GRAPH-THEORETIC CONFIRMATIONS OF FOUR SUMS OF JACOBSTHAL POLYNOMIAL PRODUCTS OF ORDER 4

THOMAS KOSHY

ABSTRACT. Using graph-theoretic tools, we establish four identities involving sums of Jacobsthal polynomial products of order 4.

1. INTRODUCTION

Extended gibonacci polynomials $z_n(x)$ are defined by the recurrence $z_{n+2}(x) = a(x)z_{n+1}(x) + b(x)z_n(x)$, where x is an arbitrary complex variable; a(x), b(x), $z_0(x)$, and $z_1(x)$ are arbitrary complex polynomials; and $n \ge 0$ [1, 2, 5].

Suppose a(x) = 1 and b(x) = x. When $z_0(x) = 0$ and $z_1(x) = 1$, $z_n(x) = J_n(x)$, the *n*th Jacobsthal polynomial; and when $z_0(x) = 2$ and $z_1(x) = 1$, $z_n(x) = j_n(x)$, the *n*th Jacobsthal-Lucas polynomial [1, 2]. Clearly, $J_n(1) = F_n$ and $j_n(1) = L_n$.

In the interest of brevity, clarity, and convenience, we omit the argument in the functional notation, when there is *no* ambiguity; so z_n will mean $z_n(x)$. We also omit a lot of basic algebra.

Table 1 lists some well known fundamental Jacobsthal identities [3]. We will employ them in our discourse.

$$\begin{bmatrix} J_{n+1} + xJ_{n-1} &= j_n & & J_{2n} &= J_n j_n \\ J_{n+1}^2 + xJ_n^2 &= J_{2n+1} & & J_{n+2} + x^2 J_{n-2} &= (2x+1)J_n \\ J_{m+n} &= J_{m+1}J_n + xJ_m J_{n-1} \end{bmatrix}$$

Table 1: Fundamental Jacobsthal Identities

1.1. Sums of Jacobsthal Polynomial Products of Order 4. Several sums of gibonacci polynomial products of order 4 are investigated in [5]; the following are six of them. Identities (1.1), (1.2), (1.5),and (1.6) form the cornerstone for our discourse:

$$J_{4n} = J_{n+2}^3 J_n - 2x J_{n+2}^2 J_n^2 - x^2 J_{n+2}^2 J_n J_{n-2} + 2(x^2 + x) J_{n+2} J_n^3 + x^4 J_{n+2} J_n J_{n-2}^2 - 2(x^4 + x^3) J_n^3 J_{n-2} + 2x^5 J_n^2 J_{n-2}^2 - x^6 J_n J_{n-2}^3;$$
(1.1)

$$J_{4n+1} = J_{n+2}^4 - 4x J_{n+2}^3 J_n + 2(3x^2 + 2x) J_{n+2}^2 J_n^2 - (4x^3 + 6x^2 + x) J_{n+2} J_n^3 - 2x^3 J_{n+2} J_n^2 J_{n-2} + (x^2 + x)^2 J_n^4 + (2x^4 + x^3) J_n^3 J_{n-2};$$
(1.2)

$$J_{4n+2} = J_{n+2}^4 - 3x^2 J_{n+2}^2 J_n^2 + 2x^4 J_{n+2} J_n^2 J_{n-2} + x^4 J_n^4 - x^6 J_n^2 J_{n-2}^2;$$
(1.3)

$$J_{4n+3} = (x+1)J_{n+2}^4 - 4x^2J_{n+2}^3J_n + (6x^3+x^2)J_{n+2}^2J_n^2 - (4x^4+6x^3+x^2)J_{n+2}J_n^3 + (x^5+3x^4+x^3)J_n^4 + (2x^5+x^4)J_n^3J_{n-2} - x^6J_n^2J_{n-2}^2;$$
(1.4)

$$j_{4n+2} = (2x+1)J_{n+2}^4 - 8x^2J_{n+2}^3J_n + (12x^3+5x^2)J_{n+2}^2J_n^2 - 2(4x^4+6x^3+x^2)J_{n+2}J_n^3 - 2x^4J_{n+2}J_n^2J_{n-2} + (2x^5+5x^4+2x^3)J_n^4 + 2(2x^5+x^4)J_n^3J_{n-2} - x^6J_n^2J_{n-2}^2;$$
(1.5)

NOVEMBER 2021

319

$$j_{4n+3} = (3x+1)J_{n+2}^4 - 4x^2J_{n+2}^3J_n + x^2J_{n+2}^2J_n^2 - (4x^4 + 6x^3 + x^2)J_{n+2}J_n^3 + 4x^5J_{n+2}J_n^2J_{n-2} + (3x^5 + 3x^4 + x^3)J_n^4 + (2x^5 + x^4)J_n^3J_{n-2} - (2x^7 + x^6)J_n^2J_{n-2}^2,$$
(1.6)

where $J_n = J_n(x)$ and $j_n(x) = j_n(x)$.

