(x) ≡ 0 (mod Nn) such that H∗(G+ Ḡ) ≡ 0
(mod Nn). In the next section, we will show how, given such solutions of H(x) ≡ 0 (mod Nn),
we can find some f(x) such that h = n, when Nn is a prime.

5. Some Results Concerning Gaussian Sums

As before, we consider three distinct primes p, q, r, where p ≡ 1 (mod 3), q ≡ 1 (mod p),
and p | r2 + r + 1. Let χ denote a primitive character of order p. If t is a primitive root of q,

we can define χ by χ(tj) = ζjp . It is well known (see Chapter 11 of Williams [14] or Berndt, et
al. [2]), that if τ(χ) denotes the Gaussian sum

τ(χ) =

q−1∑
j=1

χ(j)ζjq ,

where ζq is a primitive qth root of unity, then

τ(χ)τ(χ−1) = q. (5.1)

It follows that, if z is any complex number and we denote by z̄ the complex conjugate of z,
then χ−1 = χ̄.

We also know that (τ(χ))p/q can be written as the sum
∑p−2

i=0 biζ
i
p, where bi ∈ Z for

i = 0, 1, 2, . . . , p− 2. We can write

(τ(χj))p/q =

p−2∑
i=0

biζ
ij
p , (j = 1, 2, . . . , p− 2). (5.2)

This is a consequence of

τ(χ1)τ(χ2) = J(χ1, χ2)τ(χ1χ2), (5.3)

where J(χ1, χ2) is the Jacobi sum. (For more information on Jacobi sums, see [2].) It is
sufficient here to note that

J(χ, χj) =

p−1∑
i=0

B(i, j)ζip, (5.4)

where B(i, j) is a nonnegative integer for 0 ≤ i, j ≤ p− 1. By using (5.4) and

(τ(χ))p = q

p−2∏
i=1

J(χ, χi),

a consequence of (5.3) and (5.1), all p − 2 values of the integers bi in (5.2) can be computed
in O(p3) arithmetic operations. Notice that the values of these integers depend only on the
values of p and q.
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Now, suppose s is a solution of x2 + x+ 1 ≡ 0 (mod p). For a fixed value of j, put

αj = (τ(χj))p/q, βj = (τ(χsj))p/q, γj = (τ(χs2j))p/q. By (4.4) and (5.2), we see that

S1 = αj + βj + γj =

p−2∑
i=1

biGij =

p−2∑
i=1

biKi(Gj , G−j). (5.5)

Also, we can use (4.4) and (5.2) and ζpp = 1 to compute ci ∈ Z (i = 1, 2, . . . , p− 2) such that

α2
j =

∑p−2
i=1 ciζ

ij
p ; we then have β2

j =
∑p−2

i=1 ciζ
sij
p , γ2j =

∑p−2
i=1 ciζ

s2ij
p , and

S2 = α2
j + β2

j + γ2j =

p−2∑
i=1

ciGij =

p−2∑
i=1

ciKi(Gj , G−j). (5.6)

We can also compute integers mi (i = 1, 2, . . . , p− 2) such that α3
j =

∑p−2
i=1 miζ

ij
p ,

β3
j =

∑p−2
i=1 miζ

sij
p , and γ3j =

∑p−2
i=1 miζ

s2ij
p and we get

S3 = α3
j + β3

j + γ3j =

p−2∑
i=1

miGij =

p−2∑
i=1

miKi(Gj , G−j). (5.7)

Putting Pj = αj + βj + γj , Qj = αjβj + βjγj + γjαj , Rj = αjβjγj , we have, by Newton’s
identities, Pj = S1, 2Qj = P 2

j − S2, 3Rj = S3 − P 3
j + 3PjQj , and it follows that Pj , Qj ,

Rj ∈ Fr. If we put fj(x) = x3 − Pjx
2 +Qjx−Rj , then fj(x) ∈ Fr[x].

