INFINITE SUMS INVOLVING GIBONACCI POLYNOMIALS

THOMAS KOSHY

ABSTRACT. We explore infinite sums involving Fibonacci polynomials, and their Lucas, Pell,
and Pell-Lucas implications.

1. INTRODUCTION

Ezxtended gibonacci polynomials z,(x) are defined by the recurrence z,2(x) = a(z)znp+1(x)+
b(x)zn(x), where z is an arbitrary integer variable; a(x), b(x), zo(z), and z;(z) are arbitrary
integer polynomials; and n > 0.

Suppose a(z) = x and b(x) = 1. When zp(x) = 0 and z1(z) =
nth Fibonacci polynomial; and when zo(x) = 2 and z1(z) = z, z,(x)
polynomial. They can also be defined by the Binet-like formulas

o (IE) — Bn(x) n n
fn(i') - a(x) _ B(CU) and ln(ﬂf) = (LU) + 5 (l‘),
where 2a(x) = x + A, 28(z) = x — A, and A = Va2 +4. Clearly, f,(1) = F},, the nth
Fibonacci number; and I,,(1) = Ly, the nth Lucas number |2, 3].

Pell polynomials py(x) and Pell-Lucas polynomials g, (x) are defined by p,(z) = f,,(2z) and
gn(z) = 1,(2z), respectively. In particular, the Pell numbers P, and Pell-Lucas numbers Q,
are given by P, = p,(1) = fn(2) and 2Q,, = gn(1) = 1,(2), respectively [3].

In the interest of brevity, clarity, and convenience, we omit the argument in the functional
notation, when there is no ambiguity; so z, will mean z,(x). In addition, we let g, = f,, or
ln, by = pn OT ¢y, and omit a lot of basic algebra.

1, zp(z) = fo(z), the
= lp(z), the nth Lucas

1.1. Some Fundamental Identities. Gibonacci polynomials g, satisfy the following funda-
mental properties [3, p. 57]:

a) n—fn+1+fn 15 )f2 =
C) T fon = f, n+1 72L 15 ) + )fn—fn+2+fn 25
e) xln = fn+2 fn 23 ) (SU +2$)f2n = n+2 1% 23
g) Sk ok — fn = ( )n+k lfk’ h) 12— Aer% = 4(_1)n
Property (g) is the Cassini-like (or Catalan- lzke) identity for Fibonacci polynomials.
Property (c) implies that zfy2,11) = = 342 — f3, and T faont2) = = f3nts = f3011, and

property (f) implies that (23 + 2:1:) foeent2) = 12, 4 f3.. In addition, it follows by the
Cassini-like identity that

foni1fon1 = fo, + 1 font2fon = foq — 1
fontsfono1 = [ + a7 Sonvafon = [F0— 22
With this background, we now begin our explorations.

2. FIBONACCI POLYNOMIAL SUMS

We begin our discourse with a sum involving odd-numbered Fibonacci polynomials.
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Theorem 2.1.

[e.e]
1
> (21)
n=1 (f2n+1 B 1)
Proof. Using recursion [3], we will first establish that

S T fa2n+1) 1 1
Z 27 - —F — 27. (2.2)

To this end, we let A,, and B,, be the left and right side of (2.2), respectively. Then,

1 1
By — Bin1 . .
" " f22m f22m+2
f22m+2 - f22m
f22m+2f22m
. $f2(2m+1)
N
(f22m+1 - 1)
= An— An-1.
Consequently,
."L‘f@ 1 1
Apn—-Bn=4,1-Bn1=-=A41-B=————-|=5-—=]=0.
meome e B <x2 ff)
Thus, A,, = B, as expected.
Because lim — =0, the given result now follows from equation (2.2). O
m—oo fp,
It follows from equation (2.2) that
zm: Fy@n+1) _ I
(- s
o
Z 22t -, (2.3)

n:l 2n+1 1)

Next, we explore the counterpart of Theorem 2.1 for even-numbered Fibonacci polynomials.