Our objective is to confirm the Jacobsthal identities (1.1), (1.2), (1.5), and (1.6) using graph-theoretic techniques.

2. Some Graph-Theoretic Tools

To confirm these Jacobsthal results, consider the weighted Jacobsthal digraph D_1 in Figure 1 with vertices v_1 and v_2 [3, 4].

FIGURE 1. Weighted Fibonacci Digraph D_1

It follows from its weighted adjacency matrix $M = \begin{bmatrix} 1 & x \\ 1 & 0 \end{bmatrix}$ that $M^n = \begin{bmatrix} J_{n+1} & xJ_n \\ J_n & xJ_{n-1} \end{bmatrix},$

where $J_n = J_n(x)$ and $n \ge 1$.

It then follows that the sum of the weights of closed walks of length n originating at v_1 is J_{n+1} , and that of those originating at v_2 is xJ_{n-1} . So, the sum of the weights of all closed walks of length n in the digraph is $J_{n+1} + xJ_{n-1} = j_n$. These facts play a major role in the graph-theoretic proofs.

Let A, B, C, and D denote the sets of closed walks of varying lengths originating at vertex v, respectively. Then, the sum of the weights of the elements in the product set $A \times B \times C \times D$ is *defined* as the product the sums of the walks in each component [4].

With these tools at our disposal, we are now ready to explore the graph-theoretic proofs.

3. Graph-theoretic Confirmations

3.1. Proof of Identity (1.1).

Proof. Let S denote the sum of the weights of closed walks of length 4n - 1 originating at v_1 . Clearly, $S = J_{4n}$.

We will now compute the sum S in a different way. To this end, let w be an arbitrary closed walk of length 4n - 1 originating at v_1 . It can land at v_1 or v_2 at the nth, 2nth, and 3nth steps:

$$w = \underbrace{v_1 - \cdots - v}_{\underbrace{v - \cdots - v}} \underbrace{v - \cdots - v}_{\underbrace{v - \cdots - v}} \underbrace{v - \cdots - v_1}_{\underbrace{v - \cdots - v_1}} ,$$

subwalk of length $n\,$ subwalk of length $n\,$ subwalk of length n-1

where
$$v = v_1$$
 or v_2 .

Table 2 shows the possible cases and the sums of weights of the corresponding walks w, where $J_n = J_n(x)$.

w lands at v_1 at	sum of the weights			
the n th step?	the $2n$ th step?	the $3n$ th step?	the $(4n-1)$ st step?	of walks w
yes	yes	yes	yes	$J_{n+1}^3 J_n$
yes	yes	no	yes	$xJ_{n+1}^2J_nJ_{n-1}$
yes	no	yes	yes	$xJ_{n+1}J_n^3$
yes	no	no	yes	$x^2 J_{n+1} J_n J_{n-1}^2$
no	yes	yes	yes	$xJ_{n+1}J_n^3$
no	yes	no	yes	$x^2 J_n^3 J_{n-1}$
no	no	yes	yes	$x^2 J_n^3 J_{n-1}$
no	no	no	yes	$x^{3}J_{n}J_{n-1}^{3}$

Table 2: Sums of the Weights of Closed Walks Originating at v_1

It follows from the table that the sum S of the weights of such walks w is given by

$$S = J_{n+1}^{3}J_{n} + xJ_{n+1}^{2}J_{n}J_{n-1} + 2xJ_{n+1}J_{n}^{3} + x^{2}J_{n+1}J_{n}J_{n-1}^{2} + 2x^{2}J_{n}^{3}J_{n-1} + x^{3}J_{n}J_{n-1}^{3}$$

= $A + B + C + D + E + F$,

where

$$S = J_{n+2}^{3}J_{n} - 2xJ_{n+2}^{2}J_{n}^{2} - x^{2}J_{n+2}^{2}J_{n}J_{n-2} + 2(x^{2} + x)J_{n+2}J_{n}^{3} + x^{2}J_{n+2}^{3} - 2(x^{4} + x^{3})J_{n}^{3}J_{n-2} + 2x^{5}J_{n}^{2}J_{n-2}^{2} - x^{6}J_{n}J_{n-2}^{3}.$$

NOVEMBER 2021

This value of S, coupled with its earlier value, yields identity (1.1), as desired.

