INFINITE SUMS INVOLVING JACOBSTHAL POLYNOMIAL PRODUCTS

THOMAS KOSHY

ABSTRACT. We explore infinite sums involving Jacobsthal polynomial products and their Jacobsthal-Lucas counterparts, and then extract the corresponding gibonacci versions.

1. INTRODUCTION

Extended gibonacci polynomials $z_n(x)$ are defined by the recurrence $z_{n+2}(x) = a(x)z_{n+1}(x) + b(x)z_n(x)$, where x is an arbitrary integer variable; a(x), b(x), $z_0(x)$, and $z_1(x)$ are arbitrary integer polynomials; and $n \ge 0$.

Suppose a(x) = x and b(x) = 1. When $z_0(x) = 0$ and $z_1(x) = 1$, $z_n(x) = f_n(x)$, the *n*th *Fibonacci polynomial*; and when $z_0(x) = 2$ and $z_1(x) = x$, $z_n(x) = l_n(x)$, the *n*th *Lucas polynomial*. Clearly, $f_n(1) = F_n$, the *n*th Fibonacci number; and $l_n(1) = L_n$, the *n*th Lucas number [1, 2].

On the other hand, let a(x) = 1 and b(x) = x. When $z_0(x) = 0$ and $z_1(x) = 1$, $z_n(x) = J_n(x)$, the *n*th Jacobsthal polynomial; and when $z_0(x) = 2$ and $z_1(x) = 1$, $z_n(x) = j_n(x)$, the *n*th Jacobsthal-Lucas polynomial. They can also be defined by the Binet-like formulas

$$J_n(x) = \frac{u^n(x) - v^n(x)}{D}$$
 and $j_n(x) = u^n(x) + v^n(x)$,

where 2u(x) = 1 + D, 2v(x) = 1 - D, and $D = \sqrt{4x + 1}$. Correspondingly, $J_n = J_n(2)$ and $j_n = j_n(2)$ are the *n*th Jacobsthal and Jacobsthal-Lucas numbers, respectively. Clearly, $J_n(1) = F_n$; and $j_n(1) = L_n$.

Fibonacci and Jacobsthal polynomials, and Lucas and Jacobsthal-Lucas polynomials are closely related by the relationships $J_n(x) = x^{(n-1)/2} f_n(1/\sqrt{x})$ and $j_n(x) = x^{n/2} l_n(1/\sqrt{x})$ [2].

In the interest of brevity, clarity, and convenience, we omit the argument in the functional notation, when there is *no* ambiguity; so z_n will mean $z_n(x)$. We let $\Delta = \sqrt{x^2 + 4}$, $2\alpha(x) = x + \Delta$, and $2\beta(x) = x - \Delta$, and omit a lot of basic algebra.

2. Sums Involving Gibonacci Polynomial Products

The following sums of gibonacci polynomial products are studied in [3].

$$\sum_{n=0}^{\infty} \frac{1}{F_{2n}^2 + 1} = \frac{1 + \sqrt{5}}{2}, \qquad \qquad \sum_{n=0}^{\infty} \frac{1}{F_{2n+1}^2 + 1} = \frac{\sqrt{5}}{3}, \\ \sum_{n=0}^{\infty} \frac{1}{F_n^2 + 1} = \frac{3 + 5\sqrt{5}}{6}, \qquad \qquad \sum_{n=3}^{\infty} \frac{1}{F_n^4 - 1} = \frac{35}{18} - \frac{5\sqrt{5}}{6} \\ \sum_{n=0}^{\infty} \frac{1}{L_{2n}^2 + 1} = \frac{\alpha}{5}, \qquad \qquad \sum_{k=0}^{\infty} \frac{1}{L_{2n+1}^2 + 9} = \frac{\sqrt{5}}{15}, \\ \sum_{n=3}^{\infty} \frac{1}{L^4 - 25} = \frac{5}{63} - \frac{\sqrt{5}}{30}.$$

We will revisit them in our investigations.

3. SUMS INVOLVING JACOBSTHAL POLYNOMIAL PRODUCTS

Our discourse hinges on the identities $J_{n+1} + xJ_{n-1} = j_n$, $J_{n+2} + x^2J_{n-2} = (2x+1)J_n$, $J_{2n} = J_n j_n$, $J_{n+k}J_{n-k} - J_n^2 = -(-x)^{n-k}J_k^2$, $-(-x)^b J_{a-b} = J_{a+1}J_b - J_a J_{b+1}$, $j_n^2 - D^2 J_n^2 = 4(-x)^n$, $J_{n+3} + x^2 J_{n-1} = (2x+1)J_{n+1}$ [2].

