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Abstract. We consider positive integers n that satisfy congruences of the form an−1 ≡ 1
(mod nm), where a and m are integers with (a, n) = 1, |a| > 1, and m ≥ 2.

1. Introduction

Fermat’s little theorem states that any prime number p must satisfy ap−1 ≡ 1 (mod p)
for any integer a with (a, p) = 1. A generalization of this congruence, applying to prime
and composite integers, is known as Euler’s theorem, which states that any positive integer
n must satisfy aϕ(n) ≡ 1 (mod n) for any integer a with (a, n) = 1. Here, ϕ denotes Euler’s
phi function, for which ϕ(n) yields the number of integers in the set {1, 2, . . . , n} that are
relatively prime to n.

If we replace the prime number p in Fermat’s little theorem with a positive composite
integer n so that an−1 ≡ 1 (mod n) with (a, n) = 1, then this congruence is not true in
general, although it can hold for some values of n, given a. However, when |a| ̸= 1, such
occurrences appear to be fairly rare in comparison with the frequency of occurrence of the
prime numbers. Thus, the fulfillment of this congruence is often used as an initial test of
primality for a large integer because it is inexpensive to implement this test, with respect to
time and memory. Any positive composite integer n that satisfies this congruence is known as
a Fermat pseudoprime, or, more commonly, a pseudoprime to the base a.

For integers a and n, with (a, n) = 1 and |a| > 1, we refer to a congruence of the form
an−1 ≡ 1 (mod n) as a Fermat’s congruence to the base a.

A Wieferich prime to the base a is a prime number p for which ap−1 ≡ 1 (mod p2). For
|a| ≠ 1, such primes are observed to be extremely rare, especially as p increases. However, a
heuristic argument indicates that there may be infinitely many Wieferich primes for a given
base a (see [2]). A more prominant result about Wieferich primes concerns the first case of
Fermat’s last theorem, which states that there exist no integers x, y, z with xp + yp + zp = 0,
where p is an odd prime and (xyz, p) = 1. If the first case of Fermat’s last theorem is false
for the prime exponent p, then it has been proven that p must be a Wieferich prime to the
base 2 [7]. A number of similar results, corresponding to additional bases, have been proven
by others. Another result, involving Wieferich primes, addresses the divisibilty properties of
Mersenne numbers. If n is a positive integer, then a number of the form 2n − 1 is known as a
Mersenne number. When n is prime, the Mersenne number 2n − 1 must be a prime number
or a Fermat pseudoprime to the base 2. If a Mersenne number is divisible by the square of a
prime, then that prime number must be a Wieferich prime to the base 2 [6].

For integersm > 2, there is no particular name given for primes p that satisfy the congruence
ap−1 ≡ 1 (mod pm), where a is an integer with (a, p) = 1 and |a| > 1. If a prime number
satisfies this congruence for a particular positive integer m, then it must also satisfy it for any
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smaller positive integer. Thus, we would expect the number of prime numbers that satisfy
such a congruence to decrease as the exponent of the modulus increases. For any a ̸= 0, there
are infinitely many prime numbers p that satisfy ap−1 ≡ 1 (mod p), as the only restriction on
such prime numbers is that (a, p) = 1. However, for |a| > 1, it has not been proven whether or
not there are infinitely many prime numbers that satisfy ap−1 ≡ 1 (mod pm) for any m > 1.
By observation, the occurrence of such primes has been found to be less frequent as m or p
increase.

If a prime p satisfies a congruence of the form ap−1 ≡ 1 (mod pm), where a and m are
integers with (a, p) = 1, |a| > 1, and m ≥ 1, then we shall say that p satisfies a Fermat’s
congruence to the base a of power m.

Example 1.1. For prime numbers that satisfy a Fermat’s congruence of higher power, note
that 1093 satisfies 21093−1 ≡ 1 (mod 10932), 1889 satisfies 132751889−1 ≡ 1 (mod 18893),
59 satisfies 1155059−1 ≡ 1 (mod 594), and 7 satisfies each of 13537−1 ≡ 1 (mod 75) and
13547−1 ≡ 1 (mod 75).

