
ON THE FAMILY OF DIOPHANTINE PAIRS {P2k, 2P2k+2}

KOUESSI NORBERT ADÉDJI, ALAN FILIPIN, AND ALAIN TOGBÉ

Abstract. Let k ≥ 1 be an integer and let Pk and Qk be the kth Pell number and kth
Pell-Lucas number, respectively. In this paper, we prove that if d is a positive integer such
that

{P2k, P2k+2, 2P2k+2, d}
is a Diophantine quadruple, then d = P2k+1Q2k+1Q2k+2. We deduce that the pair {P2k, 2P2k+2}
cannot be extended to an irregular Diophantine quadruple.

1. Introduction

For a nonzero integer n, a set of m distinct positive integers {a1, . . . , am} such that aiaj +n
is a perfect square for all 1 ≤ i < j ≤ m, is called a Diophantine m-tuple with property D(n) or
a D(n)-m-tuple (or a Pn-set of size m). Diophantus was the first who considered the problem
of finding such sets in the case n = 1. Particularly, he found the set of four positive rational
numbers

{
1
16 ,

33
16 ,

17
4 ,

105
16

}
with property D(1). However, the first integral D(1)-quadruple was

found by Fermat and it was the set {1, 3, 8, 120}. Moreover, Baker and Davenport [1] proved
that the set {1, 3, 8, 120} cannot be extended to a D(1)-quintuple. Several generalizations
of the result of Baker and Davenport were obtained. In 1997, Dujella [5] proved that D(1)-
triples of the form {k − 1, k + 1, 4k} for k ≥ 2 cannot be extended to a D(1)-quintuple. In
1998, Dujella and Pethő [8] proved that the D(1)-pair {1, 3} cannot be extended to a D(1)-
quintuple. In 2008, Fujita obtained a more general result by proving that the D(1)-pairs of the
form {k− 1, k+1} for k ≥ 2 cannot be extended to a D(1)-quintuple. A folklore conjecture is
that there does not exist a Diophantine quintuple. In 2004, Dujella [7] proved that there are
only finitely many D(1)-quintuples. This conjecture was proved by He, the third author, and
Ziegler [11]. For

d = d± = a+ b+ c+ 2abc± 2
√

(ab+ 1)(ac+ 1)(bc+ 1),

both sets {a, b, c, d+} and {a, b, c, d−} are Diophantine quadruples provided d− ̸= 0. Such
quadruples are said to be regular. We state a stronger version and still open conjecture.

Conjecture 1.1. If {a, b, c, d} is a Diophantine quadruple such that a < b < c < d, then
d = d+.

To prove this conjecture, Fujita and Miyazaki [9] recently proved that any fixed Diophantine
triple can only be extended to a Diophantine quadruple in at most 11 ways by joining a fourth
element exceeding the maximal element in the triple, while Cipu, Fujita, and Miyazaki [3]
improved this result by replacing 11 by 8. For other results concerning Diophantine m-tuples
and their generalizations, we refer the interested reader to the homepage of Dujella [4].

The next two propositions are important results, giving us an idea on the extendibility of
Diophantine pairs under some precise conditions. For a fixed Diophantine triple {a, b, c} with
ab+1 = r2, where r is positive integer, we denote by N the number of positive integers d > d+
such that {a, b, c, d} is a Diophantine quadruple. We have the following propositions.
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Proposition 1. (See [3, Proposition 1.5]) Let {a, b} be a Diophantine pair with a < b. Define
an integer cτν by

cτν =
1

4ab

[
(
√
b+ τ

√
a)2(r +

√
ab)2ν + (

√
b− τ

√
a)2(r −

√
ab)2ν − 2(a+ b)

]
(1)

with ν a positive integer and τ ∈ {−,+}.
(1) If c = cτ1 for some τ , then N ≤ 3.
(2) If c−2 ≤ c ≤ c+3 , then N ≤ 6.
(3) If c ≥ c−4 , then N = 0.
(4) If c = cτ3 for some τ and b < a2, then N = 0.

Proposition 2. (See [3, Corollary 1.6]) Let {a, b, c} be a Diophantine triple with a < b ≤ 13a.
Then, N ≤ 6.

Recall that the Pell and Pell-Lucas numbers are respectively given by

P0 = 0, P1 = 1, Pk+2 = 2Pk+1 + Pk for k ≥ 0,

and
Q0 = 2, Q1 = 2, Qk+2 = 2Qk+1 +Qk for k ≥ 0.

Let a = P2k and b = 2P2k+2. We have a < b ≤ 13a. For this Diophantine pair, using
Proposition 1 and Proposition 2, it is enough to consider the extensions of D(1)-triples of the
forms {P2k, 2P2k+2, c}, where c−1 , c

+
1 , c

−
2 , c

+
2 , c

−
3 , c

+
3 , as all possible c’s are given by equation

(1). Also, note that from equation (1), we see that c−1 = P2k+2 < b. But, in the other cases
we have b < c. Thus, we have to study the extensibility of the Diophantine triples

{P2k, P2k+2, 2P2k+2}, {P2k, 2P2k+2, c}, with c ∈ {c+1 , c
−
2 , c

+
2 , c

−
3 , c

+
3 }.

