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Abstract. We investigate sums associated with the Fibonacci sequence Fn and the golden
ratio ϕ. In particular, we study the sums G(k) =

∑∞
n=1 n

k/Fn and H(k) =
√
5 · Li−k(1/ϕ) =∑∞

n=1 n
k
√
5/ϕn. These sums generalize the reciprocal Fibonacci constant ψ = G(0). We

prove the asymptotic equivalence G(k) ∼ H(k), and moreover, G(k)/H(k) = 1 + 1/5k+1 +
O((log ϕ/π)k+1) as k → ∞. We express G(k)−H(k) as an alternating series, allowing us to
compute values of these sums to high precision, and to prove that G(k) > H(k) if and only
if k ≥ 2. We also generalize the results to their Lucas sequence analogues. As a tool, we
establish a widely applicable explicit bound for polylogarithms of negative integer order.

We find explicit bounds for the integer sequences {Ak}∞k=1 and {Bk}∞k=1 defined by

H(k)/
√
5 = Li−k(1/ϕ) = Ak+Bkϕ. We also prove several results concerning the multiplicative

structure of Ak and Bk. We show that {Ak (mod m)} and {Bk (mod m)} are periodic for
every natural number m, and that the period is a divisor of λ(m), where λ denotes the
Carmichael function.

1. Introduction

The Fibonacci sequence {Fn} is defined recursively by the conditions F1 = F2 = 1 and
Fn = Fn−1 + Fn−2. Binet’s formula states that Fn = (ϕn − ϕ n)/

√
5 for all n ≥ 1, where

ϕ = (1 +
√
5)/2 is the golden ratio and ϕ = (1 −

√
5)/2. It follows that the sum of the

reciprocals of the Fibonacci numbers is convergent. Let ψ =
∑∞

n=1 1/Fn = 3.359885666243 . . .
denote the value of this sum, called the reciprocal Fibonacci constant. It is known to at least
10,000 decimal places, see for instance [6]. No closed formula is known for ψ. However,
R. André-Jeannin [1] proved in 1989 that ψ is irrational.

In this paper, we study the more general sums

G(k) =

∞∑
n=1

nk

Fn
, H(k) =

∞∑
n=1

nk

ϕn/
√
5
.

Note that ψ = G(0). Also, H(k) =
√
5 · Li−k(1/ϕ), where Li−k denotes the polylogarithm of

order −k. We prove that G(k) ∼ H(k) as k → ∞. We establish a widely applicable explicit
bound for polylogarithms (Theorem 4.4): for all 1 < x < e2π and k ≥ 1, we have

Li−k

(
1

x

)
=

∞∑
n=1

nk

xn
=

k!

logk+1 x

(
1 +O∗

(
2ζ(k + 1)

(
log x

2π

)k+1
))

,

where ζ is the Riemann zeta function and where O∗(f(k)) denotes a quantity bounded in
absolute value by f(k). We use this estimate to prove that G(k)/H(k) = 1 + 1/5k+1 +
O((log ϕ/π)k+1), and moreover, G(k) > H(k) if and only if k ≥ 2.

We also use this estimate to put explicit bounds on the behavior of the integer sequences
{Ak} and {Bk} defined by Li−k(1/ϕ) = Ak + Bkϕ. Finally, we prove results on the multi-
plicative structure of these sequences. In particular, we show that for every natural m ≥ 1,
the sequences {Ak (mod m)} and {Bk (mod m)} are periodic, and the period is a divisor of
λ(m), where λ is the Carmichael function.
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2. Notation and Preliminary Lemmas

Throughout the paper, ϕ = (1 +
√
5)/2 is the golden ratio, ϕ = (1−

√
5)/2 is its conjugate

radical, Fn denotes the nth Fibonacci number, and log x is the natural logarithm. The use
of k as a variable indicates a nonnegative integer, whereas x indicates a real number. Also,
p refers to a prime number. An ellipsis (. . .) indicates that a decimal expansion is truncated.
For |x| < 1,

Lik(x) =
∞∑
n=1

xn

nk

denotes the polylogarithm of order k. We will make use of polylogarithms fairly frequently,
and will rely on the following duplication formula:

Lemma 2.1. We have Li−k(−x) = 2k+1Li−k

(
x2
)
− Li−k(x),

which can be verified using the polylogarithm definition, and the following reciprocal formula:

Lemma 2.2. (See [8, p. 151].) For all k ≥ 1, we have Li−k (1/x) = (−1)k+1Li−k(x).

These formulas apply to the analytic continuations of the polylogarithms outside of the
domain of the functions with the series definition. We rely on these analytic continuations
when necessary.

We define G(k) =
∑∞

n=1 n
k/Fn and H(k) =

√
5 ·Li−k(1/ϕ) =

∑∞
n=1 n

k
√
5/ϕn as above. We

let ak, bk, Ak, and Bk denote integer sequences defined by Li−k(1/ϕ) = ak+ bk
√
5 = Ak+Bkϕ

for k ≥ 1, with the exception that Bk denotes a Bernoulli number only when specified.
We let

{
n
k

}
denote a Stirling number of the second kind, whereas αnk denotes an Eulerian

number. Also, ζ(s) and Γ(s) denote the Riemann zeta and Euler gamma functions, and φ(m)
and λ(m) denote the Euler totient and Carmichael functions, respectively.

