
GRAPH-THEORETIC CONFIRMATIONS OF FOUR SUMS OF

JACOBSTHAL POLYNOMIAL PRODUCTS OF ORDER 4

THOMAS KOSHY

Abstract. Using graph-theoretic tools, we establish four identities involving sums of Jacob-
sthal polynomial products of order 4.

1. Introduction

Extended gibonacci polynomials zn(x) are defined by the recurrence zn+2(x) = a(x)zn+1(x)+
b(x)zn(x), where x is an arbitrary complex variable; a(x), b(x), z0(x), and z1(x) are arbitrary
complex polynomials; and n ≥ 0 [1, 2, 5].

Suppose a(x) = 1 and b(x) = x. When z0(x) = 0 and z1(x) = 1, zn(x) = Jn(x), the nth
Jacobsthal polynomial ; and when z0(x) = 2 and z1(x) = 1, zn(x) = jn(x), the nth Jacobsthal-
Lucas polynomial [1, 2]. Clearly, Jn(1) = Fn and jn(1) = Ln.

In the interest of brevity, clarity, and convenience, we omit the argument in the functional
notation, when there is no ambiguity; so zn will mean zn(x). We also omit a lot of basic
algebra.

Table 1 lists some well known fundamental Jacobsthal identities [3]. We will employ them
in our discourse.

Jn+1 + xJn−1 = jn J2n = Jnjn
J2
n+1 + xJ2

n = J2n+1 Jn+2 + x2Jn−2 = (2x+ 1)Jn
Jm+n = Jm+1Jn + xJmJn−1

Table 1: Fundamental Jacobsthal Identities

1.1. Sums of Jacobsthal Polynomial Products of Order 4. Several sums of gibonacci
polynomial products of order 4 are investigated in [5]; the following are six of them. Identities
(1.1), (1.2), (1.5), and (1.6) form the cornerstone for our discourse:

J4n = J3
n+2Jn − 2xJ2

n+2J
2
n − x2J2

n+2JnJn−2 + 2(x2 + x)Jn+2J
3
n

+ x4Jn+2JnJ
2
n−2 − 2(x4 + x3)J3

nJn−2 + 2x5J2
nJ

2
n−2 − x6JnJ

3
n−2; (1.1)

J4n+1 = J4
n+2 − 4xJ3

n+2Jn + 2(3x2 + 2x)J2
n+2J

2
n − (4x3 + 6x2 + x)Jn+2J

3
n

− 2x3Jn+2J
2
nJn−2 + (x2 + x)2J4

n + (2x4 + x3)J3
nJn−2; (1.2)

J4n+2 = J4
n+2 − 3x2J2

n+2J
2
n + 2x4Jn+2J

2
nJn−2 + x4J4

n − x6J2
nJ

2
n−2; (1.3)

J4n+3 = (x+ 1)J4
n+2 − 4x2J3

n+2Jn + (6x3 + x2)J2
n+2J

2
n − (4x4 + 6x3 + x2)Jn+2J

3
n

+ (x5 + 3x4 + x3)J4
n + (2x5 + x4)J3

nJn−2 − x6J2
nJ

2
n−2; (1.4)

j4n+2 = (2x+ 1)J4
n+2 − 8x2J3

n+2Jn + (12x3 + 5x2)J2
n+2J

2
n − 2(4x4 + 6x3 + x2)Jn+2J

3
n

− 2x4Jn+2J
2
nJn−2 + (2x5 + 5x4 + 2x3)J4

n

+ 2(2x5 + x4)J3
nJn−2 − x6J2

nJ
2
n−2; (1.5)
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j4n+3 = (3x+ 1)J4
n+2 − 4x2J3

n+2Jn + x2J2
n+2J

2
n − (4x4 + 6x3 + x2)Jn+2J

3
n

+ 4x5Jn+2J
2
nJn−2 + (3x5 + 3x4 + x3)J4

n + (2x5 + x4)J3
nJn−2

− (2x7 + x6)J2
nJ

2
n−2, (1.6)

where Jn = Jn(x) and jn(x) = jn(x).
Our objective is to confirm the Jacobsthal identities (1.1), (1.2), (1.5), and (1.6) using

graph-theoretic techniques.

2. Some Graph-theoretic Tools

To confirm these Jacobsthal results, consider the weighted Jacobsthal digraph D1 in Figure
1 with vertices v1 and v2 [3, 4].