In this paper, we prove the following results.

Theorem 1. Let k be a positive integer. If d is a positive integer such that

{P2k, P2k+2, 2P2k+2, d}
is a Diophantine quadruple with d > 2P2k+2, then

d = P2k+1Q2k+1Q2k+2,

where Pk and Qk are respectively the kth Pell and Pell-Lucas numbers.

Theorem 2. Let c ∈ {c+1 , c
−
2 , c

+
2 , c

−
3 , c

+
3 } and d be a positive integer. If {P2k, 2P2k+2, c, d} is

a Diophantine quadruple with d > c, then d = d+.

Taking into account the observations mentioned above, Theorem 1 and Theorem 2 allow us
to deduce the following statement.

Corollary 1. Let k ≥ 1 be an integer. Any Diophantine quadruple that contains the pair
{P2k, 2P2k+2} is regular.

The purpose of this paper is to prove the uniqueness of the extensions of D(1)-triples
{P2k, 2P2k+2, c}, where c ∈ {c−1 , c

+
1 , c

−
2 , c

+
2 , c

−
3 , c

+
3 }. To do this, we will use the standard

method for solving finitely many Diophantine equations z = vm = wn. To get a lower bound
for the indices, we will consider the congruence method or obtain an upper bound using linear
forms in logarithms.

The organization of this paper is as follows. In Section 2, we will recall or prove some useful
results. In Section 3, we will use some results of linear forms in three logarithms. In Section 4,
we use the Baker-Davenport reduction method to prove Theorem 1. Section 5 of the paper
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will be devoted to the proof of Theorem 2 in the case where c = c+1 and we will finish in
Subsection 5.2, where we will discuss the cases c = c±2 and c = c±3 .

2. Some Useful Lemmas

In this section, we recall or prove some useful lemmas that will be used to prove Theorem 1.
Here, we will keep the following notation: a = P2k, b = P2k+2, c = 2P2k+2, and let r, s, t be
positive integers defined by

ab+ 1 = r2, ac+ 1 = s2, bc+ 1 = t2. (2)

To extend the Diophantine triple {a, b, c} to a Diophantine quadruple {a, b, c, d}, we have to
solve the system

ad+ 1 = x2, bd+ 1 = y2, cd+ 1 = z2. (3)

If we eliminate d, we obtain the following system of Pellian equations:

az2 − cx2 = a− c, (4)

bz2 − cy2 = b− c. (5)

Moreover, by [7, Lemma 1] or the arguments of Nagell [13, Theorem 108a], the positive
solutions of Diophantine equations (4) and (5) are respectively given by

z
√
a+ x

√
c = (z0

√
a+ x0

√
c)(s+

√
ac)m, (6)

z
√
b+ y

√
c = (z1

√
b+ y1

√
c)(t+

√
bc)n, (7)

where m,n are nonnegative integers, and (z0, x0), (z1, y1) are solutions of (4) and (5), respec-
tively, satisfying

1 ≤ x0 <

√
s+ 1

2
, 1 ≤ |z0| <

√
c
√
c

2
√
a
, (8)

1 ≤ y1 <

√
t+ 1

2
, 1 ≤ |z1| <

√
c
√
c

2
√
b
. (9)

In any case, we have z = vm = wn, where

v0 = z0, v1 = sz0 + cx0, vm+2 = 2svm+1 − vm, (10)

w0 = z1, w1 = tz1 + cy1, wn+2 = 2twn+1 − wn. (11)

The initial terms z0 and z1 are almost completely determined in the following lemma.

Lemma 1. (See [3, Theorem 2.1])) Suppose that {a, b, c, d} is a Diophantine quadruple with
a < b < c < d, and that z = vm = wn has a solution for some integers m and n. Then, one
of the following four cases holds:

(1) m and n are even with z0 = z1 and (|z0|, x0; |z1|, y1) ∈ {(1, 1; 1, 1), (cr−st, rs−at; cr−
st, rt− bs)}.

(2) m is odd and n is even with (|z0|, x0; |z1|, y1) = (t, r; cr − st, rt− bs) and z0z1 < 0.
(3) m is even and n is odd with (|z0|, x0; |z1|, y1) = (cr − st, rs− at; s, r) and z0z1 < 0.
(4) m and n are odd with (|z0|, x0; |z1|, y1) = (t, r; s, r) and z0z1 > 0.

Moreover, if d > d+, then case (2) cannot occur.

Denote by {vz0,m} the sequence {vm} with the initial term z0, and by {wz1,n} the sequence
{wn} with the initial term z1.

Lemma 2. (See [3, Lemma 2.3])) vcr−st,m = v−t,m+1, vst−cr,m+1 = vt,m for all m ≥ 0 and
wcr−st,n = w−s,n+1, wst−cr,n+1 = ws,n for all n ≥ 0.
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When we refer to the above two lemmas, it is enough to observe the following two cases:
Case 1. If v2m = w2n, then z0 = z1 = ±1 and x0 = y1 = 1.
Case 2. If v2m+1 = w2n+1, then z0 = ±t, z1 = ±s, x0 = y1 = r, and z0z1 > 0.

