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Abstract. We give a sufficient condition for a solution Xn of a linear recurrence relation,
of any order, and with positive coefficients, to be such that Xn+1/Xn converges to a limit as
n → ∞.

1. Introduction

The Fibonacci sequence F0, F1, . . . is the solution of the recurrence relation Xn+2 = Xn +
Xn+1, where (X0,X1) = (0, 1), and it is well known that Fn+1/Fn → (1 +

√
5)/2. This result

has been generalized in many ways (indeed, far too many to list here); for example, some
authors have focussed on tribonacci numbers, tetranacci numbers, and so on, while others
have been concerned with integer solutions generated from different initial values. Our concern
here is that if we focus on the limit of Fn+1/Fn, or any of its immediate generalizations, but
fail to place them in a general context, we may, by omission, give the misleading impression
that, in this respect, the Fibonacci sequence and its allied sequences are a special case. They
are not, and the existence of limn→∞Xn+1/Xn holds in much greater generality, and requires
essentially nothing about the Fibonacci sequence, nor its initial values, nor indeed integer
sequences. It seems worthwhile, therefore, to emphasize this by establishing a general result
of this type with a simple proof.

The tribonacci numbers, tetranacci numbers, and so on, arise as particular solutions of the
difference equation

Xn+q = Xn +Xn+1 + · · ·+Xn+q−1, (1.1)

where here (and elsewhere) q is an integer with q ≥ 2. We shall not stop to define them here,
for we shall pass immediately to the more general recurrence relation

Xn+q = a0Xn + a1Xn+1 + · · ·+ aq−1Xn+q−1, (1.2)

where the ai are any positive numbers, and we shall prove the following result.

Theorem 1.1. Given any positive numbers a0, . . ., aq−1, there is a positive number λ, and a

proper subspace Π of Rq, such that if the real sequence X0, X1, . . . satisfies (1.2), and if the

vector (X0, . . . ,Xq−1) of initial values is not in Π, then Xn+1/Xn → λ as n → ∞.

Theorem 1.1 shows that Xn+1/Xn → λ as n → ∞ for essentially all choices (X0, . . . ,Xq−1)
of the initial terms, and it is easy to identify λ. The two functions x and a0/x

q−1 + · · · +
aq−2/x + aq−1 are increasing, and decreasing, respectively on the interval (0,+∞), and their
graphs cross at a unique point that, by definition, is the point (λ, λ). Thus, λ can be defined
as the unique positive solution of xq = a0+a1x+ · · ·+aq−1x

q−1. Special cases of Theorem 1.1
have appeared in [1] (which discusses the case a0 = · · · = aq−1), and in [3] (which discusses the
case in which the ai are integers with 1 ≤ a0 ≤ · · · ≤ aq−1). For general background material,
we recommend [2] and the references contained therein.
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2. The Proof of Theorem 1.1

We know that the solutions of (1.2) are determined by the roots of the equation

zq = a0 + a1z + · · ·+ aq−1z
q−1 (2.1)

with the initial terms X0, . . ., Xq−1. Let f(z) = zq −
(

a0 + a1z + · · ·+ aq−1z
q−1

)

. Then, f(x)
is real when x is real, and, as we have seen above, f has a unique positive zero, namely λ.
Also, because f(x) → +∞ as x → +∞, we see that f(x) > 0 when x > λ. Next, for each
complex z,

|f(z)| ≥ |z|q −
∣

∣a0 + a1z + · · · + aq−1z
q−1

∣

∣

≥ |z|q −
(

a0 + a1|z|+ · · ·+ aq−1|z|q−1
)

= f(|z|);
however, we can say a little more than this. It is obvious that for complex numbers w1, . . .,
wm we have

|w1 + · · ·+ wm| ≤ |w1|+ · · · + |wm|
with a strict inequality unless all of the wi have the same argument. It follows from this that
if z is complex, but not positive, then |f(z)| > f(|z|) (note the strict inequality here). We
conclude that if |z| ≥ λ, then |f(z)| > 0 unless z = λ. Thus, the equation (2.1) has roots, say
µ1, . . ., µq−1 and λ, where, for each i, |µi| < λ.