Figure 1. Weighted Fibonacci Digraph D1

It follows from its weighted adjacency matrix M =

[
1 x
1 0

]
that

Mn =

[
Jn+1 xJn
Jn xJn−1

]
,

where Jn = Jn(x) and n ≥ 1.
It then follows that the sum of the weights of closed walks of length n originating at v1 is

Jn+1, and that of those originating at v2 is xJn−1. So, the sum of the weights of all closed
walks of length n in the digraph is Jn+1 + xJn−1 = jn. These facts play a major role in the
graph-theoretic proofs.

Let A,B,C, and D denote the sets of closed walks of varying lengths originating at vertex
v, respectively. Then, the sum of the weights of the elements in the product set A×B×C×D
is defined as the product the sums of the walks in each component [4].

With these tools at our disposal, we are now ready to explore the graph-theoretic proofs.

3. Graph-theoretic Confirmations

3.1. Proof of Identity (1.1).
Proof. Let S denote the sum of the weights of closed walks of length 4n− 1 originating at v1.
Clearly, S = J4n.

We will now compute the sum S in a different way. To this end, let w be an arbitrary closed
walk of length 4n − 1 originating at v1. It can land at v1 or v2 at the nth, 2nth, and 3nth
steps:

w = v1 − · · · − v︸ ︷︷ ︸
subwalk of length n

v − · · · − v︸ ︷︷ ︸
subwalk of length n

v − · · · − v︸ ︷︷ ︸
subwalk of length n

v − · · · − v1︸ ︷︷ ︸
subwalk of length n−1

,

where v = v1 or v2.
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Table 2 shows the possible cases and the sums of weights of the corresponding walks w,
where Jn = Jn(x).

w lands at v1 at w lands at v1 at w lands at v1 at w lands at v1 at sum of the weights
the nth step? the 2nth step? the 3nth step? the (4n− 1)st step? of walks w

yes yes yes yes J3
n+1Jn

yes yes no yes xJ2
n+1JnJn−1

yes no yes yes xJn+1J
3
n

yes no no yes x2Jn+1JnJ
2
n−1

no yes yes yes xJn+1J
3
n

no yes no yes x2J3
nJn−1

no no yes yes x2J3
nJn−1

no no no yes x3JnJ
3
n−1

Table 2: Sums of the Weights of Closed Walks Originating at v1

It follows from the table that the sum S of the weights of such walks w is given by

S = J3
n+1Jn + xJ2

n+1JnJn−1 + 2xJn+1J
3
n + x2Jn+1JnJ

2
n−1 + 2x2J3

nJn−1 + x3JnJ
3
n−1

= A+B + C +D + E + F,

where

A = J3
n+1Jn

= (Jn+2 − xJn)
3Jn

= J3
n+2Jn − 3xJ2

n+2J
2
n + 3x2Jn+2J

3
n − x3J4

n;

B = xJ2
n+1JnJn−1

= x(Jn+2 − xJn)
2Jn(Jn − xJn−2)

= xJ2
n+2J

2
n − x2J2

n+2JnJn−2 − 2x2Jn+2J
3
n + 2x3Jn+2J

2
nJn−2 + x3J4

n − x4J3
nJn−2;

C = 2xJn+1J
3
n

= 2xJ3
n(Jn+2 − xJn)

= 2xJn+2J
3
n − 2x2J4

n;

D = x2Jn+1JnJ
2
n−1

= x2(Jn+2 − xJn)Jn(Jn − xJn−2)
2

= x2Jn+2J
3
n − 2x3Jn+2J

2
nJn−2 + x4Jn+2JnJ

2
n−2 − x3J4

n + 2x4J3
nJn−2 − x5J2

nJ
2
n−2;

E = 2x2J3
nJn−1

= 2x2J3
n(Jn − xJn−2)

= 2x2J4
n − 2x3J3

nJn−2;

F = x3JnJ
3
n−1

= x3Jn(Jn − xJn−2)
3

= x3J4
n − 3x4J3

nJn−2 + 3x5J2
nJ

2
n−2 − x6JnJ

3
n−2,

where Jn = Jn(x).
Thus,

S = J3
n+2Jn − 2xJ2

n+2J
2
n − x2J2

n+2JnJn−2 + 2(x2 + x)Jn+2J
3
n + x4Jn+2JnJ

2
n−2

− 2(x4 + x3)J3
nJn−2 + 2x5J2

nJ
2
n−2 − x6JnJ

3
n−2.
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This value of S, coupled with its earlier value, yields identity (1.1), as desired. □

3.2. Proof of Identity (1.2).
Proof. Let S′ denote the sum of the weights of closed walks of length 4n originating at v1 in
the digraph. Then S′ = J4n+1.

