INFINITE SUMS INVOLVING GIBONACCI POLYNOMIALS

THOMAS KOSHY

ABSTRACT. We explore infinite sums involving Fibonacci polynomials, and their Lucas, Pell, and Pell-Lucas implications.

1. Introduction

Extended gibonacci polynomials $z_n(x)$ are defined by the recurrence $z_{n+2}(x) = a(x)z_{n+1}(x) + b(x)z_n(x)$, where x is an arbitrary integer variable; a(x), b(x), $z_0(x)$, and $z_1(x)$ are arbitrary integer polynomials; and $n \ge 0$.

Suppose a(x) = x and b(x) = 1. When $z_0(x) = 0$ and $z_1(x) = 1$, $z_n(x) = f_n(x)$, the nth Fibonacci polynomial; and when $z_0(x) = 2$ and $z_1(x) = x$, $z_n(x) = l_n(x)$, the nth Lucas polynomial. They can also be defined by the Binet-like formulas

$$f_n(x) = \frac{\alpha^n(x) - \beta^n(x)}{\alpha(x) - \beta(x)}$$
 and $l_n(x) = \alpha^n(x) + \beta^n(x)$,

where $2\alpha(x) = x + \Delta$, $2\beta(x) = x - \Delta$, and $\Delta = \sqrt{x^2 + 4}$. Clearly, $f_n(1) = F_n$, the *n*th Fibonacci number; and $l_n(1) = L_n$, the *n*th Lucas number [2, 3].

Pell polynomials $p_n(x)$ and Pell-Lucas polynomials $q_n(x)$ are defined by $p_n(x) = f_n(2x)$ and $q_n(x) = l_n(2x)$, respectively. In particular, the Pell numbers P_n and Pell-Lucas numbers Q_n are given by $P_n = p_n(1) = f_n(2)$ and $2Q_n = q_n(1) = l_n(2)$, respectively [3].

In the interest of brevity, clarity, and convenience, we omit the argument in the functional notation, when there is no ambiguity; so z_n will mean $z_n(x)$. In addition, we let $g_n = f_n$ or l_n , l_n , l_n , l_n , and omit a lot of basic algebra.

1.1. Some Fundamental Identities. Gibonacci polynomials g_n satisfy the following fundamental properties [3, p. 57]:

 $\begin{array}{ll} \text{a)}\ l_n=f_{n+1}+f_{n-1}; & \text{b)}\ f_{2n}=f_nl_n; \\ \text{c)}\ xf_{2n}=f_{n+1}^2-f_{n-1}^2; & \text{d)}\ (x^2+2)f_n=f_{n+2}+f_{n-2}; \\ \text{e)}\ xl_n=f_{n+2}-f_{n-2}; & \text{f)}\ (x^3+2x)f_{2n}=f_{n+2}^2-f_{n-2}^2; \\ \text{g)}\ f_{n+k}f_{n-k}-f_n^2=(-1)^{n+k-1}f_k^2; & \text{h)}\ l_n^2-\Delta^2f_n^2=4(-1)^n. \end{array}$

Property (g) is the Cassini-like (or Catalan-like) identity for Fibonacci polynomials.

Property (c) implies that $xf_{2(2n+1)} = f_{2n+2}^2 - f_{2n}^2$ and $xf_{2(2n+2)} = f_{2n+3}^2 - f_{2n+1}^2$, and property (f) implies that $(x^3 + 2x)f_{2(2n+2)} = f_{2n+4}^2 - f_{2n}^2$. In addition, it follows by the Cassini-like identity that

$$\begin{array}{rcl} f_{2n+1}f_{2n-1} & = & f_{2n}^2 + 1; & f_{2n+2}f_{2n} & = & f_{2n+1}^2 - 1; \\ f_{2n+3}f_{2n-1} & = & f_{2n+1}^2 + x^2; & f_{2n+4}f_{2n} & = & f_{2n+2}^2 - x^2. \end{array}$$

With this background, we now begin our explorations.

2. Fibonacci Polynomial Sums

We begin our discourse with a sum involving odd-numbered Fibonacci polynomials.

