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Abstract. We explore the Jacobsthal versions of six products involving reciprocals of gibonacci
polynomials.

1. Introduction

Extended gibonacci polynomials zn(x) are defined by the recurrence zn+2(x) = a(x)zn+1(x)+
b(x)zn(x), where x is an arbitrary complex variable; a(x), b(x), z0(x), and z1(x) are arbitrary
complex polynomials; and n ≥ 0.

Suppose a(x) = x and b(x) = 1. When z0(x) = 0 and z1(x) = 1, zn(x) = fn(x), the
nth Fibonacci polynomial ; and when z0(x) = 2 and z1(x) = x, zn(x) = ln(x), the nth Lucas
polynomial [1, 6].

On the other hand, let a(x) = 1 and b(x) = x. When z0(x) = 0 and z1(x) = 1, zn(x) =
Jn(x), the nth Jacobsthal polynomial ; and when z0(x) = 2 and z1(x) = 1, zn(x) = jn(x), the
nth Jacobsthal-Lucas polynomial. Correspondingly, Jn = Jn(2) and jn = jn(2) are the nth
Jacobsthal and Jacobsthal-Lucas numbers, respectively. Clearly, Jn(1) = Fn; and jn(1) = Ln

[3, 6].
Suppose a(x) = x and b(x) = −1. When z0(x) = 0 and z1(x) = 1, then zn(x) = Vn(x),

the nth Vieta polynomial ; and when z0(x) = 2 and z1(x) = x, then zn(x) = vn(x), the nth
Vieta-Lucas polynomial [4, 6].

Finally, suppose a(x) = 2x and b(x) = −1. When z0(x) = 1 and z1(x) = x, then zn(x) =
Tn(x), the nth Chebyshev polynomial of the first kind ; and when z0(x) = 1 and z1(x) = 2x,
then zn(x) = Un(x), the nth Chebyshev polynomial of the second kind [4, 6].

1.1. Relationships in the Extended Gibonacci Family. The subfamilies of the extended
gibonacci family are linked, as Table 1 shows [4, 5], where i =

√
−1. We will employ them in

our discourse.
Table 1: Relationships Among the Extended Gibonacci Subfamilies

Jn(x) = x(n−1)/2fn(1/
√
x) jn(x) = xn/2ln(1/

√
x)

Vn(x) = in−1fn(−ix) vn(x) = inln(−ix)
Vn(x) = Un−1(x/2) vn(x) = 2Tn(x/2),

In the interest of brevity, clarity, and convenience, we omit the argument in the functional
notation, when there is no ambiguity; so zn will mean zn(x). In addition, we let cn = Jn(x)

or jn(x), ∆ =
√
x2 + 4, D =

√
4x+ 1, 2α(x) = x +∆, and 2u(x) = 1 +D, and omit a lot of

basic algebra. It follows by the Binet-like formulas [6] that lim
m→∞

cm+k

cm
= uk(x).
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1.2. Products Involving Reciprocals of Gibonacci Polynomials. We explored the fol-
lowing products involving reciprocals of gibonacci polynomials in [7]:

m∏
n=2

(
1 +

x2

f2
2n−1

)
=

1

x2 + 1
· f2m+1

f2m−1
. (1.1)

m∏
n=2

(
1− x2

f2
2n

)
=

1

x2 + 2
· f2m+2

f2m
. (1.2)

m∏
n=2

(
1− 1

f2
2n−1

)(
1 +

1

f2
2n

)
=

x

x2 + 1
· f2m+1

f2m
. (1.3)

m∏
n=2

(
1− ∆2x2

l22n−1

)
=

x

x3 + 3x
· l2m+1

l2m−1
. (1.4)

m∏
n=2

(
1 +

∆2x2

l22n

)
=

x2 + 2

x4 + 4x2 + 2
· l2m+2

l2m
. (1.5)

m∏
n=2

(
1 +

∆2

l22n−1

)(
1− ∆2

l22n

)
=

x2 + 2

x3 + 3x
· l2m+1

l2m
. (1.6)

We will now find their Jacobsthal versions using the Jacobsthal-gibonacci links in Table 1.