For certain integer bases a, with |a| > 1, there are also positive composite integers n that
satisfy an−1 ≡ 1 (mod nm) for some integer m > 1. Because an−1 ≡ 1 (mod nm) implies that
an−1 ≡ 1 (mod n), it is necessary that any composite integer n that satisfies this congruence
of higher order must also be a Fermat pseudoprime to the base a.

If a positive integer n satisfies a congruence of the form an−1 ≡ 1 (mod nm), where a and
m are integers with (a, n) = 1, |a| > 1, and m ≥ 2, then we shall say that n satisfies a Fermat’s
congruence to the base a of power m.

Example 1.2. For Fermat pseudoprimes that satisfy a Fermat’s congruence of higher power,
note that 1026787777 = 17 · 37 · 97 · 16829 satisfies 466631026787777−1 ≡ 1 (mod 10267877772),
969 = 3 · 17 · 19 satisfies 13717969−1 ≡ 1 (mod 9693), and 15 = 3 · 5 satisfies 874915−1 ≡ 1
(mod 154).

In an effort to characterize the properties of those positive composite integers n that satisfy
a Fermat’s congruence of higher power, we have derived the following equivalent condition.

Theorem 1.3. Let a, m, and n be integers with (a, n) = 1, |a| > 1, n > 1, and m ≥ 1. Then
an−1 ≡ 1 (mod nm) if and only if for each prime divisor p of n, there exists a positive integer
gp, with gp|(p−1, n−1), such that agp ≡ 1 (mod pmk), where k is a positive integer with pk||n.

Here, we are using the notation pk || n to indicate that pk | n but pk+1 ̸ | n.

Example 1.4. We have seen that 969 = 3 · 17 · 19 satisfies 13717969−1 ≡ 1 (mod 9693). By
the results of Theorem 1.3, we know that this is equivalent to the following: for the prime
divisor p = 3, there exists an integer g3|(3 − 1, 969 − 1) = 2, 2 has factors 1 and 2, and
137171 ≡ 137172 ≡ 1 (mod 33), so we can take either g3 = 1 or g3 = 2; for the prime divisor
p = 17, there exists an integer g17|(17 − 1, 969 − 1) = 8, 8 has factors 1, 2, 4, and 8, and
137174 ̸≡ 137178 ≡ 1 (mod 173), so we take g17 = 8; and for the prime divisor p = 19, there
exists an integer g19|(19 − 1, 969 − 1) = 2, 2 has factors 1 and 2, and 137171 ̸≡ 137172 ≡ 1
(mod 193), so we take g19 = 2.

Note that this result correlates a congruence on a positive composite integer n with a
collection of congruences—one for each distinct prime divisor of n. As a result of this, we can
obtain a characterization of those prime numbers that can divide n, and thus, increase the
efficiency of deriving such integers.
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2. Pseudoprimes and Fermat’s Congruences of Higher Power

There is no apparent special property, independent of the base a, concerning whether or not
a positive composite integer n satisfies an−1 ≡ 1 (mod nm). Each positive composite integer
satisfies such a congruence for some base. If n is a positive composite integer, then n satisfies
(nm + 1)n−1 ≡ 1 (mod nm), which has base a = nm + 1.

Before we prove our main result, we will need the following lemma.

Lemma 2.1. Let a, n, r, and s be integers with (a, n) = 1 and n positive. ar ≡ 1 (mod n)
and as ≡ 1 (mod n) if and only if ag ≡ 1 (mod n), where g = (r, s).

Proof. The necessary condition: Let g = (r, s). Then, there exist integers x and y such that
g = rx+ sy. Therefore, ag = arx+sy = (ar)x(as)y ≡ 1 (mod n).

The sufficient condition: Because g = (r, s), we see that there exist integers b and c such
that r = bg and s = cg. Therefore, ar = (ag)b ≡ 1 (mod n) and as = (ag)c ≡ 1 (mod n). □

We now present the proof of our main result.

Proof. Let a, m, and n be integers with (a, n) = 1, |a| > 1, n > 1, and m ≥ 1.
The necessary condition: Suppose that an−1 ≡ 1 (mod nm). If p is a prime divisor of n and

if k is a positive integer such that pk||n, then an−1 ≡ 1 (mod pmk). By Euler’s theorem, we

also have ap
mk−1(p−1) ≡ 1 (mod pmk), because ϕ(pmk) = pmk−1(p− 1).

