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Abstract. An integer sequence is called realizable if it is the count of periodic points of
some map. The Fibonacci sequence (Fn) does not have this property, and the Fibonacci
sequence sampled along the squares (Fn2) also does not have this property. We show that the
former is an irreparable feature of the Fibonacci sequence, whereas the latter is an arithmetic
phenomenon related to the discriminant of the Fibonacci sequence by showing that (Fn) fails
a congruence condition at infinitely many primes, whereas the sequence (5Fn2) is realizable.
More generally, we show that (Fn2k−1) is not realizable in a particularly strong sense, whereas
(5Fn2k ) is realizable, for any k ⩾ 1.

1. Introduction

Counting fixed points for iterates of maps provides a natural source of integer sequences.
For example, the shift map σ on the ‘golden mean’ shift space

Σ = {x = (xn)n∈Z ∈ {0, 1}Z | (xk, xk+1) ̸= (1, 1) for all k ∈ Z}

defined by σ : (xn)n∈Z 7→ (xn+1)n∈Z has

Fixn(σ) = #{x ∈ Σ | σn(x) = x} = Trace

(
1 1
1 0

)n

= Ln

for all n ∈ N, giving the Lucas sequence (Ln) = (1, 3, 4, . . .) (A convenient source for this result,
and for more on this type of dynamical system, is the monograph by Lind and Marcus [6,
Ch. 2]). The sequences we will discuss start naturally with the first term (not the zeroth), and
so we use the notation U = (Un) for a sequence (Un)n∈N, where N = {1, 2, 3, . . .}.

An integer sequence (Un) is ‘realizable’ if there is some map T : X → X with the property
that

Un = Fixn(T ) = #{x ∈ X | Tn(x) = x}
for all n ⩾ 1. Puri and Ward [12] proved that the golden mean shift map illustrates a
uniqueness phenomenon, by showing that if (Un) is an integer sequence satisfying the Fibonacci
recurrence Un+2 = Un+1 + Un for all n ⩾ 1 with U1 = a and U2 = b, then (Un) is realizable if
and only if b = 3a and a ∈ N ∪ {0} (meaning that (Un) = (aLn)). To explain a more general
setting within which this is a special case, we recall from [13] that a sequence (Un) is realizable
if and only if it satisfies two conditions:

(1) the Dold condition from [2], that
∑

d |n µ
(
n
d

)
Ud ≡ 0 modulo n for all n ∈ N, and

(2) the sign condition
∑

d |n µ
(
n
d

)
Ud ⩾ 0 for all n ∈ N.

All this means is that Fixn(T ) = Un for all n ⩾ 1 if and only if the number of closed orbits of
length n under T is given by

Orbn(T ) =
1

n

∑
d |n

µ
(n
d

)
Ud, (1)
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and it must be the case that Orbn(T ) is a nonnegative integer for all n ∈ N. The expression
on the right side of (1) arises as follows. Writing Orbd(T ) for the number of sets of the form

{x, T (x), T 2(x), . . . , T d(x) = x}

with x ∈ X and cardinality d (that is, the closed orbits of length d under the action of T ); we
see that those d points contribute to the count of Fixn(T ) if and only if d

∣∣n, and that distinct
closed orbits of any length are disjoint. It follows that Fixn(T ) =

∑
d |n dOrbd(T ) for all n ⩾ 1,

and the usual Möbius inversion formula (see [3, Th. 8.15], for example) then gives (1).
Minton [7] showed that any linear recurrence sequence satisfying the Dold condition must

be a sum of traces of powers of algebraic numbers (and, in the case of binary recurrences, the
sign condition is easily understood). This recovers the uniqueness result of [12], and much else
besides.

The Fibonacci sequence itself, (Fn) = (1, 1, 2, 3, . . .), is not realizable. It fails the Dold
condition in the following strong — and, in the sense of Theorem 2, irreparable — way.

Lemma 1. The set of primes dividing a denominator of 1
n

∑
d |n µ

(
n
d

)
Fd for some n ∈ N is

infinite.