Also, we obtain

r = P2k+1, s =
1

2
Q2k+1, and t =

1

2
Q2k+2.

As mentioned above, we need to solve the system of generalized Pell equations

P2kz
2 − 2P2k+2x

2 = P2k − 2P2k+2, (12)

P2k+2z
2 − 2P2k+2y

2 = P2k+2 − 2P2k+2. (13)

In [7], Dujella proved an unconditional relation between the indices m and n, which we state
in the following lemma.

Lemma 3. (See [7, Lemma 3]) If vm = wn, then n− 1 ≤ m ≤ 2n+ 1.

To get a gap principle between indices m, n, and k, we recall the following lemma.

Lemma 4. (See [6, Lemma 4]) We have

v2m ≡ z0 + 2c(az0m
2 + sx0m) (mod 8c2),

v2m+1 ≡ sz0 + c[2asz0m(m+ 1) + x0(2m+ 1)] (mod 4c2),

w2n ≡ z1 + 2c(bz1n
2 + ty1n) (mod 8c2),

w2n+1 ≡ tz1 + c[2btz1n(n+ 1) + y1(2n+ 1)] (mod 4c2).

The next results will help us to determine a lower bound of m depending on k. So, in
Case 1, we will prove the following result.

Lemma 5. If v2m = w2n has a solution for m,n ≥ 2 and z0 = z1 = ±1, then

m ≥
√

1 + 2P2k+2 − 1

2
.

Proof. Using Lemma 4, we have

±am2 + sm ≡ ±bn2 + tn (mod c). (14)

In our case, the congruence becomes

±P2km
2 +

1

2
Q2k+1m ≡ ±P2k+2n

2 +
1

2
Q2k+2n (mod 2P2k+2).

It follows that

±P2km
2 +

1

2
Q2k+1m ≡ 1

2
Q2k+2n (mod P2k+2).

As Q2k+1 = 2P2k+2 − 2P2k+1 ≡ −2P2k+1 (mod P2k+2), P2k ≡ −2P2k+1 (mod P2k+2), and

Q2k+2 ≡ 2P2k+1 (mod P2k+2),

we have

±P2k+1(2m
2 ±m± n) ≡ 0 (mod P2k+2).

Note that gcd(±P2k+1, P2k+2) = gcd(P2k+1, P2k+2) = P1 = 1. Because P2k+1 and P2k+2 are
relatively prime, we get

2m2 ±m± n ≡ 0 (mod P2k+2). (15)

If m,n ≥ 2, then

2m2 +m+ n ≥ 2m2 ±m± n ≥ 2m2 −m− n > 0.

28 VOLUME 60, NUMBER 1



ON THE FAMILY OF DIOPHANTINE PAIRS {P2K , 2P2K+2}

Hence, from (15), we obtain

2m2 +m+ n ≥ P2k+2.

By Lemma 3, we know that m ≥ n. So we have 2m2 + 2m − P2k+2 ≥ 0. This completes the
proof of Lemma 5. □

Now considering Case 2, we get the following result.

Lemma 6. If v2m+1 = w2n+1 has a solution for m,n ≥ 1 and z0 = ±t, z1 = ±s, with
z0z1 > 0, then

m ≥
√

9 + 8P2k+2 − 3

4
.

Proof. Considering the congruences modulo 4c2 in Lemma 4 for this case, we obtain

±astm(m+ 1) + rm ≡ ±bstn(n+ 1) + rn (mod c).

Because st ≡ −1 (mod P2k+2) and a ≡ −2P2k+1 (mod P2k+2), we deduce that

±P2k+1[2m(m+ 1)± (m− n)] ≡ 0 (mod P2k+2).

As ±P2k+1 and P2k+2 are relatively prime, we see that

2m(m+ 1)± (m− n) ≡ 0 (mod P2k+2).

For m,n ≥ 1, we have

2m(m+ 1) + (m− n) ≥ 2m(m+ 1)± (m− n) ≥ 2m(m+ 1)−m+ n > 0.

Thus, we obtain 2m(m+ 1) +m− n ≥ P2k+2. By Lemma 3, we know that m ≥ n. Moreover,
we have m− n < m and hence, we get

2m2 + 3m− P2k+2 ≥ 0.

This completes the proof. □

3. Linear Forms in Three Logarithms

Using recurrences (10) and (11), we obtain

vm =
1

2
√
a

[
(z0

√
a+x0

√
c)(s+

√
ac)m+(z0

√
a−x0

√
c)(s−

√
ac)m

]
, (16)

wn =
1

2
√
b

[
(z1

√
b+ y1

√
c)(t+

√
bc)n + (z1

√
b− y1

√
c)(t−

√
bc)n

]
. (17)

In our case where a = P2k, b = P2k+2, and c = 2P2k+2, we have c = 2b. Our idea is to use (16)
and (17) to transform equation vm = wn into an inequality for linear form in three logarithms
of algebraic numbers. Recall the following lemma that will help us in that direction.