3.2. Proof of Identity (1.2).

Proof. Let S' denote the sum of the weights of closed walks of length 4n originating at v_1 in the digraph. Then $S' = J_{4n+1}$.

To compute S' in a different way, we first let w be an arbitrary closed walk of length 4n originating at v_1 . It can land at v_1 or v_2 at the *n*th, 2nth, and 3nth steps:

 $w = \underbrace{v_1 - \cdots - v}_{\text{subwalk of length } n} \underbrace{v - \cdots - v}_{\text{subwalk of length } n} \underbrace{v - \cdots - v}_{\text{subwalk of length } n} \underbrace{v - \cdots - v_1}_{\text{subwalk of length } n},$

where $v = v_1$ or v_2 .

Table 3 summarizes the possible cases and the sums of the weights of the respective walks w, where $J_n = J_n(x)$.

w lands at v_1 at	sum of the weights			
the n th step?	the $2n$ th step?	the $3n$ th step?	the $4nst$ step?	of walks w
yes	yes	yes	yes	J_{n+1}^4
yes	yes	no	yes	$xJ_{n+1}^2J_n^2$
yes	no	yes	yes	$xJ_{n+1}^2J_n^2$
yes	no	no	yes	$x^2 J_{n+1} J_n^2 J_{n-1}$
no	yes	yes	yes	$xJ_{n+1}^2J_n^2$
no	yes	no	yes	$x^{2}J_{n}^{4}$
no	no	yes	yes	$\ x^2 J_{n+1} J_n^2 J_{n-1} \ $
no	no	no	yes	$x^{3}J_{n}^{2}J_{n-1}^{2}$

Table 3: Sums of the Weights of Closed Walks Originating at v_1

It follows from the table that

$$S' = J_{n+1}^4 + 3xJ_{n+1}^2J_n^2 + 2x^2J_{n+1}J_n^2J_{n-1} + x^2J_n^4 + x^3J_n^2J_{n-1}^2$$

= G + H + I + J + K,

where

Consequently,

$$S' = J_{n+2}^4 - 4x J_{n+2}^3 J_n + 3(2x^2 + x) J_{n+2}^2 J_n^2 - 2x^3 J_{n+2} J_n^2 J_{n-2}^2 - 4(x^3 + x^2) J_{n+2} J_n^3 + (x^2 + x)^2 J_n^4 + x^5 J_n^2 J_{n-2}^2.$$
(3.1)

To get the desired form for S', consider

$$L = xJ_{n+2}^2J_n^2 - (2x^2 + x)J_{n+2}J_n^3 + (2x^4 + x^3)J_n^3J_{n-2} - x^5J_n^2J_{n-2}^2.$$
(3.2)

Using the identity $J_{n+2} = (2x+1)J_n - x^2J_{n-2}$, we have

$$L = xJ_{n+2}J_n^2 \left[J_{n+2} - (2x+1)J_n\right] + x^3 J_n^2 J_{n-2}^2 \left[(2x+1)J_n - x^2 J_{n-2}\right]$$

= 0.

Thus, adding L in equation (3.2) to S' in equation (3.1) yields

$$S' = J_{n+2}^4 - 4x J_{n+2}^3 J_n + 2(3x^2 + 2x) J_{n+2}^2 J_n^2 - (4x^3 + 6x^2 + x) J_{n+2} J_n^3 - 2x^3 J_{n+2} J_n^2 J_{n-2} + (x^2 + x)^2 J_n^4 + (2x^4 + x^3) J_n^2 J_{n-2}^2.$$

By equating the two values of S', we get the desired result, as expected.

3.3. Proof of Identity (1.5).

Proof. Let S^* denote the sum of the weights of all closed walks of length 4n+2 in the digraph. Clearly, $S^* = j_{4n+2}$.

We will now compute S^* in a different way, and then equate the two values. To this end, let w be an arbitrary closed walk of length 4n + 2.