We use the asymptotic notation f ∼ g to mean that limk→∞ f(k)/g(k) = 1, as well as the
Bachmann-Landau notation f(k) = O(g(k)) and Vinogradov notation f(k) ≪ g(k) to mean
that there exists a constant C > 0 such that |f(k)| ≤ Cg(k) for all sufficiently large k. We
write f(k) = O∗(g(k)) to mean |f(k)| ≤ g(k) for all sufficiently large k. In other words, we
can take C = 1 above.

3. The Sums
∑
nk/Fn and

∑
nk/ϕn

In considering G(k) and H(k), we observe that, because the ϕ̄n term becomes insignificant
relative to ϕn for large values of n, the two should be asymptotic. We note that Table 1
supports this idea, and justify this data later in this section.

Theorem 3.1. G(k) ∼ H(k).

Proof. We have that

∞∑
n=1

nk

Fn
=

∞∑
n=1

nk
√
5

ϕn
+

∞∑
n=1

(
nk

Fn
− nk

√
5

ϕn

)
=

∞∑
n=1

nk
√
5

ϕn
+

∞∑
n=1

nk
√
5

ϕn

(
an

1− an

)
,

where a = ϕ/ϕ. Now, we see that G(k)/H(k) equals

1 +
∞∑
n=1

nk

ϕn

(
an

1− an

)/ ∞∑
i=1

ik

ϕi
.
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k G(k) H(k) G(k)/H(k)
0 3.359885666243 3.618033988749 0.928649558486
1 9.320451712281 9.472135954999 0.983986268415
2 40.15890107530 40.12461179749 1.000854569708
3 250.5643394352 250.2198067399 1.001376920155
4 2080.615034838 2079.771609537 1.000405537462
5 21611.35861433 21609.68046727 1.000077657189
6 269444.3279995 269440.8595763 1.000012872669
7 3919459.925826 3919450.752568 1.000002340444
8 65159706.65587 65159674.66202 1.000000491006
9 1218667337.130 1218667209.215 1.000000104963
10 25324964426.72 25324963888.30 1.000000021260

Table 1: Values of G(k), H(k), and G(k)/H(k) to 12 decimal places.

To show the sum, G(k)/H(k) − 1, approaches 0 as k → ∞, we first write it as an alter-
nating series, noting that a = −0.381966 . . . < 0. However, we cannot use the alternating
series remainder theorem directly on the sum in the numerator because its summands are
not immediately decreasing in absolute value. We first must establish when it transitions
from increasing to decreasing. Let g(n) denote the absolute value of the summand. Then,
g(n + 1)/g(n) = |a|/ϕ · (1 + 1/n)k(1 − an)/(1 − an+1). We note that (1 + 1/n)n increases to
a limit of e, so for n ≥ k, (1 + 1/n)k < e. Also e · |a|/ϕ < 0.65, so for g(n + 1)/g(n) to be
less than 1, it is sufficient to have (1− an)/(1− an+1) < 1.5, which is true for all n ≥ 2. Thus
for all n ≥ k > 1, g(n) is decreasing. We then break up the secondary term above into two
parts: n < k and n ≥ k. We then consider the ratio of these parts to H(k), and show each
one approaches 0. For the first part, we have that

k−1∑
n=1

nk

ϕn

(
|a|n

1− an

)/ ∞∑
i=1

ik

ϕi
≤ (k − 1)

(k − 1)k

ϕk−1

/
(2k − 2)k

ϕ2k−2
=

1

ϕ

(
ϕ

2

)k

(k − 1),

with the inequality on the left resulting from |an/(1−an)| < 1, and f(n) = nk/ϕn is increasing
on (0, k/ log ϕ), so in the sum of the numerator, every term has magnitude less than (k −
1)k/ϕk−1. This term approaches 0 as k → ∞ because 0 < ϕ/2 < 1.

Now, we can use the alternating series remainder theorem on the second part. We see that

∞∑
n=k

nk

ϕn

(
|a|n

1− an

)/ ∞∑
i=1

ik

ϕi
≤ kk

ϕk

(
|a|k

1− ak

)/
kk

ϕk
=

|a|k

1− ak
,

which also approaches 0 as k → ∞ because |a| < 1. This completes the proof. □

Remark 3.2. Although the above proof assumes that k is an integer, it can be extended to
a real variable as follows: instead of splitting the secondary sum at k, we can use ⌊k⌋ < k
(assuming k is not an integer) and split the sum at ⌊k⌋. This would yield two parts: the sum
from 1 to ⌊k⌋ and from ⌊k⌋+1 to ∞. Each part can then be addressed in a similar fashion to
the proof above.

The above proof provides a simple way to compute the values of G(k): use H(k) as an
approximation, and then bound the secondary sum using the first k terms and the alternating
series remainder theorem. This was the method used to provide the numerical computations
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at the beginning of this section. In addition to considering G(k)/H(k), we note that the data
in Table 1 suggests that G(k) > H(k) for all k ≥ 2. We prove this result.

Theorem 3.3. G(k) > H(k) if and only if k ≥ 2.

Proof. Let b = a/ϕ = 2 −
√
5, B = 2 +

√
5, and c = ba = (−11 + 5

√
5)/2. As in the proof of

Theorem 3.1, we have that (G(k)−H(k))/
√
5 is equal to

∞∑
n=1

nk

ϕn
an

1− an
=

∞∑
n=1

nkbn
(
1 +

an

1− an

)
> Li−k(b) +

1

1 + |a|
Li−k (c) . (3.1)

It suffices to show that the right side of (3.1) is positive for all k > 10. (We verify the theorem
directly for k ≤ 10.) Because b < 0, we use Lemma 2.1 to express the right side of inequality
(3.1) as

2k+1Li−k

(
1

B2

)
− Li−k

(
1

B

)
+

1

1 + |a|
Li−k (c) .