Theorem 2.1.

$$\sum_{n=1}^{\infty} \frac{f_{2(2n+1)}}{\left(f_{2n+1}^2 - 1\right)^2} = \frac{1}{x^3}.$$
 (2.1)

Proof. Using recursion [3], we will first establish

$$\sum_{n=1}^{m} \frac{x f_{2(2n+1)}}{\left(f_{2n+1}^2 - 1\right)^2} = \frac{1}{x^2} - \frac{1}{f_{2m+2}^2}.$$
 (2.2)

To this end, we let A_m and B_m be the left and right side of (2.2), respectively. Then,

$$B_{m} - B_{m-1} = \frac{1}{f_{2m}^{2}} - \frac{1}{f_{2m+2}^{2}}$$

$$= \frac{f_{2m+2}^{2} - f_{2m}^{2}}{f_{2m+2}^{2} f_{2m}^{2}}$$

$$= \frac{x f_{2(2m+1)}}{(f_{2m+1}^{2} - 1)^{2}}$$

$$= A_{m} - A_{m-1}.$$

Consequently,

$$A_m - B_m = A_{m-1} - B_{m-1} = \dots = A_1 - B_1 = \frac{xf_6}{(f_3^2 - 1)^2} - \left(\frac{1}{x^2} - \frac{1}{f_4^2}\right) = 0.$$

Thus, $A_m = B_m$, as expected.

Because
$$\lim_{m\to\infty} \frac{1}{f_m} = 0$$
, the given result now follows from equation (2.2).

It follows from equation (2.2) that

$$\sum_{n=1}^{m} \frac{F_{2(2n+1)}}{\left(F_{2n+1}^2 - 1\right)^2} = 1 - \frac{1}{F_{2m+2}^2};$$

$$\sum_{n=1}^{\infty} \frac{F_{2(2n+1)}}{\left(F_{2n+1}^2 - 1\right)^2} = 1.$$
(2.3)

Next, we explore the counterpart of Theorem 2.1 for even-numbered Fibonacci polynomials.

Theorem 2.2.

$$\sum_{n=1}^{\infty} \frac{(x^3 + 2x)f_{2(2n+2)}}{\left(f_{2n+2}^2 - x^2\right)^2} = \frac{1}{x^2} + \frac{1}{(x^3 + 2x)^2}.$$
Proof. Using recursion [3], we will first confirm that

$$\sum_{n=1}^{m} \frac{(x^3 + 2x)f_{2(2n+2)}}{\left(f_{2n+2}^2 - x^2\right)^2} = \frac{1}{x^2} + \frac{1}{(x^3 + 2x)^2} - \frac{1}{f_{2m+2}^2} - \frac{1}{f_{2m+4}^2}.$$
 (2.5)

MAY 2022 105

THE FIBONACCI QUARTERLY

Letting A_m and B_m be the left and right side of (2.5), respectively, we get

$$B_m - B_{m-1} = \frac{1}{f_{2m}^2} - \frac{1}{f_{2m+4}^2}$$

$$= \frac{f_{2m+4}^2 - f_{2m}^2}{f_{2m+4}^2 f_{2m}^2}$$

$$= \frac{(x^3 + 2x)f_{2(2m+2)}}{(f_{2m+2}^2 - x^2)^2}$$

$$= A_m - A_{m-1}.$$

This implies

$$A_m - B_m = A_{m-1} - B_{m-1} = \dots = A_1 - B_1 = \frac{(x^3 + 2x)f_8}{(f_4^2 - x^2)^2} - \left(\frac{1}{x^2} + \frac{1}{f_4^2} - \frac{1}{f_4^2} - \frac{1}{f_6^2}\right) = 0.$$

Thus, $A_m = B_m$, as desired.

The given result now follows from equation (2.5).

Equation (2.5) yields

$$\sum_{n=1}^{m} \frac{F_{2(2n+2)}}{\left(F_{2n+2}^{2}-1\right)^{2}} = \frac{10}{27} - \frac{1}{3F_{2m+2}^{2}} - \frac{1}{3F_{2m+4}^{2}};$$

$$\sum_{n=1}^{\infty} \frac{F_{2(2n+2)}}{\left(F_{2n+2}^{2}-1\right)^{2}} = \frac{10}{27},$$
(2.6)

respectively.