Proof. We recall that Fp is equivalent modulo p to the Legendre symbol
(p
5

)
for any prime p

(see Ribenboim [15, Eq. (IV.13), p. 60] or Lemmermeyer [5, Ex. 2.25, p. 73]). It follows that
if p is an odd prime with p ≡ ±2 modulo 5, then Fp ≡ −1 modulo p, so the denominator of
1
p(Fp − 1) = 1

p

∑
d |p µ

(p
d

)
Fd is p. □

A numerical observation is that this seems to be typical for integer linear recurrence se-
quences in the following sense. An integer linear recurrence sequence may be realizable (and,
up to understanding the sign condition, Minton’s results determine when this is the case), but
if it fails to be realizable, then the denominators appearing in the associated sequence whose
nonintegrality witnesses the failure of realizability are expected to be divisible by infinitely
many primes.

In a different direction, Moss [8] showed that the property of realizability is preserved by a
surprising diversity of ‘time-changes’. That is, there are nontrivial maps h : N → N with the
property that if (Un) is a realizable sequence, then (Uh(n)) is also a realizable sequence. Exam-
ples of time-changes from [8] with this realizability-preserving property include the monomials,
and in later work Jaidee, Moss, and Ward [4], showed that the monomials are the only poly-
nomials with this property, and that there are, nonetheless, uncountably many maps with this
property.

The unexpected phenomena we wish to discuss here is that some of these time-changes that
preserve realizability seem to ‘repair’ the failure to be realizable for the Fibonacci sequence
along the squares — up to a finite set of primes. At this stage, we understand neither the
reason for this, nor its full extent among linear recurrence sequences.

Theorem 2. The sequence (Fn2) is not realizable, but the sequence (5Fn2) is.

The negative part of Theorem 2 may be seen from the observation

1
5

∑
d |5

µ
(
5
d

)
Fd2 = 1

5 (F25 − F1) =
75024

5 ,

which shows that (Fn2) fails the Dold congruence for realizability. The positive part of The-
orem 2 consists of a direct proof that the sequence (5Fn2) satisfies the Dold conditions and
the sign condition, and this will require several steps. Lemma 1 (strictly speaking, its proof),
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Theorem 2, and a result from [4] together give the following description of the behavior of the
Fibonacci sequence along powers.

Corollary 3. If j is odd, then the set of primes dividing denominators of 1
n

∑
d |n µ

(
n
d

)
Fdj

for n ∈ N is infinite. If j is even, then the sequence (Fnj ) is not realizable, but the sequence
(5Fnj ) is.

2. Modular Periods of the Fibonacci Sequence

It will be convenient to use Dirichlet convolution notation, so that for sequences f = (fn)
and g = (gn), we write

(f ∗ g)n =
∑
d |n

fdgn/d

for all n ⩾ 1. The two conditions for realizability of a sequence U = (Un) can then be stated
as (µ ∗ U)n ≡ 0 modulo n and (µ ∗ U)n ⩾ 0 for all n ⩾ 1.

The argument involves working modulo various natural numbers, and we adopt the conven-
tion that a representative of an equivalence class modulo m ∈ N is always chosen among the
representatives {0, 1, . . . ,m− 1}. The sequence (Fn) is automatically periodic modulo m, and
we define ℓ(m) to be its period. That is,

ℓ(m) = min{d ∈ N | Fn+d ≡ Fn (mod m) for all n ∈ N}.
The quantity ℓ(m) is well studied; a convenient source for the type of results we need is the
paper of Wall [17], whose Theorems 5, 6, and 7 give the following result.

Theorem (Wall [17]). If p is an odd prime, then

ℓ(p)
∣∣p− 1 if p ≡ ±1 (mod 10) (2)

and

ℓ(p)
∣∣2(p+ 1) if p ≡ ±3 (mod 10). (3)

If p is a prime with ℓ(p) ̸= ℓ(p2), then

ℓ(pn) = pn−1ℓ(p)

for all n ∈ N. Moreover, if t is the largest integer with ℓ(pt) = ℓ(p), then

ℓ(pn) = pn−tℓ(p) (4)

for all n ∈ N with n ⩾ t.