2. Products Involving Reciprocals of Jacobsthal Polynomials

We begin our explorations with products containing reciprocals of squares of odd-numbered
Fibonacci polynomials.

2.1. Jacobsthal Version of Formula (1.1). Let A = 1 +
x2

f2
2n−1

. Replacing x with 1/
√
x

and then multiplying the numerator and denominator of the resulting expression with x2n−2,
we get

A = 1 +
1

xf2
2n−1

= 1 +
x2n−2

x
[
x(2n−2)/2f2n−1

]2
= 1 +

x2n−3

J2
2n−1

LHS =

m∏
n=2

(
1 +

x2n−3

J2
2n−1

)
,

where fn = fn(1/
√
x) and Jn = Jn(x).
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Now let B =
f2m+1

(x2 + 1)f2m−1
. Replacing x with 1/

√
x, and then multiplying the numerator

and denominator of the resulting expression with x2m/2, we get

B =
xf2m+1

(x+ 1)f2m−1

=
x
(
x2m/2f2m+1

)
(x+ 1)x

[
x(2m−2)/2f2m−1

]
RHS =

J2m+1

(x+ 1)J2m−1
,

where fn = fn(1/
√
x) and Jm = Jm(x).

Equating the two sides, we get

m∏
n=2

(
1 +

x2n−3

J2
2n−1

)
=

1

x+ 1
· J2m+1

J2m−1
, (2.1)

where Jm = Jm(x).
This yields

m∏
n=2

(
1 +

1

F 2
2n−1

)
=

F2m+1

2F2m−1
; (2.2)

m∏
n=2

(
1 +

22n−3

J2
2n−1

)
=

J2m+1

3J2m−1
;

∞∏
n=2

(
1 +

x2n−3

J2
2n−1

)
=

u2(x)

x+ 1
;

∞∏
n=2

(
1 +

1

F 2
2n−1

)
=

α2

2
;

∞∏
n=2

(
1 +

22n−3

J2
2n−1

)
=

4

3
.

2.2. Jacobsthal Version of Formula (1.2). With A = 1− x2

f2
2n

, replace x with 1/
√
x and

then multiply the numerator and denominator in the resulting expression with x2n−1. We
then get

A = 1− 1

xf2
2n

= 1− x2n−2[
x(2n−1)/2f2n

]2
= 1− x2n−2

J2
2n

LHS =

m∏
n=2

(
1− x2n−2

J2
2n

)
;
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RHS =
x

2x+ 1
· f2m+2

f2m

=
x

2x+ 1
· x(2m+1)/2f2m+2

x
[
x(2m−1)/2f2m

]
=

1

2x+ 1
· J2m+2

J2m
,

where fn = fn(1/
√
x) and Jn = Jn(x).

Equating the two sides, we get

m∏
n=2

(
1− x2n−2

J2
2n

)
=

1

2x+ 1
· J2m+2

J2m
. (2.3)

This implies,

m∏
n=2

(
1− 1

F 2
2n

)
=

F2m+2

3F2m
; (2.4)

m∏
n=2

(
1− 22n−2

J2
2n

)
=

J2m+2

5J2m
;

∞∏
n=2

(
1− x2n−2

J2
2n

)
=

u2(x)

2x+ 1
;

∞∏
n=2

(
1− 1

F 2
2n

)
=

α2

3
;

∞∏
n=2

(
1− 22n−2

J2
2n

)
=

4

5
.

2.3. Jacobsthal Version of Formula (1.3). Let A =

(
1− 1

f2
2n−1

)(
1 +

1

f2
2n

)
. Replacing

x with 1/
√
x, and then multiplying the numerator and denominator in the first factor with

x2n−2 and that of those in the second factor with x2n−1, we get

A =

[
1− x2n−2

x2n−2f2
2n−1

] [
1 +

x2n−1

x2n−1f2
2n

]
=

(
1− x2n−2

J2
2n−1

)(
1 +

x2n−1

J2
2n

)
LHS =

m∏
n=2

(
1− x2n−2

J2
2n−1

)(
1 +

x2n−1

J2
2n

)
,

where fn = fn(1/
√
x) and Jn = Jn(x).
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With B =
x

x2 + 1
· f2m+1

f2m
, similarly we get

B =

√
x

x+ 1
· f2m+1

f2m

RHS =

√
x

x+ 1
·
[
x(2m/2)f2m+1

]
√
x
[
x(2m−1)/2f2m

]
=

1

x+ 1
· J2m+1

J2m
.