Case 1. Suppose w originates (and ends) at v_1 . It can land at v_1 or v_2 at the (n + 1)st, (2n + 2)nd, and (3n + 2)nd steps:

$$w = \underbrace{v_1 - \cdots - v}_{\text{subwalk of length } n+1 \text{ subwalk of length } n+1 \text{ subwalk of length } n} \underbrace{v - \cdots - v}_{\text{subwalk of length } n} \underbrace{v - \cdots - v_1}_{\text{subwalk of length } n},$$

where $v = v_1$ or v_2 .

It follows from Table 4 that the sum S_1^* of the weights of all such walks w is given by

$$S_{1}^{*} = J_{n+2}^{2}J_{n+1}^{2} + xJ_{n+2}^{2}J_{n}^{2} + xJ_{n+2}J_{n+1}^{2}J_{n} + x^{2}J_{n+2}J_{n+1}J_{n}J_{n-1} + xJ_{n+1}^{4} + 2x^{2}J_{n+1}^{2}J_{n}^{2} + x^{3}J_{n+1}J_{n}^{2}J_{n-1} = (J_{n+2}^{2} + xJ_{n+1}^{2}) (J_{n+1}^{2} + xJ_{n}^{2}) + xJ_{n+1}J_{n}(J_{n+2} + xJ_{n})(J_{n+1} + xJ_{n-1}) = J_{2n+3}J_{2n+1} + xJ_{2n+2}J_{2n} = J_{4n+3}.$$

w lands at v_1 at	sum of the weights			
the $(n+1)$ st step?	the $(2n+2)$ nd step?	the $(3n+2)$ nd step?	the $(4n+2)$ nd step?	of walks w
yes	yes	yes	yes	$J_{n+2}^2 J_{n+1}^2$
yes	yes	no	yes	$xJ_{n+2}^2J_n^2$
yes	no	yes	yes	$xJ_{n+2}J_{n+1}^2J_n$
yes	no	no	yes	$x^2 J_{n+2} J_{n+1} J_n J_{n-1}$
no	yes	yes	yes	xJ_{n+1}^4
no	yes	no	yes	$x^2 J_{n+1}^2 J_n^2$
no	no	yes	yes	$x^2 J_{n+1}^2 J_n^2$
no	no	no	yes	$x^3 J_{n+1} J_n^2 J_{n-1}^2$

Table 4: Sums of the Weights of Closed Walks Originating at v_1

Case 2. Suppose w originates at v_2 . It also can land at v_1 or v_2 at the (n+1)st, (2n+2)nd, and (3n+2)nd steps:

 $w = \underbrace{v_2 - \cdots - v}_{\text{subwalk of length } n+1 \text{ subwalk of length } n+1 \text{ subwalk of length } n+1 \text{ subwalk of length } n} \underbrace{v - \cdots - v}_{\text{subwalk of length } n+1 \text{ subwalk of length } n},$

where $v = v_1$ or v_2 .

It follows from Table 5 that the sum S_2^* of the weights of all such walks w is given by

$$S_{2}^{*} = xJ_{n+2}J_{n+1}^{2}J_{n} + x^{2}J_{n+2}J_{n+1}J_{n}J_{n-1} + 2x^{2}J_{n+1}^{2}J_{n}^{2} + x^{3}J_{n+1}^{2}J_{n-1}^{2} + x^{3}J_{n+1}J_{n}^{2}J_{n-1} + x^{3}J_{n}^{4} + x^{4}J_{n}^{2}J_{n-1}^{2} = xJ_{n+1}J_{n}(J_{n+2} + xJ_{n})(J_{n+1} + xJ_{n-1}) + x^{2}(J_{n+1}^{2} + xJ_{n}^{2})(J_{n}^{2} + xJ_{n-1}^{2}) = xJ_{2n+2}J_{2n} + x^{2}J_{2n+1}J_{2n-1} = xJ_{4n+1}.$$

w lands at v_1 at	w lands at v_1 at	w lands at v_1 at	w lands at v_2 at	sum of the weights
the $(n+1)$ st step?	the $(2n+2)$ nd step?	the $(3n+2)$ nd step?	the $(4n+2)$ nd step?	of walks w
yes	yes	yes	yes	$xJ_{n+2}J_{n+1}^2J_n$
yes	yes	no	yes	$x^2 J_{n+2} J_{n+1} J_n J_{n-1}$
yes	no	yes	yes	$x^2 J_{n+1}^2 J_n^2$
yes	no	no	yes	$x^3 J_{n+1}^2 J_{n-1}^2$
no	yes	yes	yes	$x^2 J_{n+1}^2 J_n^2$
no	yes	no	yes	$x^3 J_{n+1} J_n^2 J_{n-1}$
no	no	yes	yes	$x^{3}J_{n}^{4}$
no	no	no	yes	$x^4 J_n^2 J_{n-1}^2$