Lemma 7. [6, Lemma 5] Assume that c > 4b. If vm = wn and m,n ̸= 0, then

0 < m log(s+
√
ac)− n log(t+

√
bc) + log

√
b(x0

√
c+ z0

√
a)

√
a(y1

√
c+ z1

√
b)

<
8

3
ac(s+

√
ac)−2m.

Note that Dujella later proved the previous lemma (see (60) in [7]) by replacing the assump-
tion c > 4b by c > b+

√
c. In our particular case, we can easily verify that c > b+

√
c; we have

everything ready for the application of the following famous result of Baker and Wüstholz [2].
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Lemma 8. For a linear form Λ ̸= 0 in logarithms of l algebraic numbers α1, . . . , αl with
rational integer coefficients b1, . . . , bl, we have

log Λ ≥ −18(l + 1)!ll+1(32d)l+2h′(α1) . . . h
′(αl) log(2ld) logB,

where B = max(|b1|, . . . , |bl|), and where d is the degree of the number field generated by
α1, . . . , αl.

Here,

h′(α) = max

(
h(α),

| logα|
d

,
1

d

)
,

and h(α) denotes the standard Weil logarithmic height of α.
We apply Lemma 8 to the following linear form in three logarithms

Λ = m log(s+
√
ac)− n log(t+

√
bc) + log

√
b(x0

√
c+ z0

√
a)

√
a(y1

√
c+ z1

√
b)
. (18)

Put

α1 = s+
√
ac, α2 = t+

√
bc, and α3 =

√
b(x0

√
c+ z0

√
a)

√
a(y1

√
c+ z1

√
b)
.

Considering Case 1, we have l = 3, d = 4, B = 2m. Note that in this case, we have c = s+ t
and c = 2b, so we obtain

h′(α1) =
1

2
logα1 <

1

2
log c, h′(α2) =

1

2
logα2 <

1

2
log(c+

√
bc) < 0.58415 log c.

Furthermore, α3 is a root of

a2(c− b)2x4 + 4a2b(c− b)x3 + 2ab(3ab− ac− bc− c2)x2 + 4ab2(c− a)x+ b2(c− a)2 = 0

and all these roots are given by
√
ab+

√
bc√

ab+
√
ac

,
−
√
ab+

√
bc

−
√
ab+

√
ac

,

√
bc+

√
ab

−
√
ac+

√
ab

, and
−
√
bc+

√
ab

√
ac+

√
ab

.

As the absolute values of the conjugates of α3 are greater than 1 and the leading coefficient
of the above polynomial is at least 16, we have

h(α3) <
1

4
log

[
a2(c− b)2 · (bc− ab)2

(ac− ab)2

]
=

1

4
log
(
b2(c− a)2

)
< log c.

Thus, we see that h′(α3) < log c. Using Lemma 8, we obtain

log Λ ≥ −1.117 · 1015 log(2m) · log3 c. (19)

Lemma 7 and the inequality

log

(
8

3
ac

)
< 2 log(2

√
ac)

show that

log Λ ≤ (1− 2m) log c. (20)

Combining (19) and (20), we obtain

2m− 1

log(2m)
< 1.117 · 1015 log2 c. (21)
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Using Lemma 5, we observe that c < 8m2. Moreover, log c < 2.501 log(2m) for m ≥ 2. Thus,
we have the inequality

2m− 1

log3(2m)
< 7 · 1015. (22)

Solving the inequality and using Lemma 5, we get a bound on m and k that we summarize in
the following result.

Lemma 9. We have m < 4 · 1020 and 1 ≤ k ≤ 53.

Considering Case 2, we have l = 3, d = 4, B = 2m+ 1. Note that in this case, α3 is a root
of

a2(c− b)2x4 + 4a2b(c− b)stx3 + (4a2b2(−2c2 + (a+ b)c+ 3)

− 2abc(a+ b+ c))x2 + 4ab2st(c− a)x+ b2(c− a)2.

Using b = 1
2c, we see that

h(α3) ≤ 1

4

[
log(a2(c− b)2) + 4 log

(
max{|

√
b(r

√
c± t

√
a)|}

min{|
√
a(r

√
c± s

√
b)|}

)]

=
1

4

[
log(a2(c− b)2) + 4 log

(√
b(r

√
c+ t

√
a)

√
a(r

√
c− s

√
b)

)]

=
1

4
log

(
b2(r

√
c+ t

√
a)4(r

√
c+ s

√
b)4

(c− b)2

)
< log(4c3) < 3 log(1.6c).

Thus, h′(α3) < 3 log(1.6c). Combining Lemma 6 and Lemma 8, we get the following
inequality

m

log3(2m+ 1)
< 1.103 · 1016. (23)

Solving inequality (23) and using Lemma 6, we get a bound on m and k that we summarize
in the following result.