Combining the two sides yields

m∏
n=2

(
1− x2n−2

J2
2n−1

)(
1 +

x2n−1

J2
2n

)
=

1

x+ 1
· J2m+1

J2m
. (2.5)

It follows from this formula that

m∏
n=2

(
1− 1

F 2
2n−1

)(
1 +

1

F 2
2n

)
=

1

2
· F2m+1

F2m
; (2.6)

m∏
n=2

(
1− 22n−2

J2
2n−1

)(
1 +

22n−1

J2
2n

)
=

1

3
· J2m+1

J2m
;

∞∏
n=2

(
1− x2n−2

J2
2n−1

)(
1 +

x2n−1

J2
2n

)
=

1

x+ 1
u(x);

∞∏
n=2

(
1− 22n−2

J2
2n−1

)(
1 +

22n−1

J2
2n

)
=

2

3
.

Combining formulas (2.2), (2.4), and (2.6), we get

2m∏
n=3

(
1− 1

F 4
n

)
=

F2m+2F
2
2m+1

12F 2
2mF2m−1

∞∏
n=3

(
1− 1

F 4
n

)
=

α5

12
,

as in [2, 8].

2.4. Alternate Versions. Using the Jacobsthal identity j2n − D2J2
n = 4(−x)n [6], we can

rewrite formulas (2.1), (2.3), and (2.5) in a different way:

m∏
n=2

(
1 +

D2x2n−3

j22n−1 + 4x2n−1

)
=

1

x+ 1
· J2m+1

J2m−1
;

∞∏
n=2

(
1 +

D2x2n−3

j22n−1 + 4x2n−1

)
=

u2(x)

x+ 1
;

∞∏
n=2

(
1 +

5

L2
2n−1 + 4

)
=

α2

2
; (2.7)
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∞∏
n=2

(
1 +

9 · 22n−3

j22n−1 + 22n+1

)
=

4

3
.

m∏
n=2

(
1− D2x2n−2

j22n − 4x2n

)
=

1

2x+ 1
· J2m+2

J2m
;

∞∏
n=2

(
1− D2x2n−2

j22n − 4x2n

)
=

u2(x)

2x+ 1
;

∞∏
n=2

(
1− 5

L2
2n − 4

)
=

α2

3
; (2.8)

∞∏
n=2

(
1− 9 · 22n−2

j22n − 22n+2

)
=

4

5
;

m∏
n=2

(
1− D2x2n−2

j22n−1 + 4x2n−1

)(
1 +

D2x2n−1

j22n − 4x2n

)
=

1

x+ 1
· J2m+1

J2m
;

∞∏
n=2

(
1− D2x2n−2

j22n−1 + 4x2n−1

)(
1 +

D2x2n−1

j22n − 4x2n

)
=

u(x)

x+ 1
;

∞∏
n=2

(
1− 5

L2
2n−1 + 4

)(
1 +

5

L2
2n − 4

)
=

α

2
; (2.9)

∞∏
n=2

(
1− 9 · 22n−2

j22n−1 + 22n+1

)(
1 +

9 · 22n−1

j22n − 22n+2

)
=

2

3
.

3. Products Involving Reciprocals of Jacobsthal-Lucas Polynomials

Using the relationship jn(x) = xn/2ln(1/
√
x), we now find the Jacobsthal-Lucas versions of

formulas (1.4), (1.5), and (1.6).