From now on, in this section, p will always denote a prime, and k an integer with k ⩾ 2.
Clearly, (2) and (3) show that ℓ(p)

∣∣2(p2 − 1) for an odd prime p, but a little more is true.
We claim that

ℓ(p)
∣∣p2 − 1 (5)

for any prime p.
For p = 2, it is easy to check that ℓ(p) = 3. For an odd prime p ≡ ±1 modulo 10, (2) shows

that ℓ(p)
∣∣p2 − 1. For an odd prime p ≡ ±3 modulo 10, p− 1 is even so p2 − 1 is a multiple of

2(p+ 1), and hence, ℓ(p)
∣∣p2 − 1 by (3).

By definition, Fn+ℓ(pd) ≡ Fn modulo pd and Fn+ℓ(pd+1) ≡ Fn modulo pd+1 for any d ∈ N, so
Fn+ℓ(pd+1) ≡ Fn modulo pd and hence,

ℓ(pd) ⩽ ℓ(pd+1) (6)
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for any d ∈ N.

Lemma 4. For n ∈ N, there is some s = s(n) with 0 ⩽ s < n such that ℓ(pn) = psℓ(p).

Proof. If ℓ(p) ̸= ℓ(p2), then (4) gives s = n− 1.
Suppose therefore, that ℓ(p) = ℓ(p2). If ℓ(p) = ℓ(pn) for all n ∈ N, then we may set s = 0.

If ℓ(p) ̸= ℓ(pn) for some n ∈ N, then let t ∈ N be the largest integer with ℓ(pt) = ℓ(p). By (6)
we then have ℓ(p) = ℓ(pj) for j = 1, . . . , t, and so we can use (4) to define s = 0 if n ⩽ t, and
s = n− t if n > t. □

By Lemma 4, we have
pn(p2 − 1)

ℓ(pn)
=

pn−s(p2 − 1)

ℓ(p)
,

so (5) shows that
ℓ(pn)

∣∣pn(p2 − 1) (7)

for any n ∈ N.
We now define sequences u = (un) and v = (vn) by

un = (Fn (mod p2k))

and

vn = (Fn (mod p2(k−1))). (8)

Lemma 5. For any integer c ⩾ 0, we have

Fp2k+c ≡ Fp2(k−1)+c

modulo pk.

Proof. By definition,

Fp2k+c ≡ up2k+c (mod p2k)

and

Fp2(k−1)+c ≡ vp2(k−1)+c (mod p2(k−1))

For any integer j ⩾ 0 we have

vp2(k−1)+c = vp2(k−1)+c+jℓ(p2(k−1)).

By (7), we may set j = p2(k−1)(p2−1)

ℓ(p2(k−1))
, so

vp2(k−1)+c+jℓ(p2(k−1)) = vp2(k−1)+c+p2(k−1)(p2−1) = vp2k+c.

It follows that vp2(k−1)+c = vp2k+c and so

Fp2(k−1)+c ≡ vp2k+c (mod p2(k−1)).

Clearly p2(k−1)
∣∣un − vn for all n ∈ N, so pk

∣∣un − vn for all n ∈ N because k ⩾ 2. In particular,

pk
∣∣up2k+c − vp2k+c

and hence,

pk
∣∣up2k+c − vp2(k−1)+c.

Thus, Fp2k+c ≡ Fp2(k−1)+c modulo pk, as required. □
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Note that in the proof above we saw that p2(k−1)
∣∣un−vn, so for k ⩾ 3 we have pk+1

∣∣un−vn.
It follows that

F22k+c ≡ F22(k−1)+c (mod 2k+1) (9)

for any k ⩾ 3.

3. Properties of the Sequence (5Fn2)

In this section, p again denotes a prime, k a positive integer, ϕ = (ϕn) denotes the sequence
defined by ϕn = 5Fn2 for all n ∈ N, and L = (Ln) denotes the Lucas sequence. Because L is
a realizable sequence, it satisfies the Dold congruences so we have

Lp ≡ 1 (mod p). (10)

The next result appeared as an exercise due to Desmond [1], with a solution using an earlier
result of Ruggles [16].

Lemma 6 (Desmond). For a nonnegative integer n, we have Fnp ≡ FnFp modulo p.

