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Abstract. Zeckendorf proved that every positive integer has a unique partition as a sum of
nonconsecutive Fibonacci numbers. Similarly, every natural number can be partitioned into
a sum of nonconsecutive terms of the Lucas sequence, although such partitions need not be
unique. In this paper, we
(1) prove that a natural number can have at most two distinct nonconsecutive partitions in

the Lucas sequence,
(2) find all natural numbers with a fixed term in their partition, and
(3) calculate the limiting value of the proportion of natural numbers that are not uniquely

partitioned into the sum of nonconsecutive terms in the Lucas sequence.

1. Introduction

The Fibonacci numbers have fascinated mathematicians for centuries with many interesting
properties. By convention, the Fibonacci sequence {Fn}∞n=0 is defined as follows: let F0 = 0,
F1 = 1, and Fn = Fn−1 + Fn−2 for n ≥ 2. A theorem of Zeckendorf [31] states that every
positive integer n can be uniquely written as a sum of nonconsecutive Fibonacci numbers. This
gives the so-called Zeckendorf partition of n. A formal statement of Zeckendorf’s theorem is
as follows:

Theorem 1.1 (Zeckendorf). For any n ∈ N, there exists a unique increasing sequence of
natural numbers {c1, c2, . . . , ck} such that c1 ≥ 2, ci ≥ ci−1 + 2 for i = 2, 3, . . . , k, and n =∑k

i=1 Fci.

Much work has been done to understand the structure of Zeckendorf partitions and their
applications (see [1, 2, 6, 8, 16, 18, 19, 20, 25, 29, 30]) and to generalize them (see [10, 12, 13,
14, 15, 17, 22, 23, 26, 27, 28]). In this paper, we study the partition of natural numbers into
Lucas numbers. The Lucas sequence {Ln}∞n=0 is defined as follows: let L0 = 2, L1 = 1, and
Ln = Ln−1 + Ln−2 for n ≥ 2. Because the Lucas sequence is closely related to the Fibonacci
sequence, it is not surprising that we can also partition natural numbers using Lucas numbers.

Theorem 1.2 (Zeckendorf). Every natural number can be partitioned into the sum of non-
consecutive terms of the Lucas sequence.

Note that the distinction between Theorems 1.1 and 1.2 lies in the uniqueness property
of such partitions of natural numbers in the Fibonacci and Lucas sequences. Although 5
is uniquely partitioned into F5 = 5 in {F2, F3, . . .}, its partition is not unique in the Lucas
sequence because 5 = L0 + L2 = 2 + 3 and 5 = L1 + L3 = 1 + 4. In [7], Brown shows various
ways to have a unique partition using Lucas sequence.1 In this paper, we prove the following
results.

1For more on Brown’s criteria, see [3, 4].
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Theorem 1.3. If we allow L0 and L2 to appear simultaneously in a partition, each natural
number can have at most two distinct nonconsecutive partitions in the Lucas sequence.

Theorem 1.4. Suppose that we do not allow L0 and L2 to appear simultaneously in a partition.
The set of all natural numbers having the summand Lk in their partition is given by

Z(k) =


{
2 + 3n+

⌊
n+1
Φ

⌋
: n ≥ 0

}
, if k = 0;{

3n+
⌊
n+Φ2

Φ

⌋
: n ≥ 0

}
, if k = 1;{

Lk

⌊
n+Φ2

Φ

⌋
+ nLk+1 + j : n ≥ 0 and 0 ≤ j ≤ Lk−1 − 1

}
, if k ≥ 2.

Theorem 1.4 is an analogue of [18, Theorem 3.4]. For k ≥ 0, we find all natural numbers
having the summand Lk in their partition. We have a different formula when k = 0 instead
of one formula for all values of k as in [18, Theorem 3.4].

Our next result is predicted by [9, Theorem 1], which addresses general recurrence relations;
however, in the case of Lucas numbers, we can relate Lucas partitions to the golden string.