Here we rationalized numerators. We apply Theorem 4.4 (see Section 4.1 below) and then
simplify, to obtain

2k+1Li−k

(
1

B2

)
− Li−k

(
1

B

)
= O∗

(
2k!ζ(k + 1)

πk+1

(
1 + 2−(k+1)

))
and

1

1 + |a|
Li−k (c) ≥

1

1 + |a|
k!

logk+1 (1/c)

(
1− 2ζ(k + 1)

(
log (1/c)

2π

)k+1
)
.

Dividing through by k!, it therefore suffices to check that for all k > 10, we have

1

1 + |a|
1

logk+1 (1/c)
> 2ζ(k + 1)

(
1

1 + |a|

(
1

2π

)k+1

+
1 + 2−(k+1)

πk+1

)
.

We check this using that for k > 10, ζ(k + 1) < 1.00025 and 1/2k+1 ≤ 1/4096. □

We next establish a finer estimate for G(k)/H(k).

Theorem 3.4. We have G(k)/H(k) = 1 + 1/5k+1 +O
(
(log ϕ/π)k+1

)
.

Theorem 3.4 implies that G(k)/H(k)− 1 ∼ 1/5k+1. It also implies Theorem 3.1, as well as
the assertion of Theorem 3.3 for all sufficiently large k.

Proof. We expand (G(k)−H(k))/
√
5 as in the proof of Theorem 3.3, obtaining

∞∑
n=1

nk

ϕn
an

1− an
=

∞∑
n=1

nkbn
1

1− an
= Li−k(b) + Li−k(c) + Li−k(ca) +

∞∑
n=1

nkcn
a2n

1− an
,

where a = (1 −
√
5)/(1 +

√
5), b = 2 −

√
5, and c = ab. Dividing through by H(k)/

√
5 =

Li−k(1/ϕ), we have four terms to address. Noting that log ϕ/ log(1/c) = 1/5, the dominant
term is

Li−k(c)

Li−k(1/ϕ)
=

k!

logk+1 (1/c)

(
1 +O

((
log(1/c)

2π

)k+1
))/ k!

logk+1 ϕ

(
1 +O

((
log ϕ

2π

)k+1
))

=
1

5k+1
+O

((
log ϕ

2π

)k+1
)
.
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Here we used Theorem 4.4. We then have that |Li−k(b)|/Li−k(1/ϕ) ≪ (log ϕ/π)k+1 as in the
proof of Theorem 3.3. Also, noting that the absolute value of a sum does not exceed the
sum of the absolute values of the summands, we see that |Li−k(ac)|/Li−k(1/ϕ) ≪ 1/7k+1.
Finally, we note that the fourth term in the expansion above can be bounded by constants
times Li−k(ca

2), and because Li−k(ca
2)/Li−k(1/ϕ) ∼ 1/9k+1, this term is negligible compared

with the main term by the squeeze theorem. □

The data also suggest that the limit of G(k + 1)/G(k) − G(k)/G(k − 1) exists as k → ∞
and is approximately 2.08. This is confirmed by the following, which holds by Theorem 3.1 as
well as Theorem 4.4 below.

Proposition 3.5. limk→∞ (G(k + 1)/G(k)−G(k)/G(k − 1)) = 1/ log ϕ = 2.0780869 . . ..

Equivalently, the same relation applies to H(k). We generalize Theorems 3.1, 3.3, and 3.4 to
their Lucas sequence analogues, defined by L1 = 1, L2 = 3, and Ln = Ln−1+Ln−2. Explicitly,
Ln = ϕn + ϕ n. Let L(k) =

∑∞
n=1 n

k/Ln.

Theorem 3.6. We have L(k) ∼ G(k)/
√
5 ∼ Li−k(1/ϕ) as k → ∞. Moreover,

L(k)/Li−k(1/ϕ) = 1 +O((log ϕ/π)k+1), and L(k) ≥ Li−k(1/ϕ) for all k ≥ 0.

The proofs are similar to those above for the Fibonacci sequence.

4. Sequences Arising from
∑
nk/ϕn

We consider the well-known formulas for the sums Li−k (1/x) =
∑∞

n=1 n
k/xn, which are

convergent for |x| > 1 by the ratio test. Note that Li−k (1/ϕ) = H(k)/
√
5. Li−k (1/x) is

given by the recurrence relation Li−(k+1) (1/x) = −x · ∂/∂x Li−k (1/x). This relation can be
proven directly with term-by-term differentiation, or by applying Lemma 2.2 to the result at
the bottom of [8, p. 153]. Thus:

Li0 (1/x) = 1/(x− 1),

Li−1 (1/x) = x/(x− 1)2,

Li−2 (1/x) = (x2 + x)/(x− 1)3,

Li−3 (1/x) = (x3 + 4x2 + x)/(x− 1)4,

etc. This recurrence relation leads to the following well-known formula for the coefficients,
which also applies to the analytic continuation of the polylogarithm.

Lemma 4.1. For all k ≥ 1, we have

Li−k

(
1

x

)
=

1

(x− 1)k+1

k−1∑
j=0

αkjx
j+1,

where the αkj are the Eulerian numbers, given recursively by

αk0 = αk(k−1) = 1, α(k+1)j = (j + 1)αkj + (k + 1− j)αk(j−1).