To compute S′ in a different way, we first let w be an arbitrary closed walk of length 4n
originating at v1. It can land at v1 or v2 at the nth, 2nth, and 3nth steps:

w = v1 − · · · − v︸ ︷︷ ︸
subwalk of length n

v − · · · − v︸ ︷︷ ︸
subwalk of length n

v − · · · − v︸ ︷︷ ︸
subwalk of length n

v − · · · − v1︸ ︷︷ ︸
subwalk of length n

,

where v = v1 or v2.
Table 3 summarizes the possible cases and the sums of the weights of the respective walks

w, where Jn = Jn(x).

w lands at v1 at w lands at v1 at w lands at v1 at w lands at v1 at sum of the weights
the nth step? the 2nth step? the 3nth step? the 4nst step? of walks w

yes yes yes yes J4
n+1

yes yes no yes xJ2
n+1J

2
n

yes no yes yes xJ2
n+1J

2
n

yes no no yes x2Jn+1J
2
nJn−1

no yes yes yes xJ2
n+1J

2
n

no yes no yes x2J4
n

no no yes yes x2Jn+1J
2
nJn−1

no no no yes x3J2
nJ

2
n−1

Table 3: Sums of the Weights of Closed Walks Originating at v1

It follows from the table that

S′ = J4
n+1 + 3xJ2

n+1J
2
n + 2x2Jn+1J

2
nJn−1 + x2J4

n + x3J2
nJ

2
n−1

= G+H + I + J +K,

where

G = J4
n+1

= (Jn+2 − xJn)
4

= J4
n+2 − 4xJ3

n+2J
2
n + 6x2J2

n+2J
2
n − 4x3Jn+2J

3
n + x4J4

n;

H = 3xJ2
n+1J

2
n

= 3xJ2
n(Jn+2 − xJn)

2

= 3xJ2
n+2J

2
n − 6x2Jn+2J

3
n + 3x3J4

n;

I = 2x2Jn+1J
2
nJn−1

= 2x2J2
n(Jn+2 − xJn)(Jn − xJn−2)

= 2x2Jn+2J
3
n − 2x3Jn+2J

2
nJn−2 − 2x3J4

n + 2x4J3
nJn−2;

J = x2J4
n;

K = x3J2
nJ

2
n−1

= x3J2
n(Jn − xJn−2)

2

= x3J4
n − 2x4J3

nJn−2 + x5J2
nJ

2
n−2.
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Consequently,

S′ = J4
n+2 − 4xJ3

n+2Jn + 3(2x2 + x)J2
n+2J

2
n − 2x3Jn+2J

2
nJn−2

− 4(x3 + x2)Jn+2J
3
n + (x2 + x)2J4

n + x5J2
nJ

2
n−2. (3.1)

To get the desired form for S′, consider

L = xJ2
n+2J

2
n − (2x2 + x)Jn+2J

3
n + (2x4 + x3)J3

nJn−2 − x5J2
nJ

2
n−2. (3.2)

Using the identity Jn+2 = (2x+ 1)Jn − x2Jn−2, we have

L = xJn+2J
2
n [Jn+2 − (2x+ 1)Jn] + x3J2

nJ
2
n−2

[
(2x+ 1)Jn − x2Jn−2

]
= 0.

Thus, adding L in equation (3.2) to S′ in equation (3.1) yields

S′ = J4
n+2 − 4xJ3

n+2Jn + 2(3x2 + 2x)J2
n+2J

2
n − (4x3 + 6x2 + x)Jn+2J

3
n

− 2x3Jn+2J
2
nJn−2 + (x2 + x)2J4

n + (2x4 + x3)J2
nJ

2
n−2.

By equating the two values of S′, we get the desired result, as expected. □

3.3. Proof of Identity (1.5).
Proof. Let S∗ denote the sum of the weights of all closed walks of length 4n+2 in the digraph.
Clearly, S∗ = j4n+2.

We will now compute S∗ in a different way, and then equate the two values. To this end,
let w be an arbitrary closed walk of length 4n+ 2.