Theorem 1.5. If we allow L0 and L2 to appear simultaneously in a partition, the proportion
of natural numbers that are not uniquely partitioned into the sum of nonconsecutive terms of
the Lucas sequence converges to 1

3Φ+1 , where Φ is the golden ratio.

2. Preliminaries

2.1. Definitions.

Definition 2.1. Let A = {a0, a1, . . . , am} be the set consisting of the first m + 1 terms of
the sequence

{
ak
}∞
k=0

. We say a proper subset B of A is a nonconsecutive subset of A if

the elements of B are pairwise nonconsecutive in
{
ak
}∞
k=0

. Furthermore, we say a sum S
is a nonconsecutive sum of A if S is the sum of distinct elements of A that are pairwise
nonconsecutive in

{
ak
}∞
k=0

.

Definition 2.2. Let Am = {L0, L1, . . . , Lm} denote the set consisting of the first m+1 terms
of the Lucas sequence.

2.2. The Golden String. The golden string S = BABBABABBABBA . . . is defined to
be the infinite string of As and Bs constructed recursively as follows. Let S1 = A and
S2 = B, and then, for k ≥ 3, Sk is the concatenation of Sk−1 and Sk−2, which we denote by
Sk−1 ◦ Sk−2. For example, S3 = S2 ◦ S1 = a2 ◦ a1 = BA, S4 = S3 ◦ S2 = a2a1 ◦ a2 = BAB,
S5 = S4 ◦ S3 = BABBA, and so on. The golden string is highly connected to the Zeckendorf
partition [19]. As we will see later, the string is also closely related to the partitions of natural
numbers into Lucas numbers.

Remark 2.3. We mention two properties of the golden string that we will use.

(1) For j ≥ 1, the (F2j)th character of S is B and the (F2j+1)th character of S is A. This
can be proved easily using induction.

(2) The number of B’s among the first n characters of S is given by
⌊
n+1
Φ

⌋
, where Φ = 1+

√
5

2
is the golden ratio. For a proof of this result, see [19, Lemma 3.3].

3. At Most Two Partitions

In this section, we present our results that determine the maximum number of nonconsec-
utive partitions that a natural number can have in the Lucas sequence, the proofs of which
are adapted from [21]. Before we prove Theorem 1.3, we introduce the following preliminary
lemmas. For the proofs of Lemmas 3.1 and 3.2, see Appendix B of [11].
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Lemma 3.1. Let S be any nonconsecutive sum of Am. Then

(1) if m is odd, S assumes all values from 0 to Lm+1 − 1 inclusive, and
(2) if m is even, then S assumes all values from 0 to Lm+1+1 inclusive, excluding Lm+1.

Lemma 3.2. If m ≥ 0, then L2m+1+1 has exactly two nonconsecutive partitions in the Lucas
sequence.

Proof of Theorem 1.3. It suffices to show that for every nonnegative integer m, there is no
natural number that is equal to three or more distinct nonconsecutive sums of Am. We
proceed by strong induction. No natural is equal to three or more distinct nonconsecutive
sums of A0 and A1. This shows the base case. Assume Theorem 1.3 holds for all nonnegative
integers less than or equal to m = k. In our first case, suppose that k is odd. From Lemma 3.1,
the nonconsecutive sums that we can form from Ak are the values from 0 to Lk+1−1 inclusive.
Hence, when we add the term Lk+1 to Ak, all new nonconsecutive sums that can be formed
must be at least Lk+1. This implies there is no possible way in which we can form a third
distinct nonconsecutive sum of Ak+1 for any natural number because there is no intersection
between the nonconsecutive sums in which we can form before and after the addition of the
term Lk+1. When k ≥ 2 is even, we have from Lemma 3.1 that all nonconsecutive sums
we can form from Ak are the values from 0 to Lk+1 + 1 inclusive, excluding Lk+1. When
we add the term Lk+1 to Ak, all new nonconsecutive sums that can be formed are at least
Lk+1 with Lk+1 + 1 being the only nonconsecutive sum formed again, namely Lk+1 + L1. By
Lemma 3.2, we know that Lk+1 + 1 has exactly two distinct nonconsecutive partitions in the
Lucas sequence. Therefore, there is no possible way in which we can form a third distinct
nonconsecutive sum of Ak+1 for any natural number. This completes the inductive step. □

4. Partitions with a Fixed Term

Let Xk denote the set of all natural numbers having Lk as the smallest summand in their
partition. Let Qk = {qk(j)}j≥1 be the strictly increasing sequence obtained by rearranging
the elements of Xk into ascending numerical order. We consider the cases k = 0 and k ≥ 1
separately.