A Fibonacci Delight: Equation (2.3), coupled with (2.6), yields an interesting consequence:

$$\sum_{n=3}^{\infty} \frac{F_{2n}}{(F_n^2 - 1)^2} = \sum_{n=1}^{\infty} \left[\frac{F_{2(2n+1)}}{(F_{2n+1}^2 - 1)^2} + \frac{F_{2(2n+2)}}{(F_{2n+2}^2 - 1)^2} \right]$$

$$= \frac{37}{27}$$

$$= 1.\overline{370}.$$

Next, we investigate two additional sums involving Fibonacci polynomials.

Theorem 2.3.

$$\sum_{n=1}^{\infty} \frac{(x^3+2x)f_{2(2n+1)}}{\left(f_{2n+1}^2+x^2\right)^2} = 1 + \frac{1}{(x^2+1)^2}.$$
 (2.7) Proof. Using recursion [3], we will first prove that

$$\sum_{n=1}^{m} \frac{(x^3 + 2x)f_{2(2n+1)}}{\left(f_{2n+1}^2 + x^2\right)^2} = 1 + \frac{1}{(x^2 + 1)^2} - \frac{1}{f_{2m+1}^2} - \frac{1}{f_{2m+3}^2}.$$
 (2.8)

SUMS INVOLVING GIBONACCI POLYNOMIALS

Again, we let A_m and B_m be the left and right side of (2.8), respectively. Then,

$$B_{m} - B_{m-1} = \frac{1}{f_{2m-1}^{2}} - \frac{1}{f_{2m+3}^{2}}$$

$$= \frac{f_{2m+3}^{2} - f_{2m-1}^{2}}{f_{2m+3}^{2} f_{2m-1}^{2}}$$

$$= \frac{(x^{3} + 2x)f_{2(2m+1)}}{(f_{2m+1}^{2} + x^{2})^{2}}$$

$$= A_{m} - A_{m-1}.$$

Consequently, $A_m - B_m = A_{m-1} - B_{m-1} = \dots = A_1 - B_1 = \frac{f_6 f_4}{(f_3^2 + x^2)^2} - \left(1 - \frac{1}{f_5^2}\right) = 0.$ So, $A_m = B_m$, as expected.

The given result now follows from equation (2.8).

Equations (2.8) and (2.7) yield

$$\sum_{n=1}^{m} \frac{3F_{2(2n+1)}}{\left(F_{2n+1}^{2}+1\right)^{2}} = \frac{5}{4} - \frac{1}{F_{2m+1}^{2}} - \frac{1}{F_{2m+3}^{2}};$$

$$\sum_{n=1}^{\infty} \frac{F_{2(2n+1)}}{\left(F_{2n+1}^{2}+1\right)^{2}} = \frac{5}{12},$$
(2.9)

respectively.

Theorem 2.4.

$$\sum_{n=1}^{\infty} \frac{x f_{2(2n+2)}}{\left(f_{2n+2}^2 + 1\right)^2} = \frac{1}{(x^2 + 1)^2}.$$
 (2.10)

Proof. Using recursion [3], we will first establish that

$$\sum_{n=1}^{m} \frac{x f_{2(2n+2)}}{\left(f_{2n+2}^2 + 1\right)^2} = \frac{1}{(x^2 + 1)^2} - \frac{1}{f_{2m+3}^2}.$$
 (2.11)

As before, letting A_m and B_m be the left and right side of (2.11), respectively, yields

$$B_{m} - B_{m-1} = \frac{1}{f_{2m+1}^{2}} - \frac{1}{f_{2m+3}^{2}}$$

$$= \frac{f_{2m+3}^{2} - f_{2m+1}^{2}}{f_{2m+3}^{2} f_{2m+1}^{2}}$$

$$= \frac{x f_{2(2m+2)}}{(f_{2m+2}^{2} + 1)^{2}}$$

$$= A_{m} - A_{m-1}.$$

Then, $A_m - B_m = A_{m-1} - B_{m-1} = \cdots = A_1 - B_1 = \frac{xf_8}{(f_4^2 + 1)^2} - \left(\frac{1}{f_3^2} - \frac{1}{f_5^2}\right) = 0.$ Consequently, $A_m = B_m$, as expected.