By (5.3), we have τ(χj)τ(χsj) = J(χj , χsj)τ(χ(s+1)j); thus, because
s2 ≡ −s− 1 (mod p), we see, by (5.1), that

τ(χj)τ(χsj)τ(χs2j) = qJ(χj , χsj). (5.8)

Now, suppose that n = (q − 1)(p − 1) and K = Frn ⊃ Fr3 . Because K∗ is a cyclic group

with generator µ, we can put ζp = µ(rn−1)/p, ζq = µ(rn−1)/q and repeat the above arguments
in K. From (5.4), we find that in K,

J(χj , χsj)r = J(χrj , χrsj),

which means that J(χj , χsj) ∈ Fr. Because r2 + r + 1 ≡ 0 (mod p), we can put s = r and we
get

J(χj , χrj)r = J(χrj , χr2j) = J(χj , χrj) = J(χr2j , χj) (5.9)

by Theorem 2.1.5 of [2]. If we put ι = indtr, then p ∤ ι if and only if r(q−1)/p ̸≡ 1 (mod q).

Also, from the definition of τ(χj), we get τ(χj)r =
∑q−1

i=0 χ
rj(i)ζrip = ζ−ιrj

p τ(χrj) and

τ(χj)r
2
= ζ−2ιr2j

p τ(χr2j). It follows that if m = (r2 + r + 1)/p, then

τ(χj)pm = qζι(r+2)j
p J(χj , χrj)

by (5.8). By the definition of αj , βj , γj , with s = r, we get

αm
j = q1−mζι(r+2)j

p J(χj , χrj), (5.10)

βm
j = q1−mζιr(r+2)j

p J(χrj , χr2j),

γmj = q1−mζιr
2(r+2)j

p J(χr2j , χj).

From (5.10) and (5.9), it follows that αpm
j = βpm

j = γpmj ; furthermore, if p ∤ ι, then αm
j ̸= βm

j ,
βm
j ̸= γmj , γmj ̸= αm

j . We have proved the following theorem.
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Theorem 5.1. Let p, q, r be primes such that p ≡ 1 (mod 3), q ≡ 1 (mod p), and p | r2+r+1

and put f(x) = fj(x) for any j such that p ∤ j. If r(q−1)/p ̸≡ 1 (mod q), then r | Dpm and
r | Cpm/Cm, where m = (r2 + r + 1)/p.

6. A Necessary and Sufficient Test for the Primality of Nn

We can now make use of Theorem 5.1 to produce a necessary test for the primality of Nn.

Test 6.1. This algorithm provides a necessary test for the primality of odd Nn of the form
(1.4), where n ≥ 2 and A is some fixed positive integer such that p ∤ A and A < 2pn.

(i) For the case of f = 3, find two particular solutions G and Ḡ to H(x) ≡ 0 (mod Nn)
such that H∗(G+ Ḡ) ≡ 0 (mod Nn).

(ii) Find a prime q ≡ 1 (mod p) such that q ∤ Nn and N
(q−1)/p
n ̸≡ 1 (mod q).

(iii) Put Gj = G and G−j = Ḡ. Compute Pj, Qj, Rj as above after evaluating S1, S2, S3

by formulas (5.5), (5.6), and (5.7), respectively.
(iv) For f(x) = fj(x) and m = (N2

n +Nn + 1)/p , compute Yp,m and Xpm (mod Nn).
(v) If Nn is a prime, then we must have Xpm ≡ 3 and Yp,m ≡ 0 (mod Nn).

We now observe that we can combine the results of Theorem 5.1 and Theorem 3.4 to derive
the following algorithm for the primality of odd Nn of the form (1.4), where n ≥ 2 and A
is some fixed positive integer such that p ∤ A and A < 2pn. We also assume that conditions
(1) and (2) hold on Nn and that we know two particular solutions G and Ḡ to H(x) ≡ 0
(mod Nn) such that H∗(G+ Ḡ) ≡ 0 (mod Nn).

Algorithm 6.2. Suppose Nn satisfies the conditions immediately above.

(i) Find a prime q ≡ 1 (mod p) such that q ∤ Nn and N
(q−1)/p
n ̸≡ 1 (mod q).