3.1. Jacobsthal-Lucas Version of Formula (1.4). Let A = 1− ∆2x2

l22n−1

. Replace x with

1/
√
x, and then multiplying the numerator and denominator of the fractional expression with

x2n−3. We then get

A = 1− D2

x2l22n−1

= 1− D2x2n−3[
x(2n−1)/2l2n−1

]2
= 1− D2x2n−3

j22n−1

LHS =

m∏
n=2

(
1− D2x2n−3

j22n−1

)
,

where ln = ln(1/
√
x) and jn = jn(x).
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With B =
x

x3 + 3x
· l2m+1

l2m−1
, similarly we get

B =
x

3x+ 1
· l2m+1

l2m−1

=
x

3x+ 1
· x(2m+1)/2l2m+1

x
[
x(2m−1)/2l2m−1

]
RHS =

1

3x+ 1
· j2m+1

j2m−1
.

Equating the two sides, we get
m∏

n=2

(
1− D2x2n−3

j22n−1

)
=

1

3x+ 1
· j2m+1

j2m−1
. (3.1)

This yields
m∏

n=2

(
1− 5

L2
2n−1

)
=

L2m+1

4L2m−1
; (3.2)

m∏
n=2

(
1− 9 · 22n−3

j22n−1

)
=

1

7
· j2m+1

j2m−1
;

∞∏
n=2

(
1− D2x2n−3

j22n−1

)
=

u2(x)

3x+ 1
;

∞∏
n=2

(
1− 9 · 22n−3

j22n−1

)
=

4

7
.

3.2. Jacobsthal-Lucas Version of Formula (1.5). Using similar steps as before with

A = 1 +
∆2x2

l22n
and B =

x2 + 2

x4 + 4x2 + 2
· l2m+2

l2m
, we get

A = 1 +
D2

x2l22n

= 1 +
D2x2n−2[
x(2n)/2l2n

]2
= 1 +

D2x2n−2

j22n

LHS =

m∏
n=2

(
1 +

D2x2n−2

j22n

)
;

B =
(2x+ 1)x

2x2 + 4x+ 1
· l2m+2

l2m

=
(2x+ 1)x

2x2 + 4x+ 1
· x

(2m+2)/2l2m+2

x
[
x(2m)/2l2m

]
RHS =

2x+ 1

2x2 + 4x+ 1
· j2m+2

j2m
,

where ln = ln(1/
√
x) and jn = jn(x).
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Combining the two sides, we get

m∏
n=2

(
1 +

D2x2n−2

j22n

)
=

2x+ 1

2x2 + 4x+ 1
· j2m+2

j2m
. (3.3)

It then follows that

m∏
n=2

(
1 +

5

L2
2n

)
=

3

7
· L2m+1

L2m−1
; (3.4)

m∏
n=2

(
1 +

9 · 22n−2

j22n

)
=

5

17
· j2m+2

j2m
;

∞∏
n=2

(
1 +

D2x2n−2

j22n

)
=

2x+ 1

2x2 + 4x+ 1
u2(x);

∞∏
n=2

(
1 +

9 · 22n−2

j22n

)
=

20

17
.

Finally, we investigate the Jacobsthal-Lucas counterpart of formula (1.6).

3.3. Jacobsthal-Lucas Version of Formula (1.6). With A =

(
1 +

∆2

l22n−1

)(
1− ∆2

l22n

)
and

B =
x2 + 2

x3 + 3x
· l2m+1

l2m
, using similar steps as before yields

A =

(
1 +

D2

xl22n−1

)(
1− D2

xl22n

)
=

(
1 +

D2x2n−2[
x(2n−1)/2l2n−1

]2
)(

1− D2x2n−1[
x(2n)/2l2n

]2
)

=

(
1 +

D2x2n−2

j22n−1

)(
1− D2x2n−1

j22n

)
LHS =

m∏
n=2

(
1 +

D2x2n−2

j22n−1

)(
1− D2x2n−1

j22n

)
;

B =
(2x+ 1)

√
x

3x+ 1
· l2m+1

l2m

=
(2x+ 1)

√
x

3x+ 1
· x(2m+1)/2l2m+1√

x
[
x(2m)/2l2m

]
RHS =

2x+ 1

3x+ 1
· j2m+1

j2m
,

where ln = ln(1/
√
x) and jn = jn(x).