When x = ϕ, the golden ratio, the sums are of the form ak + bk
√
5, where ak and bk are

positive integers for each k ≥ 1. For instance, Li−1 (1/ϕ) = 2+
√
5, Li−2 (1/ϕ) = 9+4

√
5, and

Li−3 (1/ϕ) = 56+ 25
√
5. We also define two more sequences implicitly by writing the sums in

the form Ak+Bkϕ, where Ak and Bk are rational. Then, Li−k (1/ϕ) = ak+bk
√
5 = Ak+Bkϕ,

and thus Ak = ak − bk and Bk = 2bk, so information about Ak and Bk directly gives us
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information about ak and bk, and vice versa. The first eight terms of the sequences ak, bk, Ak,
and Bk are given in Table 2.

k ak bk Ak Bk

1 2 1 1 2
2 9 4 5 8
3 56 25 31 50
4 465 208 257 416
5 4832 2161 2671 4322
6 60249 26944 33305 53888
7 876416 391945 484471 783890
8 14570145 6515968 8054177 13031936

Table 2: First eight terms of the sequences {ak}, {bk}, {Ak}, and {Bk}.

The sequence {bk} has exponential generating function f(x) = (1− sinhx)/(1− 2 sinhx)−
1/2. In other words, bk = f (k)(0), where the superscript indicates the kth derivative. Thus,
the terms bk are the same as those appearing in the sequence [2] (aside from b0). This is a
consequence of Proposition 4.9.

We note by Lemma 4.1 that

Li−k

(
1

ϕ

)
=

1

(ϕ− 1)k+1

k−1∑
j=0

αkjϕ
j+1 = ϕk+1

k−1∑
j=0

αkjϕ
j+1 =

k−1∑
j=0

αkjϕ
k+2+j .

Using the identity ϕk = Fkϕ+Fk−1, this yields a formula for Ak and Bk in terms of Fibonacci
and Eulerian numbers. In particular, Ak and Bk are natural numbers.

Proposition 4.2. For all k ≥ 1, we have

Ak =
k−1∑
j=0

αkjFk+j+1, Bk =
k−1∑
j=0

αkjFk+j+2.

4.1. Estimates for Polylogarithms and the Sequences Ak and Bk. To obtain estimates
for Ak and Bk, we use the following expansion, see [8, p. 149].

Lemma 4.3. For s /∈ N and | log z| < 2π, we have

Lis(z) = Γ(1− s) logs−1

(
1

z

)
+

∞∑
n=0

ζ(s− n)
logn z

n!
.

We now prove a general explicit estimate for the polylogarithm.

Theorem 4.4. For all 1 < x < e2π and k ≥ 1, we have

Li−k

(
1

x

)
=

k!

logk+1 x

(
1 +O∗

(
2ζ(k + 1)

(
log x

2π

)k+1
))

.

Proof. Taking s = −k and z = 1/x in Lemma 4.3, we have

Li−k

(
1

x

)
=

k!

logk+1 x

(
1 +

∞∑
n=0

ζ(−(n+ k))
(−1)n logn+k+1 x

n!k!

)
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from Lemma 4.3. Assume first that k ≥ 2 is even. We thus have ζ(−(n+ k)) = 0 if n is even,
due to the trivial zeros of zeta at the negative even integers. Changing the index of summation
to represent only odd terms 2n+ 1, n ≥ 0, we have

Li−k

(
1

x

)
=

k!

logk+1 x

(
1 +

∞∑
n=0

ζ(−(2n+ k + 1))
− log2n+k+2 x

(2n+ 1)!k!

)

=
k!

logk+1 x

(
1 +

∞∑
n=0

B2n+k+2 log
2n+k+2 x

(2n+ k + 2)(2n+ 1)!k!

)
.

Here we used the well-known formula ζ(−m) = −Bm+1/(m + 1), where Bm+1 denotes a
Bernoulli number, and where m = 2n + k + 1. We next use the expansion for the Bernoulli
numbers, B2N = 2(−1)N+1(2N)!ζ(2N)/(2π)2N , with 2N = m+ 1 = 2n+ k + 2. Thus,

Li−k

(
1

x

)
=

k!

logk+1 x

1 + 2(−1)
k
2

∞∑
n=0

(−1)nζ(2n+ k + 2)(
2π
log x

)2n+k+2

(
2n+ k + 1

k

) .

Let y = y(x) = log x/(2π). We show that the series above is O∗(ζ(k + 1)yk+1). Using the
definition of the Riemann zeta function and changing the order of summation, this series is
equal to

∞∑
j=1

∞∑
n=0

(−1)n
(
y

j

)2n+k+2(2n+ k + 1

k

)
.

Changing the order of summation is justified because the original double series is absolutely
convergent by the ratio test. We proceed by writing this expression as

∞∑
j=1

(
y

j

)k+1 ∞∑
n=0

(−1)n
(
y

j

)2n+1(2n+ k + 1

k

)
which is equal to

∞∑
j=1

(
y

j

)k+1

·
sin
(
(k + 1) tan−1

(
y
j

))
((

y
j

)2
+ 1

) k+1
2

= O∗

 ∞∑
j=1

(
y

j

)k+1
 .

(This can be proved by induction on k with the sum formulas for the sine and cosine.) We
complete the proof of the case where k is even by noting that the expression in the O∗ symbol
above is yk+1ζ(k + 1). The odd case follows by a similar argument. □

In a sense, we can view Bk as a polylog transform of the Fibonacci sequence, as shown in
the following explicit formulas for Ak and Bk, see [4] and [5].