(ii) Put Gj = G and G−j = Ḡ. Compute Pj, Qj, Rj as above after evaluating S1, S2, S3

by formulas (5.5), (5.6), and (5.7), respectively.
(iii) Check that gcd(Nn,∆jRj) = 1. If not, then Nn is not a prime and we terminate the

test.
(iv) For f(x) = fj(x) and m = (N2

n +Nn + 1)/p, compute Yp,m and Xpm (mod Nn).
(v) Nn is a prime if and only if Xpm ≡ 3 and Yp,m ≡ 0 (mod Nn).

We can also combine some steps of Test 3.7, Step (vii)′ in Section 4, and the steps of
Algorithm 6.2 to produce the following necessary and sufficient test for the primality of Nn.

Algorithm 6.3. This algorithm provides a necessary and sufficient test for the primality of
odd Nn of the form (1.4), where n ≥ 2 and A is some fixed positive integer such that p ∤ A
and A < 2pn.

(i) Execute steps (i) to (vi) of Test 3.7.
(ii) If A < 2p2h−n, then Nn is a prime; if A ≥ 2p2h−n, put G ≡ Xm + dm (mod Nn) and

Ḡ ≡ Xm − dm (mod Nn). If H(G) ̸≡ 0 or H(Ḡ) ̸≡ 0 (mod Nn), then Nn is not a
prime. If H∗(G+ Ḡ) ̸≡ 0 (mod Nn), then Nn is not a prime.

(iii) Execute steps (ii)–(iv) of Test 6.1.
(iv) If Xpm ≡ 3 and Yp,m ≡ 0 (mod Nn), then Nn is a prime; if these conditions do not

hold, then Nn is not a prime.

We emphasize here that Algorithm 6.3 is not effective in that it does not completely specify
how to find efficiently, values for some required parameters; in particular, these parameters
are:

(a) A value q1 for q in Step (ii) of Test 3.7;
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(b) Values of a, b, c in Step (iii) of Test 3.7 such that h exists for that test;
(c) A value q2 for q in Step (ii) of Test 6.1.

Given these parameters, the test will execute in Õ((logNn)
2) bit operations. In practice,

the determination of these parameters can usually be done in a few trials for q1 and a, b, c.
Thus, Algorithm 6.3 will likely execute in expected time complexity Õ((logNn)

2). We could
eliminate the need to find the parameters in (a) and (b) by using Algorithm 6.2, but for this we
need to solve H(x) ≡ 0 (mod Nn) for values for G and Ḡ such that H∗(G+Ḡ) ≡ 0 (mod Nn).
Although there exist efficient algorithms for solving polynomial congruences (see Chapter 7 of
Bach and Shallit [1]), they too are, in most cases, of probabilistic complexity. Consider the
simplest case of p = 7; here, we have H(x) = x2+x+2. If r is a prime such that the Legendre
symbol (−7/r) = 1, then H(x) ≡ 0 (mod r) has two solutions modulo r, and these can be
computed readily from any solution of x2 ≡ −7 (mod r). There is lengthy literature on how
to solve

x2 ≡ a (mod r) (6.1)

when (a/r) = 1, but, if no quadratic nonresidue n of r is known, the techniques are nonde-
terministic because they depend on finding (by trial) some n such that (n/r) = −1. For a
discussion of some aspects of this problem and several references, see Müller [9]. If the ex-
tended Riemann hypothesis (ERH) is true, we must have some positive n < 2(log r)2, but this
only renders the algorithm conditional on the ERH instead of being probabilistic. If r ≡ −1
(mod 4), then −1 is a quadratic nonresidue of r and x ≡ a(r+1)/4 (mod r) is a solution of (6.1).
Now when p = 7, we have λn(7) ≡ 2 or 4 and the Jacobi symbol (−7/Nn) = (Nn/7) = 1.
Hence, in the case that Nn ≡ −1 (mod 4), there exists an efficient, deterministic algorithm
that will find some x such that H(x) ≡ 0 (mod Nn) or determine that Nn cannot be a prime.