With this background, we begin our explorations with the first infinite sum.

Theorem 3.1. Let $J_n = J_n(x)$. Then,

$$\sum_{n=0}^{\infty} \frac{x^{2n-1}}{J_{2n}^2 + x^{2n-1}} = u(x).$$
(3.1)

Proof. First, we will establish the summation formula

$$\sum_{n=0}^{m} \frac{x^{2n-1}}{J_{2n}^2 + x^{2n-1}} = \frac{J_{2m+2}}{J_{2m+1}},$$
(3.2)

using recursion [2, 3]. To this end, let A_m denote the left side of equation (3.2) and B_m its right side. Using the Jacobsthal addition formula and the Cassini-like identity, we have

$$B_m - B_{m-1} = \frac{J_{2m+2}}{J_{2m+1}} - \frac{J_{2m}}{J_{2m-1}}$$
$$= \frac{J_{2m+2}J_{2m-1} - J_{2m+1}J_{2m}}{J_{2m+1}J_{2m-1}}$$
$$= \frac{x^{2m-1}J_{(2m+2)-2m}}{J_{2m}^2 + x^{2m-1}}$$
$$= \frac{x^{2m-1}}{J_{2m}^2 + x^{2m-1}}$$
$$= A_m - A_{m-1}.$$

Thus, $A_m - A_{m-1} = B_m - B_{m-1}$; so $A_m - B_m = A_{m-1} - B_{m-1} = \cdots = A_0 - B_0 = 1 - 1 = 0$. This implies, $A_m = B_m$.

Because $\lim_{m \to \infty} \frac{J_{m+1}}{J_m} = u(x)$, it follows from equation (3.2) that

$$\sum_{n=0}^{\infty} \frac{x^{2n-1}}{J_{2n}^2 + x^{2n-1}} = u(x), \tag{3.3}$$

as desired.

It follows from equations (3.2) and (3.1) that

$$\sum_{n=0}^{m} \frac{1}{F_{2n}^2 + 1} = \frac{F_{2m+2}}{F_{2m+1}};$$
$$\sum_{n=0}^{\infty} \frac{1}{F_{2n}^2 + 1} = \frac{1 + \sqrt{5}}{2};$$

NOVEMBER 2021

339

respectively, as in [3, 4, 6]; we also have

$$\sum_{n=0}^{m} \frac{2^{2n-1}}{J_{2n}^2 + 2^{2n-1}} = \frac{J_{2m+2}}{J_{2m+1}};$$
$$\sum_{n=0}^{\infty} \frac{2^{2n-1}}{J_{2n}^2 + 2^{2n-1}} = 2.$$

Next, we explore a corresponding result for odd-numbered Jacobsthal polynomials.

Theorem 3.2.

$$\sum_{n=0}^{\infty} \frac{(2x+1)x^{2n-1}}{J_{2n+1}^2 + x^{2n-1}} = \sqrt{4x+1}.$$
(3.4)

Proof. First, we will establish that

$$\sum_{n=0}^{m} \frac{(2x+1)x^{2n-1}}{J_{2n+1}^2 + x^{2n-1}} = \frac{J_{4m+4}}{J_{2m+3}J_{2m+1}},$$
(3.5)

using recursion. Let A_m and B_m denote the left and right side of equation (3.5), respectively. Using the addition formula, Cassini-like identity, and the identities $J_{2n} = J_n j_n$, $j_n = J_{n+1} + xJ_{n-1}$, and $J_{n+3} + x^2 J_{n-1} = (2x+1)J_{n+1}$, we get

$$B_{m} - B_{m-1} = \frac{J_{4m+4}}{J_{2m+3}J_{2m+1}} - \frac{J_{4m}}{J_{2m+1}J_{2m-1}}$$

$$= \frac{J_{2m+2}(J_{2m+3} + xJ_{2m+1})}{J_{2m+3}J_{2m+1}} - \frac{J_{2m}(J_{2m+1} + xJ_{2m-1})}{J_{2m+1}J_{2m-1}}$$

$$= \frac{J_{2m+3}(J_{2m+2}J_{2m-1} - J_{2m+1}J_{2m}) - xJ_{2m-1}(J_{2m+3}J_{2m} - J_{2m+2}J_{2m+1})}{J_{2m+3}J_{2m+1}J_{2m-1}}$$