4.1. When k = 0. Table 1 replaces each term qk(j) inQk with an ordered list of the summands
in its partition.

Row
1 L0

2 L0 L3

3 L0 L4

4 L0 L5

5 L0 L3 L5

6 L0 L6

7 L0 L3 L6

8 L0 L4 L6

Table 1. The partitions of the natural numbers having L0 as their smallest summand.

Lemma 4.1. For j ≥ 3, the rows of Table 1 for which Lj is the largest summand are those
numbered from Fj−1 + 1 to Fj inclusive.

Proof. The proof is by induction.
Base Cases. It is easy to check that the statement of the lemma is true for j = 3 and j = 4.
Inductive Hypothesis. Assume that it is true for all j such that 3 ≤ j ≤ m for some m ≥ 4.
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By the inductive hypothesis, the number of rows such that their largest summands are no
greater than Lm−1 is

1 +

m−1∑
j=3

(Fj − Fj−1) = Fm−1,

which is also the number of rows whose largest summand is Lm+1. Due to the inductive
hypothesis, the rows whose largest summand is Lm are numbered from Fm−1 + 1 to Fm

inclusive. Therefore, the rows whose largest summand is Lm+1 are numbered from Fm + 1 to
Fm+1, as desired. This completes our proof. □

Lemma 4.2. For j ≥ 1, we have

qk(j + 1)− qk(j) =

{
L2, if A is the jth character of S;

L3, if B is the jth character of S.

Proof. We prove by induction.
Base Cases. It is easy to check that the statement of the lemma is true for 1 ≤ j ≤ F4 − 1.
Inductive Hypothesis. Suppose that it is true for 1 ≤ j ≤ Fm − 1 for some m ≥ 4. By Lemma
4.1, the number of rows in Table 1 whose largest summand is no greater than Lm−1 is

1 +

m−1∑
j=3

(Fj − Fj−1) = Fm−1,

which is also the number of rows whose largest summand is Lm+1. Furthermore, the rows for
which Lm+1 is the largest summand are numbered from Fm +1 to Fm+1 inclusive. Therefore,
the ordering of the rows in Table 1 implies that qk(i+Fm) = qk(i)+Lm+1 for 1 ≤ i ≤ Fm−1.
Hence, for 1 ≤ i ≤ Fm−1 − 1, we have

qk(i+ 1 + Fm)− qk(i+ Fm) = (qk(i+ 1) + Lm+1)− (qk(i) + Lm+1) = qk(i+ 1)− qk(i).

By the construction of S, the substring comprising of its first Fm−1 characters is identical to
the substring of its characters numbered from Fm + 1 to Fm+1 inclusive. Thus, the lemma is
true for Fm + 1 ≤ j ≤ Fm+1 − 1. It remains to show that it is true for j = Fm. We have

qk(Fm + 1)− qk(Fm) =

{
Lm+1 − (Lm + Lm−2 + · · ·+ L4) = L3, if m is even;

Lm+1 − (Lm + Lm−2 + · · ·+ L3) = L2, if m is odd.

By Remark 2.3 item (1), we know that the lemma is true for j = Fm, completing the proof. □

4.2. When k ≥ 1. Table 2 replaces each term qk(j) inQk with an ordered list of the summands
in its partition.

Row
1 Lk

2 Lk Lk+2

3 Lk Lk+3

4 Lk Lk+4

5 Lk Lk+2 Lk+4

6 Lk Lk+5

7 Lk Lk+2 Lk+5

8 Lk Lk+3 Lk+5

Table 2. The partitions of the natural numbers having Lk as their smallest summand.