Theorem 2.2.
20 (2 4 22) foanszy 1 1
Z D) N2 g2 (23 + 22)2 (2.4)
n=1 (f 2 — T )
Proof. Using recursion [3], we will first confirm that
" (23 + 22)f 1 1 1 1
Z - 2n;2) = 31T 3 2~ f2 ~ 72 (2.5)
= ([ —2?) x (2% + 22) fomi2  fomia
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Letting A,, and B,, be the left and right side of (2.5), respectively, we get

1 1
By —Bpoi = - — -
" " f22m f22m+4
_ f22m+4 B f22m
f22m+4f22m
(2% +22) faamae)
= 2
(f22m+2 - x2)
= An—An-1.
This implies
(23 + 22) f3 11 1 1
A, —Bn=4,-1—Bnh.1=-=4 —B1 = ~——-3++ — —l— fffff =0.
" " " " (ff —2?) i g
Thus, A,, = B, as desired.
The given result now follows from equation (2.5). O
Equation (2.5) yields
y e 101 1
= (F2,, 1) 21 3F%,.5 3F3.4
— 10
Z : 2(2n+2) ;= 3o (2.6)
n=1 (F2n+2 1)

respectively.
A Fibonacci Delight: Equation (2.3), coupled with (2.6), yields an interesting consequence:

i Fop B i Faant1) n Fyonyo)
2 = 2 2
n=3 (Fg_l) n=1 (F22n+1 1) (F22n+2 1)
o
27
= 1.370.

Next, we investigate two additional sums involving Fibonacci polynomials.

Theorem 2.3.
i (23 + 2z) faany1) 14 1 @7
2 = 2 2 :
ot (B +27) (z%+1)
Proof. Using recursion [3], we will first prove that
(23 + 27) 1 1 1
Z 2L M;l) =1 212  f2 g2 - (2.8)
= ([ +2?) (z2 +1) foms1 Samas
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Again, we let A, and By, be the left and right side of (2.8), respectively. Then,

1 1
By, — By—1 -
" " f22m71 f22m+3
f22m+3 - f22m71
f22m+3f22m—1
(@ 4 22) faamae)
= 2
(f22m+1 + $2)
= An—An_1.
fefa
C tly, Ay — Bjp = App1 — Bppe1 = - = A1 — 1-—
onsequently, A,, m m—1 m—1 1 (f3 (FPra22
So, A, = By, as expected.
The given result now follows from equation (2.8).
Equations (2.8) and (2.7) yield
i 350n+1) b 1 I
1 2 ) ’
ot F2n+1 +1)° 4 B Iones
oo
Z 2n+1 _ i
n*l n+1 + 1) 12
respectively.
Theorem 2.4.
i Tfoanr2) 1
2 = (2 2
n=t (foni2 +1) (z*+1)
Proof. Using recursion [3], we will first establish that
i Tfa2n+2) 1 1

n=1 (f22n+2 + 1)2 N (.TQ + 1)2 f22m+3.

1>_0
2)

O

(2.9)

(2.10)

(2.11)

As before, letting A,, and B, be the left and right side of (2.11), respectively, yields

1 1

BB = B By
fomes = Foman
Semisfamin
zf 2(2m+2)
(f3mya + 1)2
= Ay, —An_1.

1
Then, Am — By = Am_i — Bm1 = -+ = A1 — By = wfs-(-

(fi+1?* \f3
Consequently, A,, = B,,, as expected.

Clearly, equation (2.11) yields the given result, as desired.
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It follows from equation (2.11) that

in: Fy(an2) 11
n=1 (F22n+2 + 1)2 4 F22m+3’
00

Fynq2 1
n=1 (F2n+2 + 1)