$$= \frac{x^{2m-1}J_{2m+3}J_2 - x(-x^{2m})J_{2m-1}J_2}{J_{2m+3}J_{2m+1}J_{2m-1}}$$

$$= \frac{x^{2m-1}(J_{2m+3} + x^2J_{2m-1})}{J_{2m+3}J_{2m+1}J_{2m-1}}$$

$$= \frac{(2x+1)x^{2m-1}}{J_{2m+3}J_{2m-1}}$$

$$= \frac{(2x+1)x^{2m-1}}{J_{2m+1}^2}$$

$$= A_m - A_{m-1}.$$

Consequently, $A_m - B_m = A_{m-1} - B_{m-1} = \dots = A_0 - B_0 = \frac{2x+1}{x+1} - \frac{2x+1}{x+1} = 0$. So, $A_m = B_m$.

It then follows from equation (3.5) that

$$\sum_{n=0}^{\infty} \frac{(2x+1)x^{2n-1}}{J_{2n+1}^2 + x^{2n-1}} = \lim_{m \to \infty} \frac{J_{2m+2}j_{2m+2}}{J_{2m+3}J_{2m+1}}$$
$$= \lim_{m \to \infty} \frac{J_{2m+2}}{J_{2m+3}} \cdot \lim_{n \to \infty} \frac{j_{2m+2}}{J_{2m+1}}$$
$$= \frac{1}{u(x)} \cdot u(x)D$$
$$= D,$$

as expected.

It follows from equations (3.5) and (3.4) that

$$\begin{split} \sum_{n=0}^{m} \frac{3}{F_{2n+1}^2 + 1} &= \frac{F_{4m+4}}{F_{2m+3}F_{2m+1}};\\ \sum_{n=0}^{\infty} \frac{1}{F_{2n+1}^2 + 1} &= \frac{\sqrt{5}}{3};\\ \sum_{n=0}^{m} \frac{5 \cdot 2^{2n-1}}{J_{2n+1}^2 + 2^{2n-1}} &= \frac{J_{4m+4}}{J_{2m+3}J_{2m+1}};\\ \sum_{n=0}^{\infty} \frac{2^{2n-1}}{J_{2n+1}^2 + 2^{2n-1}} &= \frac{3}{5}; \end{split}$$

see [3, 6].

3.1. Additional Implications. Using the relationship $J_n(x) = x^{(n-1)/2} f_n(1/\sqrt{x})$, we can extract in two steps the Fibonacci versions of equations (3.2) and (3.5), and hence, equations (3.1) and (3.4).

Consider equation (3.2). Replacing $1/\sqrt{x}$ with x and then x with $1/x^2$, we get

LHS =
$$\sum_{n=0}^{m} \frac{x^{2n-1}}{\left[x^{(2n-1)/2} f_{2n}(1/\sqrt{x})\right]^2 + x^{2n-1}}$$

=
$$\sum_{n=0}^{m} \frac{x^{2n-1}}{x^{2n-1} f_{2n}^2(1/\sqrt{x}) + x^{2n-1}}$$

=
$$\sum_{n=0}^{m} \frac{1}{x^{4n-2} \left[\frac{1}{x^{4n-2}} f_{2n}^2(x) + \frac{1}{x^{4n-2}}\right]}$$

=
$$\sum_{n=0}^{m} \frac{1}{f_{2n}^2(x) + 1};$$

RHS =
$$\frac{x^{(2m+1)/2} f_{2m+2}(1/\sqrt{x})}{x^{(2m)/2} f_{2m+1}(1/\sqrt{x})}$$

=
$$\frac{f_{2m+2}(x)}{x f_{2m+1}(x)}.$$

NOVEMBER 2021

341

Combining the two sides, we get

$$\sum_{n=0}^{m} \frac{x}{f_{2n}^2(x) + 1} = \frac{f_{2m+2}}{f_{2m+1}};$$
$$\sum_{n=0}^{\infty} \frac{x}{f_{2n}^2(x) + 1} = \alpha(x),$$

as in equations (2.1) and (2.2) of [3].