Clearly, equation (2.11) yields the given result, as desired.

MAY 2022 107

THE FIBONACCI QUARTERLY

It follows from equation (2.11) that

$$\sum_{n=1}^{m} \frac{F_{2(2n+2)}}{\left(F_{2n+2}^2 + 1\right)^2} = \frac{1}{4} - \frac{1}{F_{2m+3}^2};$$

$$\sum_{n=1}^{\infty} \frac{F_{2(2n+2)}}{\left(F_{2n+2}^2 + 1\right)^2} = \frac{1}{4}.$$
(2.12)

Another Fibonacci Delight: Equation (2.9), coupled with equation (2.12), yields an interesting consequence:

$$\sum_{n=3}^{\infty} \frac{F_{2n}}{(F_n^2 + 1)^2} = \sum_{n=1}^{\infty} \left[\frac{F_{2(2n+1)}}{(F_{2n+1}^2 + 1)^2} + \frac{F_{2(2n+2)}}{(F_{2n+2}^2 + 1)^2} \right]$$

$$= \frac{2}{3};$$

$$\sum_{n=1}^{\infty} \frac{F_{2n}}{(F_n^2 + 1)^2} = \frac{5}{3},$$

as in [1, 4].

3. Pell Versions

Equations (2.1) through (2.12) have Pell implications. In the interest of brevity, we now explore four of them. Because $b_n(x) = g_n(2x)$, equations (2.1), (2.4), (2.7), and (2.10) yield the following results:

$$\sum_{n=1}^{\infty} \frac{p_{2(2n+1)}}{\left(p_{2n+1}^2 - 1\right)^2} = \frac{1}{8x^3};$$

$$\sum_{n=1}^{\infty} \frac{(2x^3 + x)p_{2(2n+2)}}{\left(p_{2n+2}^2 - 4x^2\right)^2} = \frac{1}{16x^2} + \frac{1}{64(2x^3 + x)^2};$$

$$\sum_{n=1}^{\infty} \frac{(2x^3 + x)p_{2(2n+1)}}{\left(p_{2n+1}^2 + 4x^2\right)^2} = \frac{1}{4} + \frac{1}{4(4x^2 + 1)^2};$$

$$\sum_{n=1}^{\infty} \frac{xp_{2(2n+2)}}{\left(p_{2n+2}^2 + 1\right)^2} = \frac{1}{2(4x^2 + 1)^2},$$

respectively.

They imply that

$$\begin{split} \sum_{n=1}^{\infty} \frac{P_{2(2n+1)}}{\left(P_{2n+1}^2 - 1\right)^2} &= \frac{1}{8}; \\ \sum_{n=1}^{\infty} \frac{P_{2(2n+2)}}{\left(P_{2n+2}^2 - 4\right)^2} &= \frac{37}{1728}; \\ \sum_{n=1}^{\infty} \frac{P_{2(2n+1)}}{\left(P_{2n+1}^2 + 4\right)^2} &= \frac{13}{150}; \\ \sum_{n=1}^{\infty} \frac{P_{2(2n+2)}}{\left(P_{2n+2}^2 + 1\right)^2} &= \frac{1}{50}, \end{split}$$

respectively.

4. Lucas Versions

Equations (2.1) through (2.12) also have Lucas implications. Again, in the interest of brevity, we focus on equations (2.1), (2.4), (2.7), and (2.10) only; using property (h), they yield the following results:

$$\sum_{n=1}^{\infty} \frac{\Delta^4 f_{2(2n+1)}}{\left(l_{2n+1}^2 - x^2\right)^2} = \frac{1}{x^3};$$

$$\sum_{n=1}^{\infty} \frac{\Delta^4 (x^3 + 2x) f_{2(2n+2)}}{\left[l_{2n+2}^2 - (x^2 + 2)^2\right]^2} = \frac{1}{x^2} + \frac{1}{(x^3 + 2x)^2};$$

$$\sum_{n=1}^{\infty} \frac{\Delta^4 (x^3 + 2x) f_{2(2n+1)}}{\left[l_{2n+1}^2 + (x^2 + 2)^2\right]^2} = 1 + \frac{1}{(x^2 + 1)^2};$$

$$\sum_{n=1}^{\infty} \frac{\Delta^4 x f_{2(2n+2)}}{\left(l_{2n+2}^2 + x^2\right)^2} = \frac{1}{(x^2 + 1)^2},$$

respectively.