Lemma 10. We have m < 1.324 · 1021 and 1 ≤ k ≤ 55.

4. Proof of Theorem 1

The goal of this section is to give a proof of Theorem 1. In Case 1 from Lemma 9, we
know that m < 4 · 1020 and 1 ≤ k ≤ 53. To solve the problem for the remaining cases
1 ≤ k ≤ 53, we will use a Diophantine approximation algorithm, the so-called Baker-Davenport
reduction method. The following lemma is a slight modification of the original version of
Baker-Davenport reduction method (See [8, Lemma 5a] or [10, Lemma 9]).

Lemma 11. Assume that M is a positive integer. Let p/q be a convergent of the continued
fraction expansion of κ such that q > 6M and let

η =∥ µq ∥ −M · ∥ κq ∥,
where ∥ · ∥ denotes the distance from the nearest integer. If η > 0, then there is no solution
of the inequality

0 < mκ− n+ µ < AB−m

in integers m and n with
log(Aq/η)

logB
≤ m ≤ M.
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Then, we apply Lemma 11 with

κ =
logα1

logα2
, µ =

logα3

2 logα2
, A =

4ac

3 logα2
, B = α4

1

and M = 4 · 1020.
For the remaining proof, we use Mathematica to apply Lemma 11 for each positive integer

k verifying 1 ≤ k ≤ 53. For the computations, if the first convergent such that q > 6M does
not satisfy the condition η > 0, then we use the next convergent until we find one that satisfies
the conditions. Under these conditions, the obtained results are as follows.

• If z0 = z1 = −1, then for k = 1 we obtain m ≤ 5 in the first convergent; when k = 2, we
obtain m ≤ 3; and when k = 3, we obtain m ≤ 2 in the first convergent. Finally, when k ≥ 4
we obtain m ≤ 1. The second application of Lemma 11, with M = 2 or M = 3 or M = 5, in
all cases gives m ≤ 1.

• If z0 = z1 = 1, then we use the first convergent for k = 1, 2, 3, 4. But when k = 1, we
obtain m ≤ 5; when k = 2, we obtain m ≤ 3; and when k = 3, we obtain m ≤ 2. When k = 4,
we obtain m ≤ 2. When 5 ≤ k ≤ 12, we obtain m ≤ 1. Finally, when k ≥ 13, we obtain
m ≤ 0. Again, when apply Lemma 11, with M = 2 or M = 3 or M = 5, we obtain in all cases
m ≤ 0.

Then, we consider m ≤ 1 (m = n = 0 gives the trivial solution d = 0). So by Lemma 3,
we have m = n = 1. When z0 = z1 = 1, we have v2 = Q2k+1(2P2k+2 + 1

2Q2k+1) − 1

and w2 = Q2k+2(2P2k+2 +
1
2Q2k+2) − 1 such that v2 < w2. When z0 = z1 = −1, we have

v2 = Q2k+1(2P2k+2 − 1
2Q2k+1) + 1 and w2 = Q2k+2(2P2k+2 − 1

2Q2k+2) + 1. Because Q2k+1 +
Q2k+2 = 4P2k+2, we conclude that

z = v2 = w2 =
1

2
Q2k+1Q2k+2 + 1. (24)

Lemma 12. Let n ∈ N. We have

1

4
Q2n+1Q2n+2 + 1 = 2P2n+1P2n+2. (25)

Proof. Because Qn = 2(Pn + Pn−1) and P2nP2n+2 + 1 = P 2
2n+1, we have

1

4
Q2n+1Q2n+2 + 1 =

1

4
[2(P2n+1 + P2n)2(P2n+2 + P2n+1)] + 1

= (P2n+1 + P2n)(P2n+2 + P2n+1) + 1

= P2n+1P2n+2 + P 2
2n+1 + P2nP2n+1 + (P2nP2n+2 + 1)

= P2n+1(P2n+2 + 2P2n+1 + P2n) = P2n+1(P2n+2 + P2n+2)

= 2P2n+1P2n+2.

This completes the proof. □

Thus, using the equation (24) and Lemma 12, we obtain

d =
z2 − 1

c
=

(12Q2k+1Q2k+2 + 1)2 − 1

2P2k+2

=
1
4Q

2
2k+1Q

2
2k+2 +Q2k+1Q2k+2

2P2k+2
=

Q2k+1Q2k+2(
1
4Q2k+1Q2k+2 + 1)

2P2k+2

=
Q2k+1Q2k+2(2P2k+1P2k+2)

2P2k+2
= P2k+1Q2k+1Q2k+2. (26)
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In Case 2, we again apply Lemma 11 with

κ =
logα1

logα2
, µ =

logα3

logα2
, A =

8ac

3 logα2
, B = α2

1,

and M = 1.324 ·1021. For the remaining values of k, we apply the Baker-Davenport reduction,
which gives us the same result. At the end, we see that we can only have a solution z = v1 = w1,
which will (depending on the sign of z0) give us the extension with d = d+ or d = d−. Moreover,
we see that d = d− = 0 and, from Lemma 12, we have

d = d+ = a+ b+ c+ 2abc+ 2rst

= P2k + 3P2k+2 + 4P2k+2(P
2
2k+1 − 1) +

1

2
P2k+1Q2k+1Q2k+2

= 4P2k+1P2k+2 − P2k+2 + P2k +
1

2
P2k+1Q2k+1Q2k+2

= 2P2k+1(2P2k+1P2k+2 − 1) +
1

2
P2k+1Q2k+1Q2k+2

= P2k+1Q2k+1Q2k+2. (27)

By combining (26) and (27), we obtain the same result. Thus, we have finished the proof of
Theorem 1.