Next, consider equation (3.5). Using the Jacobsthal-Fibonacci relationship and the two steps, we get

$$\begin{split} \text{LHS} &= \sum_{n=0}^{m} \frac{(2x+1)x^{2n-1}}{\left[x^{(2n)/2}f_{2n+1}(1/\sqrt{x})\right]^2 + x^{2n-1}} \\ &= \sum_{n=0}^{m} \frac{(2x+1)x^{2n-1}}{x^{2n}f_{2n+1}^2(1/\sqrt{x}) + x^{2n-1}} \\ &= \sum_{n=0}^{m} \frac{x^2 + 2}{x^2 \left[\frac{1}{x^2}f_{2n+1}^2(x) + 1\right]} \\ &= \sum_{n=0}^{m} \frac{x^2 + 2}{f_{2n+1}^2(x) + x^2}; \\ \text{RHS} &= \frac{x^{(4m+3)/2}f_{4m+4}(1/\sqrt{x})}{x^{(2m+2)/2}f_{2m+3}(1/\sqrt{x}) \cdot x^{(2m)/2}f_{2m+1}(1/\sqrt{x})} \\ &= \frac{\sqrt{x}f_{4m+4}(1/\sqrt{x})}{f_{2m+3}(1/\sqrt{x})f_{2m+1}(1/\sqrt{x})} \\ &= \frac{f_{4m+4}(x)}{xf_{2m+3}(x)f_{2m+1}(x)}. \end{split}$$

Equating the two sides then yields

$$\sum_{n=0}^{m} \frac{x^3 + 2x}{f_{2n+1}^2 + x^2} = \frac{f_{4m+4}}{f_{2m+3}f_{2m+1}};$$
$$\sum_{n=0}^{\infty} \frac{x^3 + 2x}{f_{2n+1}^2 + x^2} = \alpha(x) - \beta(x),$$

as in equations (2.4) and (2.3) of [3], respectively.

Next, we explore the Jacobsthal counterpart of Theorem 2.3 in [3].

Theorem 3.3. Let u = u(x) and $J_n = J_n(x)$. Then,

$$\sum_{n=3}^{\infty} \frac{(x+1)(2x+1)x^{2n}}{J_n^4 + (x-1)(-x)^{n-2} - x^{2n-3}} = (x^2+1)\left(\frac{2x^2+4x+1}{x+1} - \frac{4x+1}{u}\right) - \frac{x^6}{2x+1}.$$
 (3.6)

Proof. From the proof of Theorem 2.3 in [3], we have

$$\sum_{n=1}^{m-1} \frac{x^3 + x}{f_n f_{n+1} f_{n+2} f_{n+3}} = \frac{x^4 + 4x^2 + 2}{x^3 + x} - \left(\frac{f_{m-1}}{f_m} + \frac{(x^2 + 2)f_m}{f_{m+1}} + \frac{f_{m+1}}{f_{m+2}}\right).$$

Using the relationship $J_n(x) = x^{(n-1)/2} f_n(1/\sqrt{x})$, this yields

LHS =
$$\frac{1}{x\sqrt{x}} \sum_{n=1}^{m-1} \frac{(x+1)x^{2n+1}}{[x^{(n-1)/2}f_n] [x^{n/2}f_{n+1}] [x^{(n+1)/2}f_{n+2}] [x^{(n+2)/2}f_{n+3}]}$$

= $\frac{1}{\sqrt{x}} \sum_{n=1}^{m-1} \frac{(x+1)x^{2n}}{J_n J_{n+1} J_{n+2} J_{n+3}};$
RHS = $\frac{(2x^2 + 4x + 1)\sqrt{x}}{x+1}$
 $- \left[\frac{x^{3/2}}{x} \cdot \frac{x^{(m-2)/2} f_{m-1}}{x^{(m-1)/2} f_m} + \frac{(2x+1)x}{x\sqrt{x}} \cdot \frac{x^{(m-1)/2} f_m}{x^{m/2} f_{m+1}} + \sqrt{x} \cdot \frac{x^{m/2} f_{m+1}}{x^{(m+1)/2} f_{m+2}}\right]$
= $\frac{(2x^2 + 4x + 1)\sqrt{x}}{x+1} - \left(\sqrt{x} \cdot \frac{J_{m-1}}{J_m} + \frac{2x+1}{\sqrt{x}} \cdot \frac{J_m}{J_{m+1}} + \sqrt{x} \cdot \frac{J_{m+1}}{J_{m+2}}\right)$
= $\frac{(2x^2 + 4x + 1)\sqrt{x}}{x+1} - \sqrt{x} \left(\frac{J_{m-1}}{J_m} + \frac{2x+1}{x} \frac{J_m}{J_{m+1}} + \frac{J_{m+1}}{J_{m+2}}\right),$

where $f_n = f_n(1/\sqrt{x})$ and $J_n = J_n(x)$. Combining the two sides, we then get

$$\sum_{n=1}^{m-1} \frac{(x+1)x^{2n}}{J_n J_{n+1} J_{n+2} J_{n+3}} = \frac{2x^2 + 4x + 1}{x+1} - \left[x\frac{J_{m-1}}{J_m} + (2x+1)\frac{J_m}{J_{m+1}} + x\frac{J_{m+1}}{J_{m+2}}\right].$$