Case 1. Suppose w originates (and ends) at v1. It can land at v1 or v2 at the (n + 1)st,
(2n+ 2)nd, and (3n+ 2)nd steps:

w = v1 − · · · − v︸ ︷︷ ︸
subwalk of length n+1

v − · · · − v︸ ︷︷ ︸
subwalk of length n+1

v − · · · − v︸ ︷︷ ︸
subwalk of length n

v − · · · − v1︸ ︷︷ ︸
subwalk of length n

,

where v = v1 or v2.
It follows from Table 4 that the sum S∗

1 of the weights of all such walks w is given by

S∗
1 = J2

n+2J
2
n+1 + xJ2

n+2J
2
n + xJn+2J

2
n+1Jn + x2Jn+2Jn+1JnJn−1 + xJ4

n+1

+ 2x2J2
n+1J

2
n + x3Jn+1J

2
nJn−1

=
(
J2
n+2 + xJ2

n+1

) (
J2
n+1 + xJ2

n

)
+ xJn+1Jn(Jn+2 + xJn)(Jn+1 + xJn−1)

= J2n+3J2n+1 + xJ2n+2J2n

= J4n+3.

w lands at v1 at w lands at v1 at w lands at v1 at w lands at v1 at sum of the weights

the (n+ 1)st step? the (2n+ 2)nd step? the (3n+ 2)nd step? the (4n+ 2)nd step? of walks w

yes yes yes yes J2
n+2J

2
n+1

yes yes no yes xJ2
n+2J

2
n

yes no yes yes xJn+2J2
n+1Jn

yes no no yes x2Jn+2Jn+1JnJn−1

no yes yes yes xJ4
n+1

no yes no yes x2J2
n+1J

2
n

no no yes yes x2J2
n+1J

2
n

no no no yes x3Jn+1J2
nJ

2
n−1

Table 4: Sums of the Weights of Closed Walks Originating at v1
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Case 2. Suppose w originates at v2. It also can land at v1 or v2 at the (n+ 1)st, (2n+ 2)nd,
and (3n+ 2)nd steps:

w = v2 − · · · − v︸ ︷︷ ︸
subwalk of length n+1

v − · · · − v︸ ︷︷ ︸
subwalk of length n+1

v − · · · − v︸ ︷︷ ︸
subwalk of length n

v − · · · − v2︸ ︷︷ ︸
subwalk of length n

,

where v = v1 or v2.
It follows from Table 5 that the sum S∗

2 of the weights of all such walks w is given by

S∗
2 = xJn+2J

2
n+1Jn + x2Jn+2Jn+1JnJn−1 + 2x2J2

n+1J
2
n + x3J2

n+1J
2
n−1

+ x3Jn+1J
2
nJn−1 + x3J4

n + x4J2
nJ

2
n−1

= xJn+1Jn(Jn+2 + xJn)(Jn+1 + xJn−1) + x2
(
J2
n+1 + xJ2

n

) (
J2
n + xJ2

n−1

)
= xJ2n+2J2n + x2J2n+1J2n−1

= xJ4n+1.

w lands at v1 at w lands at v1 at w lands at v1 at w lands at v2 at sum of the weights
the (n+ 1)st step? the (2n+ 2)nd step? the (3n+ 2)nd step? the (4n+ 2)nd step? of walks w

yes yes yes yes xJn+2J2
n+1Jn

yes yes no yes x2Jn+2Jn+1JnJn−1

yes no yes yes x2J2
n+1J

2
n

yes no no yes x3J2
n+1J

2
n−1

no yes yes yes x2J2
n+1J

2
n

no yes no yes x3Jn+1J2
nJn−1

no no yes yes x3J4
n

no no no yes x4J2
nJ

2
n−1

Table 5: Sums of the Weights of Closed Walks Originating at v2

Combining the two cases and using identities (1.2) and (1.4), we get

S∗ = S∗
1 + S∗

2

= [(x+ 1)J4
n+2 − 4x2J3

n+2Jn + (6x3 + x2)J2
n+2J

2
n − (4x4 + 6x3 + x2)Jn+2J

3
n

+ (x5 + 3x4 + x3)J4
n + (2x5 + x4)J3

nJn−2 − x6J2
nJ

2
n−2]

+ x[J4
n+2 − 4xJ3

n+2Jn + 2(3x2 + 2x)J2
n+2J

2
n − (4x3 + 6x2 + x)Jn+2J

3
n

− 2x3Jn+2J
2
nJn−2 + (x2 + x)2J4

n + (2x4 + x3)J3
nJn−2]

= (2x+ 1)J4
n+2 − 8x2J3

n+2Jn + (12x3 + 5x2)J2
n+2J

2
n − 2(4x4 + 6x3 + x2)Jn+2J

3
n

− 2x4Jn+2J
2
nJn−2 + (2x5 + 5x4 + 2x3)J4

n + 2(2x5 + x4)J3
nJn−2 − x6J2

nJ
2
n−2.

Equating this value of S∗ with its earlier value yields identity (1.3), as desired. □

Finally, we explore the graph-theoretic confirmation of identity (1.6).

3.4. Proof of Identity (1.6).
Proof. Let S denote the sum of the weights of all closed walks of length 4n+3 in the digraph.
Then S = j4n+3.