Proof. The case p = 2 or n ⩽ 1 is clear, so suppose that p is odd and n ⩾ 2, and assume the
statement holds for all n ⩽ m for some m ⩾ 2. Recall that Fr+s = FrLs + (−1)s+1Fr−s (see,
for example, Ribenboim [14, Eq. (2.8)]). It follows that

Fmp+p = FmpLp + (−1)p+1Fmp−p = FmpLp + F(m−1)p,

and so

F(m+1)p ≡ Fmp + F(m−1)p (mod p)

by (10). The inductive assumption gives

F(m+1)p ≡ FmFp + Fm−1Fp (mod p),

and then the relation FmFp + Fm−1Fp = Fm+1Fp completes the proof by induction. □

By Lemma 6, we have

Fnp2 ≡ FnpFp ≡ Fn(Fp)
2 (mod p).

Because F 2
p ≡

(p
5

)
≡ 1 modulo p if p ̸= 5, we deduce that

Fnp2 ≡ Fn (mod p)

for p ̸= 5. It follows that

5Fnp2 ≡ 5Fn (mod p) (11)

for any prime p, because it is trivial for p = 5.

Lemma 7. For nonnegative integers n and k, we have

5Fnp2k ≡ 5Fnp2(k−1) (mod pk).

Proof. For k = 1, this follows from (11). If k > 1, then Lemma 5 with c = (n− 1)p2k gives

Fnp2k ≡ Fp2(k−1)+(n−1)p2k (mod pk). (12)

By definition (8), we have

Fp2(k−1)+(n−1)p2k ≡ vp2(k−1)+(n−1)p2k (mod p2(k−1)),

and for j ⩾ 0, we have

vnp2(k−1) = vp2(k−1)+(n−1)p2(k−1)+jℓ(p2(k−1)).

44 VOLUME 60, NUMBER 1



FIBONACCI ALONG EVEN POWERS

Taking j = (n−1)p2(k−1)(p2−1)

ℓ(p2(k−1))
, which is integral by (7), gives

vp2(k−1)+(n−1)p2(k−1)+jℓ(p2(k−1)) = vp2(k−1)+(n−1)p2k ,

so vp2(k−1)+(n−1)p2k = vnp2(k−1) . It follows that

Fp2(k−1)+(n−1)p2k ≡ Fnp2(k−1) (mod p2(k−1)).

Because k > 1, this gives

Fp2(k−1)+(n−1)p2k ≡ Fnp2(k−1) (mod pk),

and hence,

Fnp2k ≡ Fnp2(k−1) (mod pk)

by (12). □

A similar argument using (9) shows that if n is a positive integer and k ⩾ 3, then

Fn22k ≡ Fn22(k−1) (mod 2k+1).

The modular arguments thus far are aimed at establishing the Dold condition. The sign
condition is satisfied because of the rapid rate of growth in the sequence, which is more than
sufficient by the following remark of Puri [11].

Lemma 8. If (An) is an increasing sequence of nonnegative real numbers with A2n ⩾ nAn for
all n ∈ N, then (µ ∗A)n ⩾ 0 for all n ∈ N.

Proof. In the even case, we have

(µ ∗A)2n =
∑
d |2n

µ(2n/d)Ad ⩾ A2n −
n∑

k=1

Ak ⩾ A2n − nAn ⩾ 0,

because the largest divisor of 2n is n. Similarly, in the odd case we have

(µ ∗A)2n+1 ⩾ A2n+1 −
n∑

k=1

Ak ⩾ A2n − nAn ⩾ 0,

because the largest divisor of 2n+ 1 is smaller than n, proving the lemma. □

Proof of the Positive Part of Theorem 2. We wish to show that n
∣∣(µ ∗ ϕ)n and (µ ∗ ϕ)n ⩾ 0

for all n ∈ N. For n = 1, this is clear. If n = pk, then

(µ ∗ ϕ)n =
∑
d |pk

µ(d)ϕpk/d = ϕpk − ϕpk−1 = 5Fp2k − 5Fp2(k−1) ,

which is clearly nonnegative, and Lemma 7 shows that it is divisible by n.
For the general case, we will work with one prime at a time using Lemma 7. Suppose that

n = p
k1
1 · · · pkmm with m ⩾ 2, k1, . . . , km ∈ N, and distinct primes p1, . . . , pm. Select one of these

primes pi, and to reduce the notational complexity write pk = p
ki
i . Writing s = n/p

ki
i , we have

(µ ∗ ϕ)n =
∑
d |pks

µ(d)ϕpks/d =
∑
d |s

(
ϕpks/d − ϕpk−1s/d

)
=

∑
d |s

(
5F(s/d)2p2k − 5F(s/d)2p2(k−1)

)
.