Consequently,

$$\sum_{n=3}^{\infty} \frac{(x+1)x^{2n}}{J_{n-2}J_{n-1}J_nJ_{n+1}} = \frac{2x^2+4x+1}{x+1} - \left(\frac{x}{u} + \frac{2x+1}{u} + \frac{x}{u}\right)$$
$$= \frac{2x^2+4x+1}{x+1} - \frac{4x+1}{u};$$
$$\sum_{n=3}^{\infty} \frac{(x+1)x^{2n}}{J_{n-1}J_nJ_{n+1}J_{n+2}} = \frac{2x^2+4x+1}{x+1} - \frac{4x+1}{u} - \frac{x^4}{2x+1}.$$

Because $J_{n+2} + x^2 J_{n-2} = (2x+1)J_n$, $J_{n+k}J_{n-k} - J_n^2 = -(-x)^{n-k}J_k^2$ [2] and $J_{n-2}J_{n-1}J_{n+1}J_{n+2} = (J_{n+1}J_{n-1})(J_{n+2}J_{n-2})$ $= [J_n^2 - (-x)^{n-1}] [J_n^2 - (-x)^{n-2}]$ $= J_n^4 + (x-1)(-x)^{n-2}J_n^2 - x^{2n-3},$

we then have

$$\begin{aligned} \frac{2x+1}{J_n^4+(x-1)(-x)^{n-2}J_n^2-x^{2n-3}} &= \frac{(2x+1)J_n}{J_{n-2}J_{n-1}J_nJ_{n+1}J_{n+2}} \\ &= \frac{J_{n+2}+x^2J_{n-2}}{J_{n-2}J_{n-1}J_nJ_{n+1}J_{n+2}} \\ &= \frac{1}{J_{n-2}J_{n-1}J_nJ_{n+1}} + \frac{x^2}{J_{n-1}J_nJ_{n+1}J_{n+2}}, \\ \sum_{n=3}^{\infty} \frac{(x+1)(2x+1)x^{2n}}{J_n^4+(x-1)(-x)^{n-2}J_n^2-x^{2n-3}} &= (x^2+1)\left(\frac{2x^2+4x+1}{x+1}-\frac{4x+1}{u}\right) - \frac{x^6}{2x+1}, \end{aligned}$$

NOVEMBER 2021

as desired.

It follows from equation (3.6) that

$$\sum_{n=3}^{\infty} \frac{1}{F_n^4 - 1} = \frac{35}{18} - \frac{5\sqrt{5}}{6},$$

as in [3, 4, 6]. In addition,

$$\sum_{n=3}^{\infty} \frac{2^{2n}}{J_n^4 + (-2)^{n-2} J_n^2 - 2^{2n-3}} = -\frac{209}{450}.$$

Next, we investigate the Jacobsthal-Lucas consequences of the above Jacobsthal polynomial sums. Our investigation hinges on the identity $j_n^2 - D^2 J_n^2 = 4(-x)^n$, where $D = \sqrt{4x+1}$ [2].

4. Jacobsthal-Lucas Implications

4.1. Counterparts of Equations (3.2) and (3.5). It follows from equation (3.2) that

$$\sum_{n=0}^{m} \frac{x^{2n-1}}{D^2 J_{2n}^2 + D^2 x^{2n-1}} = \frac{J_{2m+2}}{D^2 J_{2m+1}};$$

$$\sum_{n=0}^{m} \frac{x^{2n-1}}{j_{2n}^2 - 4(-x)^{2n} + D^2 x^{2n-1}} = \frac{J_{2m+2}}{D^2 J_{2m+1}};$$

$$\sum_{n=0}^{m} \frac{x^{2n-1}}{j_{2n}^2 + x^{2n-1}} = \frac{J_{2m+2}}{(4x+1)J_{2m+1}}.$$
(4.1)