5. Proof of Theorem 2

5.1. Proof of Theorem 2 in the Case c = c+1 . In this subsection, we use a method similar
to that of Theorem 1. Here, we put a = P2k, b = 2P2k+2, and c = c+1 = 2P2k + 3P2k+2. As
we mentioned in Section 2, to extend a Diophantine triple {a, b, c} to a Diophantine quadru-
ple {a, b, c, d}, we will transform the problem of solving the system of simultaneous Pellian
equations (4)–(5) into solving finitely many Diophantine equations of the form z = vm = wn.
Note that the initial terms of the sequences (vm) and (wn) are almost completely determined
in Lemma 1 and Lemma 2. Also, we see that

r = P2k + P2k+1, s = 2P2k + P2k+1, and t = P2k + P2k+3.

Lemma 13. If v2m = w2n has a solution for m,n ≥ 1 and z0 = z1 = ±1, then

m ≥

√
49 + 7c

γ − 7

14
,

where γ ∈ {4, 6}.

Proof. From Lemma 4, we see that

±am2 + sm ≡ ±bn2 + tn (mod c).

In our case, we have

6s ≡ 7P2k (mod c) and 4t ≡ 7P2k+2 (mod c).

Thus, we get the congruence

P2k(±24m2 + 28m) ≡ P2k+2(±48n2 + 42n) (mod c). (28)

Because
2P2k ≡ −3P2k+2 (mod c),

congruence (28) becomes

−3P2k+2(12m
2 ± 14m) ≡ P2k+2(48n

2 ± 42n) (mod c).
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We deduce that

−(12m2 ± 14m) ≡ (16n2 ± 14n) (mod
c

gcd(c, 3P2k+2)
). (29)

For all integers x and y, we have gcd(x, y) = gcd(x, x− y). Thus, we get

γ = gcd(c, 3P2k+2) = gcd(2P2k + 3P2k+2, 3P2k+2)

= gcd(2P2k, 3P2k+2) ∈ {4, 6}.
Therefore, we obtain

(12m2 ± 14m+ 16n2 ± 14n) ≡ 0 (mod
c

γ
). (30)

For m,n ≥ 2 and by Lemma 3, we observe that

28m2 + 28m ≥ 12m2 ± 14m+ 16n2 ± 14n ≥ 12m2 − 14m+ 16n2 − 14n > 0.

Hence, we get

28m2 + 28m ≥ c

γ
,

which implies

28m2 + 28m− c

γ
≥ 0.

This completes the proof of Lemma 13. □

Now, we prove the following lemma.

Lemma 14. If v2m+1 = w2n+1 has a solution for m,n ≥ 1 and z0 = ±t, z1 = ±s, with
z0z1 > 0, then

m ≥

√
225 + 56c

γ − 15

28
,

where γ ∈ {2, 4}.

Proof. Again, using Lemma 4, we have

±astm(m+ 1) + rm ≡ ±bstn(n+ 1) + rn (mod c). (31)

Note that in this case we have c = s+ t, which implies that

st ≡ −1 (mod c).

Also,
4r ≡ −P2k+2 (mod c) and 2a ≡ −3P2k+2 (mod c),

so that congruence (31) implies

P2k+2 [±6m(m+ 1)−m± 8n(n+ 1) + n] ≡ 0 (mod c).

Thus, we obtain

±6m(m+ 1)−m± 8n(n+ 1) + n ≡ 0 (mod
c

gcd(c, P2k+2)
). (32)

Here, we have

γ = gcd(c, P2k+2) = gcd(2P2k + 3P2k+2, P2k+2)

= gcd(P2k+2, 2P2k) ∈ {2, 4}.
It follows that

6m(m+ 1) + 8n(n+ 1)± (−m+ n) ≡ 0 (mod
c

γ
),

34 VOLUME 60, NUMBER 1



ON THE FAMILY OF DIOPHANTINE PAIRS {P2K , 2P2K+2}

with γ ∈ {2, 4}. If m,n ≥ 1, then

6m(m+ 1) + 8n(n+ 1)± (−m+ n) ≥ 6m(m+ 1) + 8n(n+ 1)−m+ n > 0.

So we deduce that 14m(m+ 1) +m− n ≥ c
γ . Because m− n ≤ m, we have

14m2 + 15m− c

γ
≥ 0.

This ends the proof of the lemma. □

The proof of the following lemma is similar to that of Lemma 9 and Lemma 10. Thus, we
will omit it.