Table 5: Sums of the Weights of Closed Walks Originating at v_2

Combining the two cases and using identities (1.2) and (1.4), we get

$$\begin{split} S^* &= S_1^* + S_2^* \\ &= [(x+1)J_{n+2}^4 - 4x^2 J_{n+2}^3 J_n + (6x^3 + x^2) J_{n+2}^2 J_n^2 - (4x^4 + 6x^3 + x^2) J_{n+2} J_n^3 \\ &\quad + (x^5 + 3x^4 + x^3) J_n^4 + (2x^5 + x^4) J_n^3 J_{n-2} - x^6 J_n^2 J_{n-2}^2] \\ &\quad + x[J_{n+2}^4 - 4x J_{n+2}^3 J_n + 2(3x^2 + 2x) J_{n+2}^2 J_n^2 - (4x^3 + 6x^2 + x) J_{n+2} J_n^3 \\ &\quad - 2x^3 J_{n+2} J_n^2 J_{n-2} + (x^2 + x)^2 J_n^4 + (2x^4 + x^3) J_n^3 J_{n-2}] \\ &= (2x+1) J_{n+2}^4 - 8x^2 J_{n+2}^3 J_n + (12x^3 + 5x^2) J_{n+2}^2 J_n^2 - 2(4x^4 + 6x^3 + x^2) J_{n+2} J_n^3 \\ &\quad - 2x^4 J_{n+2} J_n^2 J_{n-2} + (2x^5 + 5x^4 + 2x^3) J_n^4 + 2(2x^5 + x^4) J_n^3 J_{n-2} - x^6 J_n^2 J_{n-2}^2. \end{split}$$

Equating this value of S^* with its earlier value yields identity (1.3), as desired.

Finally, we explore the graph-theoretic confirmation of identity (1.6).

3.4. Proof of Identity (1.6).

Proof. Let S denote the sum of the weights of all closed walks of length 4n + 3 in the digraph. Then $S = j_{4n+3}$.

We will now compute S in a different way. To this end, let w be an arbitrary walk of length 4n + 3.

Case 1. Suppose w originates (and ends) at v_1 . It can land at v_1 or v_2 at the (n + 1)st, (2n + 2)nd, and (3n + 3)rd steps:

$$w = \underbrace{v_1 - \cdots - v}_{\text{subwalk of length } n+1 \text{ subwalk of length } n+1$$

where $v = v_1$ or v_2 .

It follows from Table 6 that the sum S_1 of the weights of all such walks w is given by

$$S_{1} = J_{n+2}^{3}J_{n+1} + xJ_{n+2}^{2}J_{n+1}J_{n} + 2xJ_{n+2}J_{n+1}^{3} + x^{2}J_{n+2}J_{n+1}J_{n}^{2} + 2x^{2}J_{n+1}^{3}J_{n} + x^{3}J_{n+1}J_{n}^{3}$$

$$= J_{n+1} \left(J_{n+2}^{2} + 2xJ_{n+1}^{2} + x^{2}J_{n}^{2}\right) \left(J_{n+2} + xJ_{n}\right)$$

$$= J_{2n+2} \left(J_{n+2}^{2} + 2xJ_{n+1}^{2} + x^{2}J_{n}^{2}\right)$$

$$= J_{2n+2} (J_{2n+3}^{2} + xJ_{2n+1})$$

$$= J_{4n+4}.$$

w lands at v_1 at	sum of the weights			
the $(n+1)$ st step?	the $(2n+2)$ nd step?	the $(3n+3)$ rd step?	the $(4n + 3)$ rd step?	of walks w
yes	yes	yes	yes	$J_{n+2}^{3}J_{n+1}$
yes	yes	no	yes	$xJ_{n+2}^2J_{n+1}J_n$
yes	no	yes	yes	$xJ_{n+2}J_{n+1}^3$
yes	no	no	yes	$x^2 J_{n+2} J_{n+1} J_n^2$
no	yes	yes	yes	$xJ_{n+2}J_{n+1}^3$
no	yes	no	yes	$x^2 J_{n+1}^3 J_n$
no	no	yes	yes	$x^2 J_{n+1}^3 J_n$
no	no	no	yes	$x^3 J_{n+1} J_n^3$

Table 6: Sums of the Weights of Closed Walks Originating at v_1

Case 2. Suppose w originates at v_2 . It also can land at v_1 or v_2 at the (n+1)st, (2n+2)nd, and (3n+3)rd steps:

$$w = \underbrace{v_2 - \cdots - v}_{\text{subwalk of length } n+1 \text{ subwalk of length } n+1$$

where $v = v_1$ or v_2 .