Similarly, equation (3.5) yields

$$\sum_{n=0}^{m} \frac{(2x+1)x^{2n-1}}{j_{2n+1}^2 + (2x+1)^2 x^{2n-1}} = \frac{J_{4m+4}}{(4x+1)J_{2m+3}J_{2m+1}}.$$
(4.2)

It follows from equations (4.1) and (4.2) that

$$\sum_{n=0}^{m} \frac{2^{2n-1}}{j_{2n}^2 + 2^{2n-1}} = \frac{J_{2m+2}}{9J_{2m+1}};$$

$$\sum_{n=0}^{\infty} \frac{x^{2n-1}}{j_{2n}^2 + x^{2n-1}} = \frac{u(x)}{4x+1};$$
(4.3)

$$\sum_{n=0}^{\infty} \frac{2^{2n-1}}{j_{2n}^2 + 2^{2n-1}} = \frac{2}{9};$$
(4.4)

$$\sum_{n=0}^{m} \frac{2^{2n-1}}{j_{2n+1}^2 + 25 \cdot 2^{2n-1}} = \frac{J_{4m+4}}{45J_{2m+3}J_{2m+1}};$$

$$(2m+1)m^{2n-1} = 1$$

$$\sum_{n=0}^{\infty} \frac{(2x+1)x^{2n-1}}{j_{2n+1}^2 + (2x+1)^2 x^{2n-1}} = \frac{1}{D};$$
(4.5)

$$\sum_{n=0}^{\infty} \frac{2^{2n-1}}{j_{2n+1}^2 + 25 \cdot 2^{2n-1}} = \frac{1}{15}.$$
(4.6)

Equations (4.3) and (4.5) imply that

$$\sum_{n=0}^{\infty} \frac{1}{L_{2n}^2 + 1} = \frac{1 + \sqrt{5}}{10};$$
$$\sum_{n=0}^{\infty} \frac{1}{L_{2n+1}^2 + 9} = \frac{\sqrt{5}}{15},$$

respectively, as found earlier.

4.2. Lucas Versions of Equations (4.1) and (4.2). Using the Jacobsthal-Lucas relationship $j_n(x) = x^{n/2} l_n(1/\sqrt{x})$ and the two steps used earlier, we can extract the Lucas counterparts of equations (4.1) and (4.2).

First, consider equation (4.1). Following the two-step method, we get

LHS =
$$D^2 \sum_{n=0}^{m} \frac{x^{2n-1}}{j_{2n}^2(x) + x^{2n-1}}$$

= $D^2 \sum_{n=0}^{m} \frac{x^{2n-1}}{x^{2n}l_{2n}^2(1/\sqrt{x}) + x^{2n-1}}$
= $\frac{\Delta^2}{x^2} \sum_{n=0}^{m} \frac{1}{x^{4n-2} \left[\frac{1}{x^{4n}}l_{2n}^2(x) + \frac{1}{x^{4n-2}}\right]}$
= $\sum_{k=0}^{m} \frac{\Delta^2}{l_{2n}^2(x) + x^2};$
RHS = $\frac{J_{2m+2}(x)}{J_{2m+1}(x)}$
= $\frac{x^{(2m+1)/2}f_{2m+2}(1/\sqrt{x})}{x^{(2m)/2}f_{2m+1}(1/\sqrt{x})}$
= $\frac{\sqrt{x}f_{2m+2}(1/\sqrt{x})}{f_{2m+1}(1/\sqrt{x})}$
= $\frac{f_{2m+2}(x)}{xf_{2m+1}(x)}.$

Equating the two sides yields

$$\sum_{n=0}^{m} \frac{x}{l_{2n}^2 + x^2} = \frac{f_{2m+2}}{\Delta^2 f_{2m+1}};$$
$$\sum_{n=0}^{\infty} \frac{x}{l_{2n}^2 + x^2} = \frac{\alpha(x)}{x^2 + 4},$$

as in [3].