Table 2 is similar to Table 1 in [18]. The next lemma follows from [18, Lemma 3.1].
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Lemma 4.3. For j ≥ 2, the rows of Table 2 for which Lk+j is the largest summand are those
numbered from Fj + 1 to Fj+1 inclusive.

Lemma 4.4. For j ≥ 1, we have

qk(j + 1)− qk(j) =

{
Lk+1, if A is the jth character of S;

Lk+2, if B is the jth character of S.

Proof. The proof is by induction.
Base Cases. It is easy to check that the statement of the lemma is true for j such that
1 ≤ j ≤ F4 − 1.
Inductive Hypothesis. Assume that it is true for 1 ≤ j ≤ Fm − 1 for some m ≥ 4. From
Lemma 4.3, the first Fm−1 rows of Table 2 are those for which the largest summand is no
greater than Lk+m−2. Also, the rows for which Lk+m is the largest summand are those
numbered from Fm + 1 to Fm+1 inclusive. Therefore, the ordering of the rows implies that
qk(i+ Fm) = qk(i) + Lk+m for i = 1, 2, . . . , Fm−1. Hence, for i = 1, 2, . . . , Fm−1 − 1, we have

qk(i+ 1 + Fm)− qk(i+ Fm) = (qk(i+ 1) + Lk+m)− (qk(i) + Lk+m) = qk(i+ 1)− qk(i).

By the construction of S, the substring comprising its first Fm−1 characters is identical to the
substring of its characters numbered from Fm + 1 to Fm+1 inclusive. Thus, the lemma is true
for Fm + 1 ≤ j ≤ Fm+1 − 1. It remains to show that the lemma is true for j = Fm. We have

qk(Fm + 1)− qk(Fm) =

{
Lk+m − (Lk+m−1 + Lk+m−3 + · · ·+ Lk+3) = Lk+2, if m is even;

Lk+m − (Lk+m−1 + Lk+m−3 + · · ·+ Lk+2) = Lk+1, if m is odd.

By Remark 2.3 item (1), we know that the lemma is true for j = Fm, completing the proof. □

We are ready to prove Theorem 1.4.

Proof of Theorem 1.4. We consider three cases.

Case 1. k = 0. By Lemma 4.2, we have X0 = {2 + a(n)L2 + b(n)L3 : n ≥ 0}, where a(n)
and b(n) denote the number of As and Bs, respectively, among the first n characters in the
golden string. Using Remark 2.3 item (2), we have

X0 =

{
2 + 3

(
n−

⌊
n+ 1

Φ

⌋)
+ 4

⌊
n+ 1

Φ

⌋
: n ≥ 0

}
=

{
2 + 3n+

⌊
n+ 1

Φ

⌋
: n ≥ 0

}
.

It is clear that Z(0) = X0; hence, the statement of the lemma is true when k = 0.

Case 2. k = 1. Using a similar reasoning as above, we have

X1 =

{
1 + L2

(
n−

⌊
n+ 1

Φ

⌋)
+ L3

⌊
n+ 1

Φ

⌋
: n ≥ 0

}
=

{
1 + 3

(
n−

⌊
n+ 1

Φ

⌋)
+ 4

⌊
n+ 1

Φ

⌋
: n ≥ 0

}
=

{
3n+

⌊
n+Φ2

Φ

⌋
: n ≥ 0

}
.

It is clear that Z(1) = X1; hence, the statement of the lemma is true when k = 1.
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Case 3. k ≥ 2. Using a similar reasoning as above, we have

Xk =

{
Lk + Lk+1

(
n−

⌊
n+ 1

Φ

⌋)
+ Lk+2

⌊
n+ 1

Φ

⌋
: n ≥ 0

}
=

{
Lk

(
1 +

⌊
n+ 1

Φ

⌋)
+ nLk+1 : n ≥ 0

}
=

{
Lk

⌊
n+Φ2

Φ

⌋
+ nLk+1 : n ≥ 0

}
.