Lemma 15.

(1) If z = vm = wn has a solution m,n ≥ 1 in Case 1, then m ≤ 4.05·1021 and 1 ≤ k ≤ 58.
(2) If z = vm = wn has a solution m,n ≥ 1 in Case 2, then m ≤ 8.214 · 1021 and

1 ≤ k ≤ 58.

Moreover, one can see that

c− (b+
√
c) = 2P2k + P2k+2 −

√
2P2k + 3P2k+2

=
2P2k(2P2k − 1) + P2k+2(P2k+2 − 3) + 4P2kP2k+2

2P2k + P2k+2 +
√
2P2k + 3P2k+2

> 0 for k ≥ 1.

Thus, we use Lemma 7 to apply Lemma 11.
So, in Case 1, we have proved that the equation z = v2m = w2n has no solution for n ≥ 1 and

k > 58. For the remaining values of k, we get the same statement using the Baker-Davenport
reduction. For the first application of Lemma 11, we obtain m ≤ 8 in all cases. The second
application of Lemma 11 with M = 8, in all cases, gives m ≤ 3. A third application does not
change this bound.

In the end, we only have a solution v0 = w0, which will give us the extension of Diophantine
triple with d = 0, which is not a real extension to a quadruple.

In Case 2, we proved that there is no solution to the equation v2m+1 = w2n+1 for n ≥ 1 and
k > 58. For the remaining values of k, we apply the Baker-Davenport reduction, which gives
us the same result. In the end, we only have a solution v1 = w1, which will (depending on the
sign of z0) give us the extension with d = d+ or d = d−.

5.2. Proof of Theorem 2 in the Case c = c±2 , c
±
3 . The aim of this subsection is to prove

Theorem 2 in the case where c = c±2 , c
±
3 . Now, we will give the lower bounds of the indices

m and n in the equation vm = wn, if m and n have the same parity. We can check that
all solutions of vm = wn with smaller indices (n ≤ m ≤ 2) will give the extension of the
Diophantine triple {a, b, c} to a quadruple with d = d+ = c±ν+1 or d = d− = c±ν−1, where c±ν
is defined in Proposition 1. So, to prove there are no other extensions, we have to show that
vm = wn for m ≥ n ≥ 2 does not have a solution for c = c±2 , c

±
3 . From Proposition 1, we have

c±2 = 4ab(a+ b± 2r) + 4(a+ b± r),

c±3 = 16a2b2(a+ b± 2r) + 8ab(3a+ 3b± 4r) + 3(3a+ 3b± 2r).

In the proof, we use the assumption b > 4000 of [3, Lemma 2.2], which is satisfied in our case
for k ≥ 5, and that 11.6a < b < 11.8a.
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Remark 1. In the case c = c±3 , one has k = 1 by part (4) of Proposition 1. Note that each
of the two triples {2, 24, c±3 } can be extended to a D(1)-quadruple in a unique way by [3,
Lemma 2.2].

Lemma 16. [14, Lemma 2] If b ≥ 8 and v2m = w2n has solutions for m ≥ 3 and n ≥ 2, then

m > 0.48b−1/2c1/2.

We also have the following result.

Lemma 17. If v2m+1 = w2n+1 has solutions for n ≥ 2, then m2 > 0.125b−1c0.5.

Proof. In the case of odd indices, from Lemma 4, inserting the conditions of Case 2, we have

±2astm(m+ 1) + r(2m+ 1) ≡ ±2bstn(n+ 1) + r(2n+ 1) (mod c). (33)

Because (st)2 ≡ 1 (mod c), we conclude that st ≡ ±1 (mod c′) for some c′, which is a divisor
of c and c′ ≥

√
c. Note that the ± sign means one of the congruences is true. Hence, we get

the congruence

±2am(m+ 1) + r(2m+ 1) ≡ ±2bn(n+ 1) + r(2n+ 1) (mod c′). (34)

Now, assume the opposite, that is, m2 ≤ 0.125b−1c0.5. Then, we see that both sides of the
congruence relation (34) are less than c′ and they have the same sign. More precisely, we have

max
(
2am(m+ 1), r(2m+ 1), 2bn(n+ 1), r(2n+ 1)

)
≤ 2bm(m+ 1)

and

2bm(m+ 1) < 4bm2 ≤ c′

2
.

Therefore, we get

| ± 2am(m+ 1) + r(2m+ 1)| < c′ and | ± 2bn(n+ 1) + r(2n+ 1)| < c′.

Note that in the case of the sign “-”, the two quantities ±2am(m + 1) + r(2m + 1) and
±2bn(n+1)+ r(2n+1) are negative, and in the case of the sign “+”, they are positive. Thus,
we actually have the equations

±2am(m+ 1) + r(2m+ 1) = ±2bn(n+ 1) + r(2n+ 1)

and

bn(n+ 1)− am(m+ 1) = r(m− n).