NOVEMBER 2021

Next, we begin with equation (4.2). Using the two-step procedure, we get

LHS =
$$D^2(2x+1)\sum_{n=0}^m \frac{x^{2n-1}}{[x^{(2n+1)/2}l_{2n+1}(1/\sqrt{x})]^2 + (2x+1)^2x^{2n-1}}$$

= $\frac{\Delta^2(x^2+2)}{x^4}\sum_{n=0}^m \frac{x^4}{l_{2n+1}^2(x) + (x^2+2)^2}$
= $\sum_{n=0}^m \frac{\Delta^2(x^2+2)}{l_{2n+1}^2(x) + (x^2+2)^2};$
RHS = $\frac{J_{4m+4}(x)}{J_{2m+3}(x)J_{2m+1}(x)}$
= $\frac{x^{(4m+3)/2}f_{4m+4}(1/\sqrt{x})}{x^{(2m+2)/2}f_{2m+3}(1/\sqrt{x})x^{(2m)/2}f_{2m+1}(1/\sqrt{x})}$
= $\frac{\sqrt{x}f_{4m+4}(1/\sqrt{x})}{f_{2m+3}(1/\sqrt{x})f_{2m+1}(1/\sqrt{x})}$
= $\frac{f_{4m+4}(x)}{xf_{2m+3}f_{2m+1}}.$

Equating the two sides, we get

$$\sum_{n=0}^{m} \frac{x^3 + 2x}{l_{2n+1}^2 + (x^2 + 2)^2} = \frac{f_{4m+4}}{\Delta^2 f_{2m+3} f_{2m+1}};$$

$$\sum_{n=0}^{\infty} \frac{x^3 + 2x}{l_{2n+1}^2 + (x^2 + 2)^2} = \frac{1}{\sqrt{x^2 + 4}},$$

as in [3].

Using the Lucas-Jacobsthal relationship $j_n(x) = x^{n/2} l_n(1/\sqrt{x})$, next we explore the Jacobsthal version of equation (4.5) in [3]:

$$\sum_{n=3}^{\infty} \frac{(x^2+1)(x^3+2x)\Delta^4}{d(x)} = \frac{2(x^4+4x^2+2)}{x^3+x} + 2\Delta^2\beta(x) - \frac{1}{x^3+2x},$$
(4.7)
where $d(x) = l_n^4 - (-1)^n [(x^2-1)\Delta^2 + 8] l_n^2 - (x^3+2x)^2.$

4.3. Jacobsthal Version of Equation (4.7). Replacing x with \sqrt{x} in equation (4.7) and then multiplying the resulting equation with x^{2n-4} , we get

$$\begin{split} \text{LHS} &= \frac{1}{\sqrt{x}} \sum_{n=3}^{\infty} \frac{(x+1)(2x+1)D^4}{\{x^4 l_n^4 + (-1)^n [(x-1)D^2 - 8x^2] x^2 l_n^2 - x(2x+1)^2\}} \\ &= \frac{1}{\sqrt{x}} \sum_{n=3}^{\infty} \frac{(x+1)(2x+1)D^4 x^{2n-4}}{\{j_n^4 + (-1)^n [(x-1)D^2 - 8x^2] x^{n-4} j_n^2 - (2x+1)^2 x^{2n-3}\}}; \\ \text{RHS} &= \frac{2(2x^2 + 4x + 1)\sqrt{x}}{x^2 + x} + \frac{(1-D)D^2}{x\sqrt{x}} - \frac{x\sqrt{x}}{2x+1}, \end{split}$$

where $l_n = l_n(1/\sqrt{x})$ and $j_n = j_n(x)$.

VOLUME 59, NUMBER 4

Combining the two sides yields

$$\sum_{n=3}^{\infty} \frac{(x+1)(2x+1)D^4 x^{2n-4}}{k(x)} = \frac{2(2x^2+4x+1)}{x+1} + \frac{(1-D)D^2}{x} - \frac{x^2}{2x+1},$$
(4.8)

where $k(x) = j_n^4 + (-1)^n [(x-1)D^2 - 8x^2]x^{n-4}j_n^2 - (2x+1)^2x^{2n-3}$. In particular, we then get

$$\sum_{n=3}^{\infty} \frac{1}{L_n^4 - 8(-1)^n L_n^2 - 9} = \frac{7 - 3\sqrt{5}}{90};$$
$$\sum_{n=3}^{\infty} \frac{2^{2n}}{j_n^4 - 23(-2)^{n-4} j_n^2 - 25 \cdot 2^{2n-3}} = \frac{368}{18225}.$$

4.4. An Additional Jacobsthal Implication. Finally, we develop the Jacobsthal consequence of equation (4.6) in [3]:

$$\sum_{n=3}^{\infty} \frac{(x^2+2)(x^4+x^2)}{l_n^4 + (-1)^n (x^2-1)\Delta^2 l_n^2 - \Delta^4 x^2} = \frac{(x^2+1)(x^6+6x^4+10x^2+3)}{(x^2+2)(x^2+3)(x^4+4x^2+2)} - \frac{x}{\Delta}.$$
 (4.9)