Let gp = (pmk−1(p− 1), n− 1). Because (p, n− 1) = 1, this simplifies to gp = (p− 1, n− 1).

Note that gp must be positive, and by Lemma 2.1, agp ≡ 1 (mod pmk).
The sufficient condition: Now suppose that for each prime divisor p of n, there exists a

positive integer gp with gp|(p − 1, n − 1) such that agp ≡ 1 (mod pmk), where k is a positive

integer with pk||n. Because gp|(n− 1), we can raise each side of this congruence to the integer

power (n− 1)/gp to obtain an−1 ≡ 1 (mod pmk). The powers pk are pairwise relatively prime,
and because they collectively multiply to make n, we obtain an−1 ≡ 1 (mod nm). □

Now, examine how Theorem 1.3 may be applied to determine those composite integers n
that satisfy an−1 ≡ 1 (mod nm), when a and m are integers with |a| > 1 and m ≥ 1.

Corollary 2.2. Let a, m, and n be integers with (a, n) = 1, |a| > 1, n > 1, and m ≥ 1. If
an−1 ≡ 1 (mod nm), then for each prime divisor p of n, ap−1 ≡ 1 (mod pmk), where k is a
positive integer with pk||n.

Proof. Let p be a prime divisor of n, and let a and m be integers with (a, n) = 1, |a| > 1, and
m ≥ 1, such that an−1 ≡ 1 (mod nm). From Theorem 1.3, there exists an integer gp, with

gp|(p− 1, n− 1), such that agp ≡ 1 (mod pmk), where k is a positive integer with pk||n. Thus,
gp|(p− 1) and agp ≡ ap−1 ≡ 1 (mod pmk). □

Example 2.3. The converse of this is not true, in general. In the case of a = 82 and n =
15 = 3 · 5, we have 823−1 ≡ 1 (mod 32) and 825−1 ≡ 1 (mod 52). However, 8215−1 ≡ 199 ̸≡ 1
(mod 152).

Example 2.4. For the base a = 82, the only prime numbers p < 232 that satisfy 82p−1 ≡ 1
(mod pr), for r > 1, are the prime numbers 3 and 5, in which case the prime 3 satisfies this
congruence for r = 2, 3, and 4, and the prime 5 satisfies this congruence for r = 2. Neither
3 nor 5 satisfy this congruence for larger corresponding values of r. Now, suppose that n is
a positive composite integer, and that 82n−1 ≡ 1 (mod n2). Note that Corollary 2.2 implies
that if p is a prime such that pk||n, then it must be true that 82p−1 ≡ 1 (mod p2k). Thus,
3k|n implies that k ≤ 2, and 5k|n implies that k ≤ 1. Therefore, the only integers n that could

NOVEMBER 2021 293



THE FIBONACCI QUARTERLY

possibly be Fermat pseudoprimes to the base 82, having prime factors less than 232, and that
satisfy 82n−1 ≡ 1 (mod n2) consist of the composite integers 9 = 32, 15 = 3 ·5, and 45 = 32 ·5.
Of these, only 9 and 45 actually satisfy 82n−1 ≡ 1 (mod n2). None of these three can satisfy
82n−1 ≡ 1 (mod n3).

By letting n = pk, k a positive integer in Theorem 1.3, we obtain a divisibility property of
Fermat pseudoprimes to the base a.

Corollary 2.5. Let p be a prime number, and let a and m be integers, with (a, p) = 1, |a| > 1,

and m ≥ 1. ap
k−1 ≡ 1 (mod pmk) if and only if ap−1 ≡ 1 (mod pmk), where k is a positive

integer.

Thus, pk satisfies a Fermat’s congruence to the base a of power mk if and only if p satisfies
a Fermat’s congruence to the base a of power mk.

For the case of k = 2 and m = 1, we find that p2 is a pseudoprime to the base a if and only
if p is a Weiferich prime to the base a.