Proposition 4.5. For all k ≥ 1, we have

Bk =
(−1)k+1

√
5

(
Li−k(ϕ)− Li−k(ϕ)

)
, Ak =

(−1)k+1

√
5

(
ϕLi−k(ϕ) +

1

ϕ
Li−k(ϕ)

)
. (4.1)

It follows that if k ≥ 1 is even (respectively odd), we have

Bk =
2k+1

√
5
Li−k

(
1

ϕ2

)
, Bk =

2√
5

(
Li−k

(
1

ϕ

)
− 2kLi−k

(
1

ϕ2

))
, (4.2)
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and if k ≥ 1 is even (respectively odd), we have

Ak = Li−k

(
1

ϕ

)
− 2k+1ϕ√

5
Li−k

(
1

ϕ2

)
, Ak =

−1√
5

(
Li−k

(
1

ϕ

)
− 2k+1ϕLi−k

(
1

ϕ2

))
. (4.3)

Proof. We establish (4.1) using algebraic manipulations with Lemma 4.1 and Proposition 4.2.
Equations (4.2) and (4.3) follow from equation (4.1) by Lemmas 2.1 and 2.2. □

The following theorem is a consequence of Theorem 4.4 and Proposition 4.5.

Theorem 4.6. For all k ≥ 1, we have

Ak =
2

5 +
√
5

k!

logk+1 ϕ

(
1 +O∗

(
2ϕζ(k + 1)(

√
5 · 2−(k+1) + ϕ)

(
log ϕ

π

)k+1
))

,

Bk =
1√
5

k!

logk+1 ϕ

(
1 +O∗

(
2ζ(k + 1)(2−k + 1)

(
log ϕ

π

)k+1
))

.

Using Theorem 4.6, we establish bounds for the counting functions of Ak and Bk. Let
A(x) = |{k : Ak ≤ x}| and B(x) = |{k : Bk ≤ x}|. The following theorem shows that
A(x) and B(x) belong to the same class of functions as the counting function of the factorial
numbers.

Theorem 4.7. We have

A(x) =
log x

log log x

(
1 +O

(
log log log x

log log x

))
and the same estimate holds for B(x). In particular, A(x) ∼ B(x) ∼ log x/ log log x.

Proof. We prove the theorem for B(x), noting that the same argument applies to A(x). By
definition, B(x) is the number k such that Bk ≤ x < Bk+1. Thus,

logBk

k log k
≤ log x

k log k
<

logBk+1

k log k
. (4.4)

By Theorem 4.6, we have Bk = ck!/ logk+1 ϕ · (1 + O(yk+1)), where c = 1/
√
5 and y =

log ϕ/π. We apply Stirling’s formula in the form k! = kk/ek ·
√
2πk(1 + O(1/k)). Thus

Bk = ckk/ek ·
√
2πk/ logk+1 ϕ · (1 +O(1/k)), so that

logBk = log c+ k log k − k +
1

2
log 2π +

1

2
log k − (k + 1) log log ϕ+O(1/k).

Simplifying, we have logBk = k log k+O(k). Similarly, logBk+1 = (k+1) log(k+1)+O(k+1) =
(k + 1)(log k + log(1 + 1/k)) +O(k) = k log k +O(k). Therefore,

logBk

k log k
= 1 +O

(
1

log k

)
,

logBk+1

k log k
= 1 +O

(
1

log k

)
. (4.5)

Combining (4.4) with (4.5) and recalling that k = B(x), we have

log x

B(x) logB(x)
= 1 +O

(
1

logB(x)

)
. (4.6)

Note that B(x) → ∞ as x → ∞, so that 1/ logB(x) → 0 as x → ∞. Thus in particular, we
have B(x) ∼ log x/ logB(x). Rearranging (4.6), we have

B(x) =
log x

logB(x)

(
1 +O

(
1

logB(x)

))
. (4.7)
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Taking logarithms in (4.7), we have

logB(x) = log log x− log logB(x) +O

(
1

logB(x)

)
.

Dividing by logB(x), we obtain

1 +
log logB(x)

logB(x)
− log log x

logB(x)
= O

(
1

log2B(x)

)
. (4.8)

Because B(x) → ∞ as x → ∞, the right side and the middle term on the left side both
have limit 0 as x → ∞. This implies that limx→∞ log log x/ logB(x) = 1, or equivalently,
log log x ∼ logB(x). Combining this with the estimate B(x) ∼ log x/ logB(x) (see the line
below (4.6)), we have B(x) ∼ log x/ log log x. It follows that log logB(x) ∼ log log log x. Thus
from (4.8), we obtain

log log x

logB(x)
= 1 +O

(
log log log x

log log x

)
.

Combining this with (4.7), completes the proof of Theorem 4.7. □

4.2. Asymptotic Relationships of ak, bk, Ak, and Bk. We have the following two propo-
sitions as immediate consequences of Theorem 4.6.

Proposition 4.8. For any ε > 0, there exists an integer Nε such that for all k ≥ Nε we have

Bk

Ak
= ϕ

(
1 +O∗

(
(C + ε)

(
log ϕ

π

)k+1
))

,

where C = 2(1 + ϕ2) = 5 +
√
5. In particular, limk→∞Bk/Ak = ϕ.

Proof. By Theorem 4.6, we have

Bk =
k!√

5 logk+1 ϕ
(1 + f(k)) , Ak =

2k!