In the case of p = 13, let j be any integer such that 13 ∤ j; then Gj , G2j , G−j , and G−2j

are the four solutions of H(x) ≡ 0 (mod r) and G∗
1 = Gj + G−j , G

∗
2 = G2j + G−2j are the

two solutions of H∗(x) ≡ 0 (mod r). Because H∗(x) = x2 + x− 3, we can find G∗
1 and G∗

2 by
solving (6.1) with a = 13. Now, it is easy to show that for any p, we have

GjG−j = 3 +G(s−1)j +G−(s−1)j .

In our case, we have s = 3 or s = 9. With no loss of generality, suppose s = 3; we get
GjG−j = 3 + G2j + G−2j and GjG−j = 3 + G∗

2 = 2 − G∗
1. Thus, Gj and G−j are the two

solutions of
x2 −G∗

1x+ 2−G∗
1 ≡ 0 (mod r).

It follows that we can compute Gj and G−j by solving (6.1) for a = (G∗
1)

2 + 4G∗
1 − 8. This

must be solvable because Gj , G−j ∈ Fr. For any p, similar techniques can be used to find Gj

and G−j (mod r) from the solutions of H∗(x) ≡ 0 (mod r).
We have seen, then, that there are certain values of Nn such that we can find values for G

and Ḡ by a deterministic process, but, in general, we have to be content with a probabilistic
procedure.

We also mention that, under the ERH, there exists an efficient, deterministic algorithm to
solve (c), but given that the probability of any given value of a (mod q) being a pth power
residue of q is 1/p, we would expect to find a suitable value of q2 in only a few trials for q.
This is certainly what happens in practice.
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7. Computational Results

For a given integer r, we will say that a triple (a, b, c) is admissible if 0 ≤ a, b, c < r and
(b, c) ̸= (0, 0). The following tables (Tables 1–6) give the values of n for which Nn in (1.4) is
a prime, when 1 ≤ A ≤ 60 and 1 < n ≤ 500. These tables were computed by using Test 3.7
and the admissible triple (a, b, c) = (0, 1, 0). In only a few instances was the test inconclusive
because of Circumstances 1 or 2. These are indicated in the tables with the corresponding n
value in round brackets (n) for Circumstance 1 or square brackets [n] for Circumstance 2. In
the latter case, the test was rerun with a different admissible triple with respect to Nn and
was successful.

A n A n A n
1 2, 62, 66 21 41 2, 3, 20, 113
2 118 22 17, 155, 263 42
3 277, 361 23 45, 277, 360 43 2, 3, 11, 29
4 4, 5, 48, 24 6, 18, 276 44 6, 9, 13,

134, 209, 460 112, 160
5 3, 62 25 15, 40, 41, 42 45 65, 88, 107,

216, 226
6 7, 14, 18, 161 26 6 46 4, 17, 210
7 27 26, 166 47 2
8 51, 61 28 48 6, 9
9 10, 65, 216, 436 29 [2], 3, 34, 39, 133 49
10 125, 160, 244 30 6, 9, 14, 18, 19, 50 4, 7, 194

47, 208, 285
11 2, 35, 143 31 2, 3, 12, 56, 182 51 113
12 7, 25, 322 32 369 52 5, 114, 162
13 3, 74, 262, 485 33 16, 26 53 3, 72
14 34 5, 17, 185, 459 54 24, 245
15 58 35 55
16 4, 8, 86 36 7, 8, 61 56
17 2, 11, 29, 34, 37 29, 33, 148 57 50

45, 52, 117
18 9, 201 38 5 58 4
19 (2), 3, 52, 455 39 188 59 38, 42, 77,

188, 324, 360
20 40 60 6, 31

Table 1. p = 7, (a, b, c) = (0, 1, 0) and λ1(p) = 2
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A n A n A n
1 2, (3), 16, 21 41 2, [3], 46,