If the µi are distinct, then the general solution of (1.2) is Xn = A1µ
n
1+· · ·+Aq−1µ

n
q−1+Bλn,

and, providing that B 6= 0, we see that Xn+1/Xn → λ as n → ∞. However, it is not necessary
to know that the roots of (2.1) are distinct for it is known that, as λ is a simple zero of f , the
general solution of (1.2) can be written as

Xn =

t
∑

j=1

Pj(n)µ
n
j +Bλn, (2.2)

where µ1, . . ., µt are the distinct zeros of f (excluding the zero λ), and Pj is a polynomial
whose degree is strictly less than the multiplicity of the zero µj . Thus, we have shown that,
in all cases, if we write the general solution of (1.2) in the form (2.2), then Xn+1/Xn → λ as
n → ∞ when B 6= 0. Now each solution (X0,X1, . . .) of (1.2) determines, and is determined
by, the vector (X0, . . . ,Xq−1) of initial values, and the map Θ: (X0, . . . ,Xq−1) 7→ (X0,X1, . . .)
is an isomorphism of the vector space of initial values (which is R

q) onto the vector space S
of solutions of (1.2). The set of solutions for which B = 0 is a proper subspace, say S0, of S,
and if we let Π be the subspace Θ−1(S0) of R

q, our proof is complete.

3. The Fibonacci Case

We end with a brief discussion of the solutions of (1.1). The discussion below can be found
in the literature, but our proof, which is based on the geometry of complex polynomials, seems
simpler than other proofs. Obviously the results derived for Theorem 1.1 hold in this case.
The auxiliary equation of (1.1) is g(z) = 0, where g(z) = zq −

(

1 + z + · · · + zq−1
)

, and from
our discussion above, we know that g has zeros µ1, . . ., µq−1 and λ, where λ > 0 and |µi| < λ
for each i. We shall now give a simple proof of the following (known) result.

Lemma 3.1. The auxiliary equation g(z) = 0 has q − 1 distinct solutions, say µ1, . . ., µq−1,

with |µi| < 1 for each i, and one solution, say λ, in the real interval (1, 2).
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Proof. Because g(1) 6= 0, it is enough (and more convenient) to study the polynomial h, where

h(z) = (z − 1)g(z) = zq(z − 2) + 1, h′(z) = (q + 1)zq−1(z − rq), rq = 2q/(q + 1).

Clearly 1 < rq < 2, and by considering h′(x), we see that h is decreasing on the interval
(1, rq), and increasing on (rq, 2). As h(1) = 0 and h(2) = 1, this shows that h(rq) < 0, that
rq < λ < 2, and that λ → 2 as q → ∞ (because rq → 2 as q → ∞). It is also immediate that
h has no repeated zeros. Indeed, if w were such a zero, we would have h(w) = h′(w) = 0. But
as h′(w) = 0, we see that w is 0 or rq, and h(rq) < 0 < h(0). In particular, the q zeros of g
are distinct.

It remains to show that, for each i, |µi| < 1. Choose any R such that 1 < R < λ, and
let CR = {z : |z| = R}. As h(z) − 1 = zq(z − 2), it is clear that |h(z) − 1| attains its
minimum value on CR at the point of CR that is closest to 2, namely R; thus, if z ∈ CR, then
|h(z) − 1| ≥ |h(R) − 1|. However, h(R) < 0; thus, if z ∈ CR, then |h(z) − 1| > 1. Thus, by
Rouchè’s theorem, h(z)−1 and h(z) (that is, h(z)−1 and h(z)−1+1) have the same number
of zeros inside CR. Clearly, h(z) − 1 has exactly q zeros inside CR; thus, h(z) has exactly q
zeros inside CR. This shows that g has q− 1 zeros inside CR, and if we let R → 1, we see that
g has exactly q− 1 zeros in the closed unit disc. Now suppose that w is a zero of h on the unit
circle. Then |w| = 1 and |w − 2| = |wq(w − 2)| = |h(w) − 1| = 1, so that w = 1. We conclude
that g has no zeros on the unit circle; thus, the zeros µ1, . . ., µq−1 of g lie in {z : |z| < 1}. �

Finally, we now know that the general solution of (1.1) is, say, Xn = A1µ
n
1+· · ·+Aq−1µ

n
q−1+

Bλn, and this shows that Xn converges to 0 or ∞ according as B is, or is not, zero. If
(X0, . . . ,Xq−1) is such that B 6= 0, then Xn+1/Xn → λ as n → ∞.
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