(5 +
√
5) logk+1 ϕ

(1 + g(k)) ,

where
f(k) = O∗

(
2ζ(k + 1)

(
2−k + 1

)
yk+1

)
and g(k) = O∗

(
2ζ(k + 1)ϕ

(√
5 · 2−k−1 + ϕ

)
yk+1

)
for

y = log ϕ/π. Then,

Bk

Ak
= ϕ

1 + f(k)

1 + g(k)
= ϕ

(
1 +

f(k)− g(k)

1 + g(k)

)
.

Then for any ε > 0 and sufficiently large Nε, for all k ≥ Nε, we have
Bk/Ak = ϕ

(
1 +O∗ ((C + ε) yk+1

))
. □

Using ak = Ak + bk and bk = Bk/2, we have the following corollary.

Corollary 4.1. For any ε > 0, there exists an integer Mε such that for all k ≥Mε we have

ak
bk

=
√
5

(
1 +O∗

(
(D + ε)

(
log ϕ

π

)k+1
))

,

where D = 4(1 + ϕ2)/(ϕ
√
5) = 4. In particular, limk→∞ ak/bk =

√
5.
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The sequences ak, bk, Ak, Bk are interesting in their own right. We will consider multi-
plicative properties of these sequences. For instance, the only values of k ≤ 1000 for which Ak

is prime are k = 2, 3, 4, 5, 8, 81. This data suggests that perhaps Ak is prime for only finitely
many values of k. Initially, the Ak are mostly squarefree, however a computer search reveals
that Ak is nonsquarefree for k = 31 and 50. Before studying the multiplicative properties of
these sequences in more depth, we will provide a survey of known results.

4.3. A Survey of Known Results Concerning Ak and Bk. The following result confirms
that Ak and Bk are the sequences given in the On-line Encyclopedia of Integer Sequences, [4]
and [5].

Proposition 4.9. The exponential generating functions fA and fB of the sequences Ak and
Bk are given by fA(x) = 1/(ex − e2x + 1)− 1 and fB(x) = ex/(ex − e2x + 1), respectively. In
other words,

fA(x) =
1

ex − e2x + 1
− 1 =

∞∑
k=0

Ak
xk

k!
, fB(x) =

ex

ex − e2x + 1
=

∞∑
k=0

Bk
xk

k!
.

Proof. We write fA(x) =
1√
5

(
1

ex − ϕ
− 1

ex − ϕ

)
− 1. Now for a given constant c,

1

ex − c
= −1

c

∞∑
j=0

(
ex

c

)j

= −1
c

∞∑
k=0

∞∑
j=0

(jx)k

cjk!
= − 1

c− 1
− 1

c

∞∑
k=1

∞∑
j=1

jk

cj
xk

k!

= − 1

c− 1
−

∞∑
k=1

Sk(c)

c(c− 1)k+1

xk

k!
,

where Sk(c) =
∑k−1

j=0 αkjc
j+1, so that Li−k(1/c) =

∑∞
j=1 j

k/cj = Sk(c)/(c − 1)k+1. It follows
that

fA(x) =
1√
5

∞∑
k=1

(
Sk(ϕ)

ϕ(ϕ− 1)k+1
− Sk(ϕ)

ϕ(ϕ− 1)k+1

)
xk

k!

=
1√
5

∞∑
k=1

(Sk(ϕ)ϕ
k − Sk(ϕ)ϕ

k)
xk

k!

=
∞∑
k=1

k−1∑
j=0

αkj

(
ϕk+j+1 − ϕ k+j+1

√
5

)
xk

k!

=
∞∑
k=0

Ak
xk

k!
.

A similar argument establishes the claim for Bk. □

The sequences Ak and Bk also appear in a different kind of sum related to the Fibonacci
sequence, given by

∑n
k=1 k

mFk. This sum was studied by Ledin [3] and by Zeitlin [9]. The
following proposition confirms that Ak and Bk are the same sequences appearing in these two
papers.

Proposition 4.10. For all k ≥ 1, we have

Ak =

k∑
n=0

n!

{
k

n

}
Fn+1, Bk =

k∑
n=0

n!

{
k

n

}
Fn+2,
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where
{
k
n

}
denotes a Stirling number of the second kind.

Proof. We prove the claim for Bk. (A similar argument establishes the claim for Ak.) We have

Li−k(x) =
∞∑
n=1

nkxn =
k+1∑
j=1

(−1)k+j+1(j − 1)!

{
k + 1

j

}
1

(1− x)j
(k ≥ 1),

see for instance [8, p. 152]. Therefore, as in the proof of Proposition 4.9 and relying on Lemma
2.2, the generating function of Bk is

fB(x) =
ex

1− e2x + ex
=

1√
5

(
ex

ex − ϕ
− ex

ex − ϕ

)
=

1√
5

∞∑
k=0

k+1∑
j=1

(−1)j+1(j − 1)!

{
k + 1

j

}(
1

(1− ϕ)j
− 1

(1− ϕ)j

)
xk

k!
.

Shifting the index in the sum on j, we write the kth term in the sum on k as

1√
5

k∑
j=0

(−1)jj!
{
k + 1

j + 1

}(
1

(1− ϕ)j+1
− 1

(1− ϕ)j+1

)
xk

k!
.

Using the identities 1/(1− ϕ) = −ϕ and 1/(1− ϕ) = −ϕ, this expression is equal to

k∑
j=0

j!

{
k + 1

j + 1

}
Fj+1

xk

k!
=

k∑
j=0

j!

(
(j + 1)

{
k

j + 1

}
+

{
k

j

})
Fj+1

xk

k!