Combining Lemma 3 and the inequalities 11.6a < b < 11.8a, we get

bn(n+ 1)− am(m+ 1) > 11.6an(n+ 1)− a(2n+ 1)(2n+ 2) > 7.6an2

and

r(m− n) ≤ r(n+ 1) < 5.2an ≤ 5.2an2.

This leads to a contradiction. □

Now, we use another theorem for the lower bounds of linear forms in logarithms from
Matveev [12], which is quoted below.

Lemma 18. Denote by α1, . . . , αj algebraic numbers, not 0 or 1, by logα1, . . . , logαj determi-
nations of their logarithms, by D the degree over Q of the number field K = Q(α1, . . . , αj), and
by b1, . . . , bj integers. Define B = max{|b1|, . . . , |bj |}, and Ai = max{Dh(αi), | logαi|, 0.16}
(1 ≤ i ≤ j), where h(α) denotes the absolute logarithmic Weil height of α. If the number

Λ = b1 logα1 + · · ·+ bn logαj
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does not vanish, then

|Λ| ≥ exp{−C(j, χ)D2A1 · · ·Aj log(eD) log(eB)},
where χ = 1 if K ⊂ R and χ = 2 otherwise; and

C(j, χ) = min

{
1

χ

(
1

2
ej

)χ

30j+3j3.5, 26j+20

}
.

Lemma 19. Assume that c > b5/3 and b > 4000.

1) If v2m = w2n has a solution for m,n ≥ 1, then

2m− 1

log(2em)
< 1.906 · 1014 log2 c. (35)

2) If v2m+1 = w2n+1 has a solution for m,n ≥ 1, then
m

log(2em+ e)
< 2.859 · 1014 log2 c. (36)

Proof. We apply the above lemma with j = 3 and χ = 1 to equation (18).

1) Here, we take D = 4, b1 = 2m, b2 = −2n, b3 = 1. From the computations done in
Section 3, we put

h(α1) =
1

2
logα1 < 0.749 log c, h(α2) =

1

2
logα2 < 0.749 log c and h(α3) < log c.

Therefore, we take

A1 = A2 = 2.996 log c and A3 = 4 log c.

Using Matveev’s result, we have

log |Λ| > −1.906 · 1014 · log(2em) · log3 c. (37)

Combining (20) and (37), we get the first part of the lemma.
2) The proof is similar to the proof in the first part. Here, one can observe that for

c > b5/3

h(α3) ≤ 1

4

[
log(a2(c− b)2) + 4 log

(
max{|

√
b(r

√
c± t

√
a)|}

min{|
√
a(r

√
c± s

√
b)|}

)]

=
1

4

[
log(a2(c− b)2) + 4 log

(√
b(r

√
c+ t

√
a)

√
a(r

√
c− s

√
b)

)]

=
1

4
log

(
b2(r

√
c+ t

√
a)4(r

√
c+ s

√
b)4

(c− b)2

)
< log(c3) = 3 log c.

Again, using Matveev’s result and the inequality log |Λ| < −2m log c, we obtain the
second part of the lemma.

□

For the remainder of our proof, we combine the lower bounds for indices m and n, together
with the result obtained using Baker’s theory of linear forms in logarithms to prove the main
theorem for large values of k.

In the case of even indices, from Lemma 16 and inequality (35) of Lemma 19, we get the
inequality

2 · 0.48b−0.5c0.5 − 1

log(2e · 0.48b−0.5c0.5)
< 1.906 · 1014 log2 c. (38)
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In the case of odd indices, from Lemma 17 and inequality (36) of Lemma 19, we get the
inequality

2 · 0.1250.5b−0.5c0.25

log(2e · 0.1250.5b−0.5c0.25 + e)
< 2.859 · 1014 log2 c. (39)

Therefore using Maple, the solutions obtained for inequalities (38) and (39) are summarized
in the following lemma.

Lemma 20.

(1) Case of c = c−2 : If v2m = w2n has a solution for m ≥ n ≥ 2, then m ≤ 8.894 · 1019 and
k ≤ 26. If v2m+1 = w2n+1 has a solution for m ≥ n ≥ 2, then m ≤ 5.421 · 1021 and
k ≤ 114.

(2) Case of c = c+2 : If v2m = w2n has a solution for m ≥ n ≥ 2, then m ≤ 8.373 · 1019 and
k ≤ 25. If v2m+1 = w2n+1 has a solution for m ≥ n ≥ 2, then m ≤ 5.346 · 1021 and
k ≤ 113.

Thus, to solve our main problem, we use the well-known Baker-Davenport reduction method
(see Lemma 11), taking into account Lemma 20. For this, we also need the inequality that
follows from vm = wn (that is in Lemma 7). In the case of even indices, we have z0 = z1 = ±1,
x0 = y1 = 1, and in the case of odd indices, we have z0 = ±t, z1 = ±s, x0 = y1 = r, and
z0z1 > 0. For the first application of Lemma 11, we obtain m ≤ 5 in all cases. The second
application of Lemma 11 with M = 5 gives, in all cases, m ≤ 2. A third application does not
change this bound. This finishes the proof of Theorem 2.
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