Consequently, we have

$$\sum_{n=1}^{\infty} \frac{F_{2(2n+1)}}{\left(L_{2n+1}^2 - 1\right)^2} = \frac{1}{25};$$

$$\sum_{n=1}^{\infty} \frac{F_{2(2n+2)}}{\left(L_{2n+2}^2 - 9\right)^2} = \frac{2}{135};$$

$$\sum_{n=1}^{\infty} \frac{F_{2(2n+1)}}{\left(L_{2n+1}^2 + 9\right)^2} = \frac{1}{60};$$

$$\sum_{n=1}^{\infty} \frac{F_{2(2n+2)}}{\left(L_{2n+2}^2 + 1\right)^2} = \frac{1}{100};$$

respectively.

5. Pell-Lucas Versions

Using the relationships $b_n(x) = g_n(2x)$ and $q_n(1) = 2Q_n$, we can find the Pell-Lucas versions of equations (2.1) through (2.12). But, for convenience, we focus on equations (2.1), (2.4), (2.7), and (2.10) only:

$$\sum_{n=1}^{\infty} \frac{(x^2+1)^2 p_{2(2n+1)}}{\left(q_{2n+1}^2 - 4x^2\right)^2} = \frac{1}{128x^3};$$

$$\sum_{n=1}^{\infty} \frac{(x^2+1)^2 (2x^3+x) p_{2(2n+2)}}{\left[q_{2n+2}^2 - 4(2x^2+1)^2\right]^2} = \frac{1}{256x^2} + \frac{1}{1024(2x^3+x)^2};$$

$$\sum_{n=1}^{\infty} \frac{(x^2+1)^2 (2x^3+x) p_{2(2n+1)}}{\left[q_{2n+1}^2 + 4(2x^2+1)^2\right]^2} = \frac{1}{64} + \frac{1}{64(4x^2+1)^2};$$

MAY 2022 109

THE FIBONACCI QUARTERLY

$$\sum_{n=1}^{\infty} \frac{x(x^2+1)^2 p_{2(2n+2)}}{\left(q_{2n+2}^2 + 4x^2\right)^2} = \frac{1}{32(4x^2+1)^2},$$

respectively.

They yield

$$\sum_{n=1}^{\infty} \frac{P_{2(2n+1)}}{\left(Q_{2n+1}^2 - 1\right)^2} = \frac{1}{32};$$

$$\sum_{n=1}^{\infty} \frac{P_{2(2n+2)}}{\left(Q_{2n+2}^2 - 9\right)^2} = \frac{37}{6912};$$

$$\sum_{n=1}^{\infty} \frac{P_{2(2n+1)}}{\left(Q_{2n+1}^2 + 9\right)^2} = \frac{13}{600};$$

$$\sum_{n=1}^{\infty} \frac{P_{2(2n+2)}}{\left(Q_{2n+2}^2 + 1\right)^2} = \frac{1}{200};$$

respectively.

6. Acknowledgment

The author thanks the reviewer for a careful reading of the article, and for constructive suggestions and encouraging words.

References

- [1] J. Bartz, Solution to Problem B-1181, The Fibonacci Quarterly, 55.1 (2017), 84–85.
- [2] M. Bicknell, A primer for the Fibonacci numbers: Part VII, The Fibonacci Quarterly, 8.4 (1970), 407–420.
- [3] T. Koshy, Fibonacci and Lucas Numbers with Applications, Volume II, Wiley, Hoboken, NJ, 2019.
- [4] H. Ohtsuka, Problem B-1181, The Fibonacci Quarterly, 54:1 (2016), 80.

MSC2020: Primary 11B37, 11B39, 11B83, 11C08

DEPARTMENT OF MATHEMATICS, FRAMINGHAM STATE UNIVERSITY, FRAMINGHAM, MA 01701 Email address: tkoshy@emeriti.framingham.edu