Another Fibonacci Delight: Equation (2.9), coupled with equation (2.12), yields an interesting
consequence:

o o

B Z Faant1) n Fyonyo)
2 - 2

s PR+ 1) = L(Fa o +1) (F3 0+ 1)
_ 2
= 3

5

= (F2 4 1) 3’

as in [1, 4].
3. PELL VERSIONS

Equations (2.1) through (2.12) have Pell implications. In the interest of brevity, we now
explore four of them. Because by, (z) = ¢,(22), equations (2.1), (2.4), (2.7), and (2.10) yield
the following results:

oo
3 _Peenyy 1
2 3
n=1 (p%n+1 — 1) 8x
i 23: + x)P2(2n+2) B 1 N 1 '
2 - 2 3 92
n=1 (p2n+2 — 412 ) 162 64(2$ + x)
i (223 +:1;p22n+1) B 1+ 1 '
= AT A(ar2 £ 1)2
n=1 PgnH + 4x ) 4 4(422+1)
o0
P Cie E T
2 = 5 3
w1 (P3e+1) 2(422 + 1)
respectively.
They imply that
PEEECE Y
2 T Q
n=1 (P22n+1 - 1) 8
i _ Paniny 37
7 = Troq’
1 (P30 —4) 1728
i M _ 13
(P 241t 4) 150’

[ee) 5 (2n42) 1
n
E Y 3 = 50’

n=1 n+2 + 1)
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respectively.

4. LucASs VERSIONS

Equations (2.1) through (2.12) also have Lucas implications. Again, in the interest of
brevity, we focus on equations (2.1), (2.4), (2.7), and (2.10) only; using property (h), they
yield the following results:

i A* fo(ant) 1
2 T .30
n= (l§n+l - x?) r
N AN 4 22) foongny 1 1 ,
Z ==t (3 + 2x)
71 s — (2% +2)? ]
iA 1‘+21’f22n+1) - 1+ 1 .
- 2 27
n=1 2n+1 + (1‘2 + 2) ] (x + 1)
Z At Tfoan+2) 1
L (Buye +2%)° (2% +1)27
respectively.
Consequently, we have
o0
Z $ _ L
n 1 2n+1 1) 25
(o)

(2n+2) 2
Z—” = 5

:1 2n+2 9)

3

o0

2(2n+1) 1
Z L%n—i—l + 9) oo

2(2n+42) 1
Z L%n—i—? + 1) 100

respectively.

5. PELL-LUCAS VERSIONS

Using the relationships b, () = g,(22) and ¢, (1) = 2Q,,, we can find the Pell-Lucas versions
of equations (2.1) through (2.12). But, for convenience, we focus on equations (2.1), (2.4),
(2.7), and (2.10) only:

o0

Z (% +1)%paan41) _ 1
(B — 42?)° 12823
i (22 + 1)2(295 + x)P2(2n+2) _ 1 N 1 '
o1 @By — 4222 +1)2 ] 25622 1024(223 + x)2’
i (z% 4+ 1)%(223 + T)P2(2n+1) _ 1 N 1
=[G 4222 +1)2)° 64 64(dz? + 1)2

MAY 2022 109



THE FIBONACCI QUARTERLY

i z(x? + 1)2p2(2n+2) I T
n=1 (q%n+2 + 4162)2 32(4z% +1)%’
respectively.
They yield
3 Py L
(@B -1’ 32’
IS N
Q2,97 6912
3 P 13,
= (Q%,., +9)° 6007
3 Py L
w1 (@30 + 1)2 200
respectively.

6. ACKNOWLEDGMENT

The author thanks the reviewer for a careful reading of the article, and for constructive
suggestions and encouraging words.
REFERENCES

[1] J. Bartz, Solution to Problem B-1181, The Fibonacci Quarterly, 55.1 (2017), 84-85.

[2] M. Bicknell, A primer for the Fibonacci numbers: Part VII, The Fibonacci Quarterly, 8.4 (1970), 407-420.
[3] T. Koshy, Fibonacci and Lucas Numbers with Applications, Volume II, Wiley, Hoboken, NJ, 2019.

[4] H. Ohtsuka, Problem B-1181, The Fibonacci Quarterly, 54:1 (2016), 80.

MSC2020: Primary 11B37, 11B39, 11B83, 11C08

DEPARTMENT OF MATHEMATICS, FRAMINGHAM STATE UNIVERSITY, FRAMINGHAM, MA 01701
Email address: tkoshy@emeriti.framingham.edu

110 VOLUME 60, NUMBER 2