Theorem 4.1. Let $l_n = l_n(x)$, $j_n = j_n(x)$, and $D = \sqrt{4x+1}$. Then,

$$\sum_{n=3}^{\infty} \frac{(x+1)(2x+1)x^{2n-3}}{j(x)} = \frac{(x+1)(3x^3+10x^2+6x+1)}{(2x+1)(3x+1)(2x^2+4x+1)} - \frac{1}{D},$$
(4.10)

where $j(x) = j_n^4 - (x-1)(-x)^{n-2}D^2j_n^2 - D^4x^{2n-3}$. Proof. Replacing x with $1/\sqrt{x}$ in equation (4.9) and then using the relationship $j_n(x) = 1$

Proof. Replacing x with $1/\sqrt{x}$ in equation (4.9) and then using the relationship $j_n(x) = x^{n/2} l_n(1/\sqrt{x})$, we get

$$\begin{aligned} \text{LHS} &= \sum_{n=3}^{\infty} \frac{(x+1)(2x+1)}{x^3 l_n^4 - (-1)^n (x-1) x D^2 l_n^2 - D^4} \\ &= \sum_{n=3}^{\infty} \frac{(x+1)(2x+1) x^{2n-3}}{(x^{n/2} l_n)^4 - (x-1)(-x)^{n-2} D^2 (x^{n/2} l_n)^2 - D^4 x^{2n-3}} \\ &= \sum_{n=3}^{\infty} \frac{(x+1)(2x+1) x^{2n-3}}{j_n^4 - (x-1)(-x)^{n-2} D^2 j_n^2 - D^4 x^{2n-3}}; \\ \text{RHS} &= \frac{(x+1)(3x^3 + 10x^2 + 6x + 1)x^4}{x^4 (2x+1)(3x+1)(2x^2 + 4x + 1)} - \frac{1}{D} \\ &= \frac{(x+1)(3x^3 + 10x^2 + 6x + 1)}{(2x+1)(3x+1)(2x^2 + 4x + 1)} - \frac{1}{D}, \end{aligned}$$

where $l_n = l_n(1/\sqrt{x})$ and $j_n = j_n(x)$. Combining the two sides, we get

$$\sum_{n=3}^{\infty} \frac{(x+1)(2x+1)x^{2n-3}}{j_n^4 - (x-1)(-x)^{n-2}D^2j_n^2 - D^4x^{2n-3}} = \frac{(x+1)(3x^3 + 10x^2 + 6x + 1)}{(2x+1)(3x+1)(2x^2 + 4x + 1)} - \frac{1}{D},$$

as desired.

NOVEMBER 2021

347

It follows from equation (4.10) that

$$\sum_{n=3}^{\infty} \frac{1}{L^4 - 25} = \frac{5}{63} - \frac{\sqrt{5}}{30},$$

as in [3, 5, 7]. In addition, we have

$$\sum_{n=3}^{\infty} \frac{2^{2n}}{j_n^4 - 9(-2)^{n-2}j_n^2 - 81 \cdot 2^{2n-3}} = \frac{112}{3825}.$$

5. Acknowledgment

The author thanks the reviewer for a careful reading of the article, constructive suggestions, and encouraging words.

References

- [1] M. Bicknell, A primer for the Fibonacci numbers: Part VII, The Fibonacci Quarterly, 8.4 (1970), 407–420.
- [2] T. Koshy, Fibonacci and Lucas Numbers with Applications, Volume II, Wiley, Hoboken, New Jersey, 2019.
- [3] T. Koshy, Infinite sums involving gibonacci polynomial products, The Fibonacci Quarterly, 59.3 (2021), 237-245.
- [4] H. Ohtsuka, *Problem H-783*, The Fibonacci Quarterly, **54.1** (2016), 87.
- [5] À. Plaza, *Problem H-810*, The Fibonacci Quarterly, **55.3** (2017), 282.
- [6] À. Plaza, Solution to Problem H-783, The Fibonacci Quarterly, 56.1 (2018), 90–91.
- [7] À. Plaza, Solution to Problem H-810, The Fibonacci Quarterly, 57.3 (2019), 281.

MSC2020: Primary 11B37, 11B39, 11B83, 11C08

DEPARTMENT OF MATHEMATICS, FRAMINGHAM STATE UNIVERSITY, FRAMINGHAM, MA 01701 *Email address*: tkoshy@emeriti.framingham.edu