60, 130, 197 71, 308
2 4, 203, 207, 22 21 42

231, 382
3 56, 324 23 3, 22, 133, 43 [3], 79

392,431
4 4, 6, 7, 24, 24 7, 44, 55 44 73

141, 149, 176
5 2, 3, 29, 25 45

36, 80
6 8, 47, 26 4, 31, 46 4, 7, 68,

73, 271 211, 427 121, 175, 270
7 27 10, 27, 36, 47 3, 46, 72, 83

166, 323
8 5, 8, 482 28 48 47
9 59, 288 29 [2], 58, 79, 49

170, 233
10 4, 5, 6, 183 30 7, 24, 89, 50 17, 183

140, 156, 393
11 2, 15, 54, 196 31 3, 52, 260 51 36, 64
12 122, 129, 374 32 5, 86, 52 4, 21, 47,

164, 198 213, 251
13 16, 32, 35, 226 33 10, 58, 148, 53 15, 22

182, 237
14 34 6, 23, 219, 283 54 297
15 27, 168 35 55 2, 35, 405
16 28, 51, 206 36 9, 24, 86, 122 56
17 3, 74, 77 37 2, 43 57 10, 27, 46, 181
18 18, 131, 202, 445 38 28, 44, 116, 201 58 5, 6, 13, 132,

160, 404, 440
19 33, 101, 117 39 35, 97 59 2, 78, 454, 481
20 17, 103, 210, 40 326 60 6, 7, 235

354, 381

Table 2. p = 7, (a, b, c) = (0, 1, 0) and λ̄1(p) = 4
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A n A n A n
1 9, 13, 94 21 3, 8 41 [3], 16, 21, 115, 231
2 76 22 63 42 305
3 2, 18, 79, 411 23 3, 10 43 8, 9
4 393 24 36, 200 44 33
5 2, 9, 14 25 45 21, 410
6 82, 129 26 46
7 5, 16 27 19 47 2, 6, 16, 52, 237
8 4, 26, 43, 47 28 11, 155 48 4, 77
9 [2], 6, 19, 179 29 16, 401 49 17, 110
10 58 30 54, 111 50 4, 43, 78, 102, 108
11 5, 7, 61, 186, 479 31 467 51
12 45, 59, 80 32 52
13 33 75 53 2
14 149 34 23, 126 54 4, 82, 314
15 6, 12, 79 35 39, 114 55 312
16 25, 26, 380 36 4, 23 56 11
17 [2], 14 37 5, 7, 206 57 6, 12, 74, 92
18 294 38 11 58 44, 71, 165
19 5, 64, 243 39 59 3
20 93, 104 40 222 60 23, 30, 34

Table 3. p = 13, (a, b, c) = (0, 1, 0) and λ1(p) = 3
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A n A n A n
1 2, 51 21 2, 8, 18, 41 7

60, 135, 424
2 38, 197, 339 22 4, 96, 177 42
3 (2), 8 23 43 3
4 24 129 44 147
5 5 25 5, 6, 9, 45 [3], 10,

10 135, 162 13, 18
6 30, 36, 344 26 46
7 12, 16, 19, 21, 27 47 5, 7, 421, 457

65, 141, 235, 290
8 30, 34, 38, 210 28 53 48 77, 105
9 2, 3, 6, 13, 401 29 295 49 9
10 30 50 147, 197
11 324 31 2, 3, 6, 338 51 2, 3, 37, 453
12 32 11, 128 52
13 33 24, 37, 196 53 9, 13, 163,

221, 242, 468
14 34 55 54 4, 25, 93, 256
15 2, 48, 50, 79 35 139 55 10, 21
16 4 36 105 56 56, 356
17 37 52 57 46, 373
18 129, 400 38 101 58 120, 258
19 19 39 59 8
20 78, 183 40 38, 327, 353 60 40, 54, 134

Table 4. p = 13, (a, b, c) = (0, 1, 0) and λ̄1(p) = 9
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A n A n A n
1 2, 7, 309 21 2, 56, 163, 256 41 18
2 21 22 23, 381 42 3, 72, 275, 328, 375
3 16 23 88, 125 43 5, 16, 134
4 24 20, 308 44 20, 26
5 435 25 7, 17, 66, 204 45
6 3, 476 26 479 46 428
7 2, 167 27 2 47 37
8 21 28 48 20, 116, 341
9 2, 8, 10, 250 29 22, 74 49 2, 471
10 52, 246, 460 30 3, 107, 150 50 3
11 31 2, 89 51 8, 17, 386
12 20 32 52 14, 40, 63
13 5 33 121 53 55, 401
14 21 34 54 63, 136, 269
15 18 35 7, 10, 102, 114 55 [2], 38, 226, 469
16 36 93 56 190
17 37 [2], 32, 66, 118 57
18 4 38 58 14
19 39 16, 82, 113 59 5, 6
20 3, 24, 190 40 60 63, 73