Example 2.6. The only prime numbers p that satisfy 2p−1 ≡ 1 (mod p2), that are less than
the bound 6.7 × 1015, are the primes 1093 and 3511 (see [3]). Thus, by Corollary 2.5, any
Fermat pseudoprime to the base 2, having all of its prime factors less than 6.7 × 1015, must
be square-free, except for those that have 10932 or 35112 as a divisor, in which case these
would be the only divisors that consist of the square of a prime. Note that the smallest
Fermat pseudoprime to the base 2 that has 10932 as a divisor is 1194649 = 10932, and the
smallest such pseudoprime that has 35112 as a divisor is 12327121 = 35112. The smallest
Fermat pseudoprime to the base 2 that has both 10932 and 35112 as divisors is the integer
4578627124156945861 = 29 · 71 · 151 · 10932 · 35112. Because neither 1093 nor 3511 satisfy
2p−1 ≡ 1 (mod p3), there can be no Fermat pseudoprimes to the base 2 that have divisors
that consist of the cube of a prime for any prime that is less than 6.7× 1015.

3. The Expected Number of Integers that Satisfy a Fermat’s Congruence of a
Given Power

We modify and extend a heuristic argument found in [2].
Let p be prime, and let n and t be positive integers. In [4, p. 55], we find the following

result:

If e = (t, pn−1(p− 1)), then the congruence xt ≡ 1 (mod pn) will have e different roots. (3.1)

Consider now, the expected number of occurrences of positive composite integers n consist-
ing of a power of a prime p, n = pk, where k is an integer with k > 1, satisfying an−1 ≡ 1
(mod nm), where a is a random integer with (a, n) = 1, |a| > 1, and m is a positive integer.

We can obtain an upper bound on the expected number Na
(mk) of such composite integers n

by summing the probability that n = pk satisfies this congruance for each possible prime p:

Na
(mk) =

∑
p prime
(a,p)=1

Pr
(
ap

k−1 ≡ 1
(
mod (pk)m

))
.

By Theorem 1.3, we know that ap
k−1 ≡ 1 (mod pmk) if and only if agp ≡ 1 (mod pmk), where

gp|(pk − 1, p− 1) = p− 1. Therefore, for the congruence agp ≡ 1 (mod pmk), the value e from

(3.1) is given by e = (gp, p
mk−1(p− 1)) = gp, and

Na
(mk) =

∑
p prime
(a,p)=1

Pr
(
agp ≡ 1 (mod pmk)

)
=

∑
p prime
(a,p)=1

gp
pmk

.
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Now, gp|(p− 1), so that gp ≤ p− 1, and

Na
(mk) ≤

∑
p prime
(a,p)=1

p− 1

pmk
,

with this sum diverging when mk ≤ 2 and converging for all integers mk > 2. Because m > 0
and k > 1, this implies that the sum diverges when m = 1 and k = 2, and that it converges
whenever m ≥ 2 or whenever k ≥ 3.

Therefore, we would expect up to infinitely many composite integers n consisting of the
square of exactly one prime factor, satisfying an−1 ≡ 1 (mod nm), where a is a random
integer with (a, n) = 1, |a| > 1, and m = 1. If m ≥ 2, we would expect only finitely many
such n. Also, if n = pk for some prime p and some integer k > 2, then we would expect only
finitely many n such that an−1 ≡ 1 (mod nm) for any integer m > 0.

Recall, from Corollary 2.5, that ap
k−1 ≡ 1 (mod pmk) if and only if ap−1 ≡ 1 (mod pmk),

whenever a is an integer with (a, p) = 1, |a| > 1, p is prime, and m and k are positive integers.
Therefore, we expect up to infinitely many prime numbers p such that ap−1 ≡ 1 (mod pk),
whenever k = 2, and only finitely many prime numbers p such that ap−1 ≡ 1 (mod pk),
whenever k > 2.

Now, suppose that n is a composite integer of the form n = pk11 pk22 · · · pkrr , where p1, p2, . . . , pr
are prime numbers, with pi ̸= pj , and k1, k2, . . ., kr are positive integers. We define the integer
s as the product of those prime divisors pi of n that have greatest power 1:

s =
∏
pi|n
ki=1

pi,

and the integer b = n/s, so that

b =
∏
pi|n
ki>1

pkii .