It follows from Table 7 that the sum S_2 of the weights of all closed walks w originating at v_2 is given by

$$S_{2} = xJ_{n+2}^{2}J_{n+1}J_{n} + x^{2}J_{n+2}J_{n+1}^{2}J_{n-1} + x^{2}J_{n+2}J_{n+1}J_{n}^{2} + x^{2}J_{n+1}^{3}J_{n} + 2x^{3}J_{n+1}^{2}J_{n}J_{n-1} + x^{3}J_{n+1}J_{n}^{3} + x^{4}J_{n}^{3}J_{n-1} = xJ_{n+1} \left(J_{n+2}J_{n} + xJ_{n+1}J_{n-1}\right) \left(J_{n+2} + xJ_{n}\right) + x^{2} \left(J_{n+1}^{2} + xJ_{n}^{2}\right) J_{n} \left(J_{n+1} + xJ_{n-1}\right) = xJ_{2n+1} \left(J_{2n+2} + xJ_{2n}\right) = xJ_{4n+2}.$$

w lands at v_1 at	sum of the weights			
the $(n+1)$ st step?	the $(2n+2)$ nd step?	the $(3n+3)$ rd step?	the $(4n+3)$ rd step?	of walks w
yes	yes	yes	yes	$xJ_{n+2}^2J_{n+1}J_n$
yes	yes	no	yes	$x^2 J_{n+2} J_{n+1}^2 J_{n-1}$
yes	no	yes	yes	$x^2 J_{n+1}^3 J_n$
yes	no	no	yes	$x^3 J_{n+1}^2 J_n J_{n-1}$
no	yes	yes	yes	$x^2 J_{n+2} J_{n+1} J_n^2$
no	yes	no	yes	$x^3 J_{n+1}^2 J_n J_{n-1}$
no	no	yes	yes	$x^{3}J_{n+1}J_{n}^{3}$
no	no	no	yes	$x^4 J_n^3 J_{n-1}$

Table 7: Sums of the Weights of Closed Walks Originating at v_2

NOVEMBER 2021

Using equations (1.3) and (1.4), we then get

$$S = S_1 + S_2$$

= $J_{4n+4} + xJ_{4n+2}$
= $J_{4n+3} + 2xJ_{4n+2}$
= $(3x+1)J_{n+2}^4 - 4x^2J_{n+2}^3J_n + x^2J_{n+2}^2J_n^2 - (4x^4 + 6x^3 + x^2)J_{n+2}J_n^3 + 4x^5J_{n+2}J_n^2J_{n-2}$
+ $(3x^5 + 3x^4 + x^3)J_n^4 + (2x^5 + x^4)J_n^3J_{n-2} - (2x^7 + x^6)J_n^2J_{n-2}^2.$

This value of S, coupled with its earlier version, yields the desired result, as expected. \Box

4. Conclusion

The graph-theoretic confirmations of the Jacobsthal identities (1.3) and (1.4) follow using similar arguments.

5. Acknowledgment

The author thanks the reviewer for a careful reading of the article, and for constructive suggestions and encouraging words.

References

- [1] A. F. Horadam, Jacobsthal representation polynomials, The Fibonacci Quarterly, 35.2 (1997), 137–148.
- [2] T. Koshy, Polynomial extensions of the Lucas and Ginsburg identities revisited, The Fibonacci Quarterly, 55.2 (2017), 147–151.
- [3] T. Koshy, Fibonacci and Lucas Numbers with Applications, Volume II, Wiley, Hoboken, New Jersey, 2019.
- [4] T. Koshy, A recurrence for gibonacci cubes with graph-theoretic confirmations, The Fibonacci Quarterly, 57.2 (2019), 139–147.
- [5] T. Koshy, A family of sums of gibonacci polynomial products of order 4 revisited, The Fibonacci Quarterly, 59.3 (2021), 225–231.

MSC2020: Primary 05C20, 05C22, 11B39, 11B83, 11C08

DEPARTMENT OF MATHEMATICS, FRAMINGHAM STATE UNIVERSITY, FRAMINGHAM, MA 01701, USA *Email address*: tkoshy@emeriti.framingham.edu