Table 5. p = 19, (a, b, c) = (0, 1, 0) and λ1(p) = 7
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A n A n A n
1 155, 362 21 2, 38, 43, 162 41 2, 6, 141
2 22 3, 336 42
3 2 23 17, 283 43 6, 95, 145
4 24, 109 24 41, 101 44 110
5 2, 33, 50 25 45 57, 60
6 209 26 46 186
7 161 27 47
8 67, 231 28 4, 11, 419 48 3, 19, 394
9 29 49 5, 32
10 4 30 3, 154 50 109
11 8 31 32 51
12 41, 317 32 44 52 13
13 111 33 2 53 176
14 12, 45, 73 34 487 54
15 2, 339, 489 35 2 55 7
16 3, 25 36 3, 63 56 9, 11
17 37 254 57
18 44 38 58 3, 13, 42
19 39 16, 56 59 123
20 116, 361 40 4 60 52, 58

Table 6. p = 19, (a, b, c) = (0, 1, 0) and λ̄1(p) = 11
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In the few cases where Test 3.7 was unsuccessful because of Circumstance 1, the correspond-
ing forms of Nn are: 19 ·72+30 (q = 61), 73+18 (q = 61), 3 ·132+22 (q = 73). These numbers
are respectively: 961(= 312), 361(= 192), and 529(= 232). That these numbers are all squares
of a prime is no coincidence as we will now show. We begin with the following result.

Theorem 7.1. If r ∤ 6∆R, r is an I-prime with respect to (Dn), and r | Dm, then r2 | Dm.

Proof. This is Theorem 5.7 of [8] or Theorem 4.9 of [11]. □

Theorem 7.2. Let Nn be defined by (1.4). If Nn = r2, where r is a prime such that r ∤ 6∆R,

r(q−1)/3 ̸≡ 1 (mod q), and p ∤ r2 + r + 1, then Nn | Dw, where w = (N2
n +Nn + 1)/pn.

Proof. We first note the simple identity:

x4 + x2 + 1 = (x2 + x+ 1)(x2 − x+ 1).

It follows that

N2
n +Nn + 1 = (r2 + r + 1)(r2 − r + 1).

Because p | N2
n +Nn + 1 and p ∤ r2 + r+ 1, we must have p | r2 − r+ 1; hence, r2 + r+ 1 | w.

Because r(q−1)/3 ̸≡ 1 (mod q), r must be an I-prime with respect to (Dn), which means that
r | Dm, where m = r2 + r + 1. By Theorem 7.1, we find that r2 | Dm, but because m | w, we
must have Nn | Dw. □

Notice then that for all Nn given in the statement of Theorem 7.2, we must have Xw ≡ 3,
Yw,1 ≡ 0 (mod Nn), which is Circumstance 1. Thus, for such values of Nn, Circumstance 1 will
always occur for any admissible triple (a, b, c) because the corresponding f(x) is irreducible
modulo r. It is easy to verify that each of the above three examples satisfies the conditions of
Theorem 7.2.

8. Conclusion

We have shown that we can use the properties of the extended Lucas sequences discussed
in [8] to produce a sufficiency test for the primality of numbers of the form (1.4) and that this
test can also be extended to be necessary and sufficient. Certain of these results are analogous
to some findings produced by Lucas for numbers of the form Apn ± 1. Perhaps these were the
kind of results that Lucas was hoping to produce by generalizing his sequences. The results
exhibited here are the kind that Lucas might have found in that they come about from a study
of particular divisibility sequences. A much more general approach, which does not rely on
the properties of certain sequences, to the primality of the numbers addressed here and many
others, can be found in Berrizbeitia, et al. [3].
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