Then n = sb, (s, b) = 1, and s is square-free. Note that if p is prime and if p|b, then pe|b for
some integer e ≥ 2. If n is such that an−1 ≡ 1 (mod nm), where a is a random integer with
(a, n) = 1, |a| > 1, and m is an integer with m ≥ 2, then, for m = 2, we would expect the
existence of up to infinitely many primes that can be used to produce an integer with the same
factorization structure as s (square-free – the product of a finite number of distinct primes),
and we would expect the existence of only finitely many primes that can be used to produce
an integer with the same factorization structure as b (the product of a finite number of distinct
prime powers, where the powers are each at least 2). If m > 2, then we would expect the
existence of only finitely many primes that can be used to produce an integer with the same
factorization structure as n.

4. Generating Pseudoprimes that Satisfy a Fermat’s Congruence of Higher
Power

Because of the results given in Corollary 2.2, once the Wieferich primes that correspond to
a given base have been found, we have an efficient method for searching for pseudoprimes n
that satisfy an−1 ≡ 1 (mod nm), given a and m ≥ 2.

(1) The prime numbers p that satisfy ap−1 ≡ 1 (mod p2), up to a bound B, must be
generated: p1, p2, . . ., pr, with r a nonnegative integer.

(2) For each i = 1, 2, . . . , r, find those prime numbers pi for which api−1 ≡ 1 (mod pmi ).
List these as q1, q2, . . ., qs, where s is a nonnegative integer with s ≤ r.
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(3) For each i = 1, 2, . . . , s, the largest integer ki for which aqi−1 ≡ 1 (mod qmki
i ) must be

found.
(4) Each composite integer of the form n = qe11 qe22 · · · qess , where ei is an integer with

0 ≤ ei ≤ ki, for i = 1, 2, . . . , s, must be generated and checked to see if it satisfies the
Fermat’s congruence an−1 ≡ 1 (mod nm).

If all primes p satisfying ap−1 ≡ 1 (mod p2) are known, up to a given bound B, then this
method can be used to generate all pseudoprimes n satisfying an−1 ≡ 1 (mod nm) up to p1B,
where p1 is the smallest of these prime numbers. If no such prime p1 exists, then there will be
no such pseudoprimes that are less than B2.

Because prime numbers p that satisfy ap−1 ≡ 1 (mod p2) are rare, and prime numbers p that
satisfy a Fermat’s congruence of higher power are progressively rarer still, the pseudoprimes n
that satisfy an−1 ≡ 1 (mod n2) must also be rare (however, there do exist bases for which the
number of pseudoprimes n satisfying an−1 ≡ 1 (mod n2) exceeds the number of prime numbers
p that satisfy ap−1 ≡ 1 (mod p2), up to a given bound). Thus, once the pseudoprimes n that
satisfy an−1 ≡ 1 (mod n2) are generated, it is a simple task to merely check to see if they also
satisfy a Fermat’s congruence of higher power. In this way, we can generate all pseudoprimes
that satisfy an−1 ≡ 1 (mod nm) for integers m ≥ 2, having prime divisors up to a given bound.
In Table 1, we list all such pseudoprimes having base 2 ≤ a ≤ 100 and having prime divisors
less than 232. A table of primes p that satisfy ap−1 ≡ 1 (mod p2), up to 232, corresponding to
these bases (except for the cases in which a is a perfect kth power for an integer k ≥ 2), can
be found in [5] (the prime number 2 must be added to any listing that corresponds to a base
a with a ≡ 1 (mod 4)).

a n m a n m a n m

17 4 2 65 4 3 82 9 2
26 15 2 65 8 2 82 45 2
26 1065 2 68 133 2 97 4 2
33 4 2 73 6 2 99 35 2
37 6 2 80 9 2 99 65 2
49 4 2 81 4 2 99 1729 2

TABLE 1. Pseudoprimes n satisfying an−1 ≡ 1 (mod nm), where 2 ≤ a ≤ 100, m ≥ 2, and
with n having prime factors p < 232.
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