We will now compute S in a different way. To this end, let w be an arbitrary walk of length
4n+ 3.

Case 1. Suppose w originates (and ends) at v1. It can land at v1 or v2 at the (n + 1)st,
(2n+ 2)nd, and (3n+ 3)rd steps:

w = v1 − · · · − v︸ ︷︷ ︸
subwalk of length n+1

v − · · · − v︸ ︷︷ ︸
subwalk of length n+1

v − · · · − v︸ ︷︷ ︸
subwalk of length n+1

v − · · · − v1︸ ︷︷ ︸
subwalk of length n

,
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where v = v1 or v2.

It follows from Table 6 that the sum S1 of the weights of all such walks w is given by

S1 = J3
n+2Jn+1 + xJ2

n+2Jn+1Jn + 2xJn+2J
3
n+1 + x2Jn+2Jn+1J

2
n + 2x2J3

n+1Jn + x3Jn+1J
3
n

= Jn+1

(
J2
n+2 + 2xJ2

n+1 + x2J2
n

)
(Jn+2 + xJn)

= J2n+2

(
J2
n+2 + 2xJ2

n+1 + x2J2
n

)
= J2n+2(J2n+3 + xJ2n+1)

= J4n+4.

w lands at v1 at w lands at v1 at w lands at v1 at w lands at v1 at sum of the weights
the (n+ 1)st step? the (2n+ 2)nd step? the (3n+ 3)rd step? the (4n+ 3)rd step? of walks w

yes yes yes yes J3
n+2Jn+1

yes yes no yes xJ2
n+2Jn+1Jn

yes no yes yes xJn+2J3
n+1

yes no no yes x2Jn+2Jn+1J2
n

no yes yes yes xJn+2J3
n+1

no yes no yes x2J3
n+1Jn

no no yes yes x2J3
n+1Jn

no no no yes x3Jn+1J3
n

Table 6: Sums of the Weights of Closed Walks Originating at v1

Case 2. Suppose w originates at v2. It also can land at v1 or v2 at the (n+ 1)st, (2n+ 2)nd,
and (3n+ 3)rd steps:

w = v2 − · · · − v︸ ︷︷ ︸
subwalk of length n+1

v − · · · − v︸ ︷︷ ︸
subwalk of length n+1

v − · · · − v︸ ︷︷ ︸
subwalk of length n+1

v − · · · − v2︸ ︷︷ ︸
subwalk of length n

,

where v = v1 or v2.
It follows from Table 7 that the sum S2 of the weights of all closed walks w originating at

v2 is given by

S2 = xJ2
n+2Jn+1Jn + x2Jn+2J

2
n+1Jn−1 + x2Jn+2Jn+1J

2
n + x2J3

n+1Jn + 2x3J2
n+1JnJn−1

+ x3Jn+1J
3
n + x4J3

nJn−1

= xJn+1 (Jn+2Jn + xJn+1Jn−1) (Jn+2 + xJn) + x2
(
J2
n+1 + xJ2

n

)
Jn(Jn+1 + xJn−1)

= xJ2n+1(J2n+2 + xJ2n)

= xJ4n+2.

w lands at v1 at w lands at v1 at w lands at v1 at w lands at v1 at sum of the weights
the (n+ 1)st step? the (2n+ 2)nd step? the (3n+ 3)rd step? the (4n+ 3)rd step? of walks w

yes yes yes yes xJ2
n+2Jn+1Jn

yes yes no yes x2Jn+2J2
n+1Jn−1

yes no yes yes x2J3
n+1Jn

yes no no yes x3J2
n+1JnJn−1

no yes yes yes x2Jn+2Jn+1J2
n

no yes no yes x3J2
n+1JnJn−1

no no yes yes x3Jn+1J3
n

no no no yes x4J3
nJn−1

Table 7: Sums of the Weights of Closed Walks Originating at v2
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Using equations (1.3) and (1.4), we then get

S = S1 + S2

= J4n+4 + xJ4n+2

= J4n+3 + 2xJ4n+2

= (3x+ 1)J4
n+2 − 4x2J3

n+2Jn + x2J2
n+2J

2
n − (4x4 + 6x3 + x2)Jn+2J

3
n + 4x5Jn+2J

2
nJn−2

+ (3x5 + 3x4 + x3)J4
n + (2x5 + x4)J3

nJn−2 − (2x7 + x6)J2
nJ

2
n−2.

This value of S, coupled with its earlier version, yields the desired result, as expected. □

4. Conclusion

The graph-theoretic confirmations of the Jacobsthal identities (1.3) and (1.4) follow using
similar arguments.
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