If k ≥ 3, the numbers in {L0, L1, . . . , Lk−2} are used to obtain the partitions of all integers for
which the largest summand is no greater than Lk−2. In particular, such partitions generate
all integers from 1 to Lk−1 − 1 inclusive. Furthermore, such partitions can be appended to
any partition having Lk as its smallest summand to produce another partition. Therefore,

Z(k) =

{
Lk

⌊
n+Φ2

Φ

⌋
+ nLk+1 + j : n ≥ 0 and 0 ≤ j ≤ Lk−1 − 1

}
,

as desired. It is easy to check that this formula is also true for k = 2. □

5. Proportion of Nonunique Partitions

Let c(N) count the number of numbers that are not uniquely represented in the Lucas

sequence and are at most N . We want to show that lim
N→∞

c(N)

N
=

1

1 + 3Φ
, where Φ = 1+

√
5

2

is the golden ratio. Note that [7, Lemma 3] says we can make the Lucas partition unique by
requiring that L0 and L2 do not both appear in the partition. Therefore, if a number has two
partitions, then one of the partition starts with L0 + L2. If we can characterize all of these
numbers and find a formula for c(N) in terms of N , we are done. Call the set of these numbers
K. Table 3 lists all of such numbers in increasing order. Let qk(j) be the jth smallest number
in K.

Row
1 L0 + L2

2 L0 + L2 L4

3 L0 + L2 L5

4 L0 + L2 L6

5 L0 + L2 L4 L6

6 L0 + L2 L7

7 L0 + L2 L4 L7

8 L0 + L2 L5 L7

Table 3. The partitions of the natural numbers having L0 and L2 as their smallest
summands.

Observe that Table 3 has the same structure as Table 1. Therefore, Lemma 4.2 applies with
a change of index. In particular, we have the following.

Lemma 5.1. For j ≥ 1, we have

qk(j + 1)− qk(j) =

{
L3, if A is the jth character of S;

L4, if B is the jth character of S.

Therefore, we can write

K = {L0 + L2 + a(n)L3 + b(n)L4 : n ≥ 0},
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where a(n) and b(n) denote the number of As and Bs, respectively, among the first n characters
in the golden string. Hence,

K =

{
5 + 4

(
n−

⌊
n+ 1

Φ

⌋)
+ 7

⌊
n+ 1

Φ

⌋
: n ≥ 0

}
=

{
5 + 4n+ 3

⌊
n+ 1

Φ

⌋
: n ≥ 0

}
.

Now, we are ready to compute the limit.

Proof of Theorem 1.5. The number of integers with two partitions up to a number N is exactly
#
{
n ≥ 0 : 5 + 4n+ 3

⌊
n+1
Φ

⌋
≤ N

}
. The number is found to be N−1

4+ 3
Φ

within an error of at most

1. Therefore, as claimed, the limit is

lim
N→∞

1

N

N − 1

4 + 3
Φ

=
1

4 + 3
Φ

=
1

1 + 3Φ
.

□

Among the first N natural numbers, we see how α = 1
3Φ+1 ≈ 0.17082 estimates the propor-

tion of natural numbers within this range that do not have unique nonconsecutive partitions
in the Lucas sequence. The data we collect is shown in Table 4.

N c (N) β (N)
10 1 10.000 %
100 17 17.000%
1,000 171 17.100%
10,000 1,708 17.080%
105 17,082 17.082%
106 170,820 17.082%

Table 4. Proportion β (N) of the first N natural numbers that do not have unique
nonconsecutive partitions in the Lucas sequence.
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Appendix A. Java Code

The following is our Java code for calculating nonconsecutive partitions of natural numbers
in any infinite integer sequence given by a second-order linear recurrence. It is available on
github at https://github.com/dluo6745/Zeckendorf-Partitions/blob/master/ZP.java.
For each natural number n from 1 to N , the code returns the nonconsecutive partition(s) of
n as a list of integers that correspond to the indices of the terms in the second-order linear
recurrence sequence we are enumerating. Furthermore, the code also returns the number of
natural numbers from 1 to N that do not have unique nonconsecutive partitions.
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