=

k+1∑
j=1

j!

{
k

j

}
Fj +

k∑
j=0

j!

{
k

j

}
Fj+1

 xk

k!

=

k∑
j=0

j!

{
k

j

}
Fj+2

xk

k!
.

Here we used the recurrence relations for Stirling numbers of the second kind and Fibonacci
numbers. □

4.4. Results on the Multiplicative Structure of Ak and Bk. We consider values of Ak

and Bk modulo a given number. Table 2 suggests that the last digits of Ak, Bk, ak, and bk
are periodic. We prove this in the following proposition.

Proposition 4.11. For all k ≥ 1, the terms Ak are odd and the terms Bk are even.

Proof. This follows readily from Proposition 4.10. □

Proposition 4.12. We have ak, bk ∈ N for all k ≥ 1. Furthermore, ak is even if and only if
bk is odd, if and only if k is odd.

Proof. That ak, bk ∈ N have opposite parity for all k ≥ 1 follows from Propositions 4.11 and
4.16 by the relations ak = Ak +Bk/2, bk = Bk/2. □

Proposition 4.13. Let k ≥ 1. We have:

Ak ≡


1 (mod 5), if k ≡ 1 (mod 4);

0 (mod 5), if k ≡ 2 (mod 4);

1 (mod 5), if k ≡ 3 (mod 4);

2 (mod 5), if k ≡ 0 (mod 4);

Bk ≡


2 (mod 5), if k ≡ 1 (mod 4);

3 (mod 5), if k ≡ 2 (mod 4);

0 (mod 5), if k ≡ 3 (mod 4);

1 (mod 5), if k ≡ 0 (mod 4).

146 VOLUME 60, NUMBER 2



SUMS RELATED TO THE FIBONACCI SEQUENCE

Proof. We prove the claim for Ak. (The same argument applies to Bk.) The claim clearly
holds for 1 ≤ k ≤ 4, so let k ≥ 5. Because 5|n! for all n ≥ 5, by Proposition 4.10, we have

Ak ≡
4∑

n=0

n!Fn+1

{
k

n

}
≡
{
k

0

}
+

{
k

1

}
+ 4

{
k

2

}
+ 18

{
k

3

}
+ 120

{
k

4

}
(mod 5)

≡ 1 + 4

{
k

2

}
+ 3

{
k

3

}
(mod 5).

The claim then follows from the formulas
{
k
2

}
= 2k−1 − 1 and

{
k
3

}
= (3k−1 +1)/2− 2k−1, and

the periodicity of 2k and 3k modulo 5. □

We substantially generalize Proposition 4.13, proving that for all m ≥ 1, the sequences
{Ak (mod m)} and {Bk (mod m)} are periodic, and the period divides λ(m), where λ denotes
the Carmichael function. Note that λ(m)|φ(m), where φ is the Euler totient function, so the
period also divides φ(m).

Theorem 4.14. Letm be a positive integer. Then, the sequences {Ak (modm)} and {Bk (modm)}
eventually are periodic, with the period a divisor of λ(m).

Proof. We prove the theorem for Ak, and we note that an identical argument applies to Bk.
We begin by establishing the theorem for m = pα, where p is prime. By Proposition 4.10, we

have Ak =
∑k

n=0 n!
{
k
n

}
Fn+1. Note that for all n ≥ αp, we have n! ≡ 0 (mod pα). Thus for

k ≥ αp− 1, we have

Ak ≡
αp−1∑
n=0

n!

{
k

n

}
Fn+1 (mod pα).

We now use the well-known explicit formula for Stirling numbers of the second kind,

n!

{
k

n

}
=

n∑
j=0

(−1)j
(
n

j

)
(n− j)k. (4.9)

Therefore,

Ak ≡
αp−1∑
n=0

n∑
j=0

(−1)j
(
n

j

)
(n− j)kFn+1 (mod pα)

and

Ak+λ(pα) ≡
αp−1∑
n=0

n∑
j=0

(−1)j
(
n

j

)
(n− j)k+λ(pα)Fn+1 (mod pα).

Thus, it suffices to show that for all 0 ≤ n ≤ αp− 1 and 0 ≤ j ≤ n, we have

(n− j)k+λ(pα) ≡ (n− j)k (mod pα). (4.10)

Congruence (4.10) holds if p ∤ (n− j) by the definition of the Carmichael function as gcd(n−
j, pα) = 1, so that (n− j)λ(p

α) ≡ 1 (mod pα). Also, if p|(n− j), then both sides of congruence
(4.10) are 0 mod pα as k ≥ αp− 1. This establishes the theorem for m = pα.

Note that the theorem holds trivially form = 1. The theorem holds for any integerm ≥ 2 by
an application of the Chinese remainder theorem, noting thatm ≥ 2 factors asm = pα1

1 · · · pαr
r ,

where the pαi
i are pairwise coprime, and λ(pα1

1 · · · pαr
r ) = lcm{λ(pα1

1 ), . . . , λ(pαr
r )}. □
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Remark 4.15. Note that {Ak (mod pα)} and {Bk (mod pα)} become periodic for k ≥ αp−1,
so {Ak (mod m)} and {Bk (mod m)} become periodic for k ≥ max{αipi− 1}. However, when
m is a prime p, one can check that the assumption that k ≥ p − 1 can be dropped, so the
periodicity applies for all k ≥ 1.