Equating the two sides yields

m∏
n=2

(
1 +

D2x2n−2

j22n−1

)(
1− D2x2n−1

j22n

)
=

2x+ 1

3x+ 1
· j2m+1

j2m
. (3.5)
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It then follows that

m∏
n=2

(
1 +

5

L2
2n−1

)(
1− 5

L2
2n

)
=

3

4
· L2m+1

L2m
; (3.6)

m∏
n=2

(
1 +

9 · 22n−2

j22n−1

)(
1− 9 · 22n−1

j22n

)
=

5

7
· j2m+1

j2m
;

∞∏
n=2

(
1 +

D2x2n−2

j22n−1

)(
1− D2x2n−1

j22n

)
=

2x+ 1

3x+ 1
u(x);

∞∏
n=2

(
1 +

9 · 22n−2

j22n−1

)(
1− 9 · 22n−1

j22n

)
=

10

7
.

It follows by equations (3.2), (3.4), and (3.6) that [7]

2m∏
n=3

(
1− 25

L4
n

)
=

9

112
·
L2m+2L

2
2m+1

L2
2mL2m−1

;

∞∏
n=3

(
1− 25

L4
n

)
=

9

112
α5.

3.4. Alternate Forms. Using the identity j2n −D2J2
n = 4(−x)n [6], we can rewrite formulas

(3.1), (3.3), and (3.5) also in a different way:

m∏
n=2

(
1− D2x2n−3

D2J2
2n−1 − 4x2n−1

)
=

1

3x+ 1
· j2m+1

j2m−1
;

∞∏
n=2

(
1− D2x2n−3

D2J2
2n−1 − 4x2n−1

)
=

u2(x)

3x+ 1
;

∞∏
n=2

(
1− 5

5F 2
2n−1 − 4

)
=

α2

4
; (3.7)

∞∏
n=2

(
1− 9 · 22n−3

9J2
2n−1 − 22n+1

)
=

4

7
;

m∏
n=2

(
1 +

D2x2n−2

D2J2
2n + 4x2n

)
=

2x+ 1

2x2 + 4x+ 1
· j2m+2

j2m
;

∞∏
n=2

(
1 +

D2x2n−2

D2J2
2n + 4x2n

)
=

2x+ 1

2x2 + 4x+ 1
u2(x);

∞∏
n=2

(
1 +

5

5F 2
2n + 4

)
=

3α2

7
; (3.8)

∞∏
n=2

(
1 +

9 · 22n−2

9J2
2n + 22n+2

)
=

20

17
.
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m∏
n=2

(
1 +

D2x2n−2

D2J2
2n−1 − 4x2n−1

)(
1− D2x2n−1

D2J2
2n + 4x2n

)
=

2x+ 1

3x+ 1
· j2m+1

j2m
;

∞∏
n=2

(
1 +

D2x2n−2

D2J2
2n−1 − 4x2n−1

)(
1− D2x2n−1

D2J2
2n + 4x2n

)
=

2x+ 1

3x+ 1
u(x);

∞∏
n=2

(
1 +

5

5F 2
2n−1 − 4

)(
1− 5

5F 2
2n + 4

)
=

3α

4
; (3.9)

∞∏
n=2

(
1 +

9 · 22n−2

9J2
2n−1 − 22n+1

)(
1− 9 · 22n−1

9J2
2n + 22n+2

)
=

10

7
.

An Interesting Consequence: It follows by equations (3.7), (3.8), and (3.9) that
∞∏
n=2

[
1− 25

(5F 2
2n−1 − 4)2

] [
1− 25

(5F 2
2n + 4)2

]
=

9

112
α5.

4. Conclusion

We can extract the Vieta and Chebyshev versions of formulas (1.1) through (1.6) using the
gibonacci-Vieta and Vieta-Chebyshev relationships in Table 1, respectively. In the interest of
brevity, we omit the details.
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