Lemma 7 therefore shows that p
ki
i

∣∣(µ ∗ ϕ)n, and by using this for each prime dividing n, we

deduce that n
∣∣(µ ∗ ϕn) as required.
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For the sign condition, we use Lemma 8 and Binet’s formula. Clearly, ϕ is an increasing
sequence. Writing α = (1 +

√
5)/2 and β = (1−

√
5)/2, we have

ϕ2n = 5F4n2 =
√
5
(
α2n2

+ β2n2)(
αn2

+ βn2)(
αn2 − βn2)

and
nϕn = n

√
5
(
αn2 − βn2)

.

Thus, to show the growth condition used in Lemma 8, it is enough to show that(
α2n2

+ β2n2)(
αn2

+ βn2)
⩾ n

for n ∈ N. Clearly, (
α2n2

+ β2n2)(
αn2

+ βn2)
> G(n) = α2n2(

αn2 − 1
)

for all n ∈ N. We check that G(1) = α > 1 and for n ⩾ 2 we have

G(n) > α2n2
(α− 1) = α2n2−1 > n.

Thus, ϕ2n ⩾ nϕn for all n ∈ N, completing the proof. □

Proof of Corollary 3. Assume first that j is odd, and recall that if p ≡ ±2 modulo 5 is an odd
prime, then Fp ≡ −1 modulo p (as in the proof of Lemma 1). By Lemma 6 it follows that

Fpj ≡ −1 modulo p, so the denominator of 1
p(Fpj − 1) = 1

p

∑
d |p µ

(p
d

)
Fdj is p.

For j even, Lemma 6 shows that F5j ≡ F25 ≡ 0 modulo 5, so (1/5)
(
F5j −F1

)
has denomina-

tor 5, showing that (Fnj ) is not realizable.
Finally, by [4, Thm. 5] we know that for any k ∈ N, the map h(n) = nk preserves realizability.

That is, if (Un) is a realizable sequence, then (Unk) is also. Thus, the positive part of Theorem 2
shows that (5Fn2k) is realizable for any k ∈ N. □

4. Remarks

(1) The correspondence between a pair (X,T ), denoting a map T : X → X with the property
that Fixn(T ) < ∞ for all n ⩾ 1, and the associated sequence (Fixn(T )) or (Orbn(T )) is
‘functorial’ with regard to many natural operations (we refer to the work of Pakapongpun and
Ward [9, 10] for an explanation of this cryptic comment, and for results in this direction).
The time-changes studied in [4] do not seem to have any such property. For example, we
do not have any reasonable way to start with a pair (X,T ) and set-theoretically ‘construct’
another pair (X ′, T ′) with the property that Fixn(T

′) = Fixn2(T ) for all n ⩾ 1. We have even
less ability — indeed, have no starting point — to ‘construct’ some reasonable pair (X,T )
with Fixn(T ) = 5Fn2 for all n ⩾ 1, particularly if the permutation of a countable set implicitly
constructed in the proof is not viewed as reasonable. A general result from Windsor [18] shows
that there must be a C∞ map of the 2-torus with this property, but we know nothing more
meaningful about such a map beyond that it must exist.
(2) For integers P,Q, we may define the Lucas sequence (Un(P,Q)) and companion Lucas
sequence (Vn(P,Q)) by

x

1− Px+Qx2
=

∞∑
n=0

Un(P,Q)xn

and

2− Px

1− Px+Qx2
=

∞∑
n=0

Vn(P,Q)xn.
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Binet’s formulas show that the sequence (Vn(P,Q)) always satisfies the Dold condition, but
that (Un(P,Q)) can only do so if the discriminant P 2 − 4Q = ±1. Thus, for example, the
sequence (

Un(±(2k + 1), k2 + k)
)

satisfies the Dold condition for any k ∈ Z. Theorem 2 states that (5Un2(1,−1)) is realizable,
and we expect that similar arguments may be used to prove the following.

Conjecture. For P,Q ∈ Z the sequence
(
(P 2 − 4Q)Un2(P,Q)

)
satisfies the Dold condition,

and so is realizable when it satisfies the sign condition.
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