Define PA(m) to be the period of the sequence {Ak (mod m)}, and similarly define PB(m).
Based on data including an exhaustive computer check in Pari/GP for all m ≤ 200, we
conjecture that PA(m) = λ(m) for all natural m. Although this was typically the case for
PB(m), we found some counterexamples. We conjectured that for m = 2α or m = 3 · 2α,
α ≥ 4, we have PB(m) = λ(m)/2. Additionally, there are m not of this form for which
PB(m) = λ(m)/2. The exceptional cases up to 200 are m = 112, 144, 160, and 176.

We note that the periodicity of the sequences {Ak (mod m)} and {Bk (mod m)} is closely

related to that of the ordered Bell numbers defined by ω(k) =
∑k

n=0 n!
{
k
n

}
, see for instance [7].

However, the extra factors of Fn+1 or Fn+2 in the summands pose additional difficulties in the
study of Ak and Bk.

We next prove a result on the exact divisibility of the terms Bk by powers of 2.

Proposition 4.16. If k is odd, then 2 exactly divides Bk. If k > 0 is even, then 2k+1 exactly
divides Bk. It follows that if k > 0 is even, then 2k exactly divides bk.

Proof. Let D(n, k) = dk

dxk sinhn x
∣∣∣
x=0

. By Proposition 4.9, Bk = f
(k)
B (0), where fB(x) =

1/(1− 2 sinhx) =
∑∞

n=0 2
n sinhn x. Thus, Bk ≡

∑1
n=0 2

nD(n, k) (mod 4). For odd k, we thus
have Bk ≡ 2D(1, k) (mod 4). Because the kth derivative of sinhx is coshx if k is odd, we have
Bk ≡ 2 (mod 4) for odd k. This establishes the first assertion.

We now prove the second assertion. Note that D(n, k) = 0 if n > k. To see this, after
k applications of the product rule, the power of sinhx in each term is at least n − k. Thus,

Bk =
∑k

n=0 2
nD(n, k). It suffices to show that if k ≥ 2 is even and 0 ≤ n ≤ k is even, then

2k+1−n|D(n, k), with exact divisibility if and only if n = 2, whereas if k is even and n is odd,
then D(n, k) = 0. This holds by Lemma 4.17 below.

Then, the last assertion holds because bk = Bk/2. □

Lemma 4.17. If k ≥ 2 is even and 0 ≤ n ≤ k is even, then 2k+1−n|D(n, k), and the divisibility
is exact if and only if n = 2. If k is even and n is odd, then D(n, k) = 0.

Proof. Suppose first that n is odd. We show that D(n, k) = 0 for all even k by induction on
n. We have D(1, k) = sinh 0 = 0 for all even k. Suppose that for some odd number n ≥ 1, we
have D(n, k) = 0 for all even k. Then by the Leibniz rule,

D(n+ 2, k) =
k∑

j=0

(
k

j

)
dj

dxj
sinhn x

dk−j

dxk−j
sinh2 x

∣∣∣
x=0

=
k∑

j=0

(
k

j

)
D(n, j)D(2, k − j).

By the induction hypothesis, if j is even, then D(n, j) = 0. Therefore,

D(n+ 2, k) =
k∑

j=0

j odd

(
k

j

)
D(n, j)D(2, k − j).

By the assumption that k is even, we have that k − j is odd for all odd j. Thus, it suffices
to show that D(2,m) = 0 for all odd m. This follows from the identity d

dx sinh
2 x = sinh 2x.

Thus, if n is odd and k is even, then D(n, k) = 0.
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We next prove the assertion that if k ≥ 2 is even and 0 ≤ n ≤ k is even, then 2k+1−n|D(n, k),
with the divisibility being exact if and only if n = 2. We again proceed by induction on n.
When n = 0, the claim holds trivially. When n = 2,

D(2, k) =
dk

dxk
sinh2 x

∣∣∣
x=0

=
dk−1

dxk−1
sinh 2x

∣∣∣
x=0

= 2k−1 cosh 2x
∣∣∣
x=0

= 2k+1−n.

Suppose that the claim holds for some even n ≥ 2. Then proceeding as above,

D(n+ 2, k) =
k∑

j=0

(
k

j

)
D(n, j)D(2, k − j).

Again using the identity d
dx sinh

2 x = sinh 2x, we have for even k and odd j that k − j is odd
and hence D(2, k − j) = 0, whereas for even k and even j, we have that k − j is even and
2k−j−1|D(2, k−j). Also by the induction hypothesis, we have 2j+1−n|D(n, j) for n and j even.

Therefore, D(n+ 2, k) is divisible by 2j+1−n2k−j−1 = 2k−n, so 2k+1−(n+2)|D(n+ 2, k) but not
exactly. □

4.5. A Few Notes on Reciprocal Sums of Ak and Bk. By either Theorem 4.6 or 4.7, the
sequences Ak and Bk have asymptotic density zero, as well as a bounded sum of reciprocals.
From computation in Pari/GP, we find the following approximations for

∑∞
k=1 1/Ak:

1.23655572747387316702024233450356226060100001959990716277024

8492738789649192905339500692557197368122

and
∑∞

k=1 1/Bk:

0.64765513425772635315326453463920742251816755145223727877560

8972531819787914850128505070375311744529

These computations are completed using the formulas for Ak and Bk of Proposition 4.10.
Computing larger sums does not change the results of Pari/GP for the selected real precision
of 115 significant digits. We note that Ak, Bk > k! for all k > 1, so the error terms are easily
less than 2/201!, although the actual error term is much smaller.

Acknowledgment

We are grateful to Jonathan Bayless for helpful feedback at the start of this project.

References
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