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Abstract. In this paper, we examine representations of integers by means of particular zero-
one sequences, Fibonacci sequences, and signed Fibonacci sequences, obtaining results similar
to the Zeckendorf/Lekkerkerker Theorem.

1. Introduction

The following result is known as Zeckendorf’s Theorem [8, 6, 7], although it was apparently
first proved by Lekkerkerker [4].

Zeckendorf’s Theorem (Lekkerkerker (1952)). Let k be a positive integer and write Fm to

denote the mth element of the Fibonacci sequence. There is a unique n and a unique sequence

of zeros and ones ε = (εn−1, εn−2, . . . , ε1, ε0) having no consecutive ones and with εn−1 = 1

such that
∑n−1

i=0
εi · Fi+2 = k.

The zero-one sequence ε guaranteed by Zeckendorf’s Theorem is called the Zeckendorf repre-
sentation of k. Here, we prove four similar results for representing integers as sums of Fibonacci
numbers. Rather than imposing the condition that the binary representation contains no pair
of consecutive ones, we instead will require the binary strings to be so-called zigzag sequences.

We discovered these representations in the course of our work on representations of Cp×Cp

in characteristic p, see [2, 3].

2. Zigzag Sequences

We will consider finite sequences all of whose entries are either 0 or 1. Suppose ε =
(εn−1, εn−2, . . . , ε1, ε0) is such a sequence of zeros and ones. We say the length of this se-
quence is n.

A finite zero-one sequence of length n is a down-up sequence if it is a finite sequence
(εn−1, εn−2, . . . , ε1, ε0) of zeros and ones such that

εn−1 ≥ εn−2 ≤ εn−3 ≥ εn−4 ≤ · · · ε0 .

Definition 2.1. We write Ω(n) to denote the set of down-up sequences of length n.

The first few of these sets are

Ω(0) = {(0)} (by convention),

Ω(1) = {(1), (0)},

Ω(2) = {(11), (10), (00)},

Ω(3) = {(111), (101), (001), (100), (000)},

Ω(4) = {(1111), (1011), (0011), (1110), (1010), (0010), (1000), (0000)}.
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Up-down zero-one sequences are defined similarly: ε = (εn−1, εn−2, . . . , ε1, ε0) is up-down if
εn−1 ≤ εn−2 ≥ εn−3 ≤ · · · ε0. We define Ω(n) to be the set of all up-down zero-one sequences
of length n.

The first few up-down sequences are

Ω(0) = {(0)} (by convention),

Ω(1) = {(1), (0)},

Ω(2) = {(11), (01), (00)},

Ω(3) = {(111), (110), (011), (010), (000)},

Ω(4) = {(1111), (1101), (1100), (0111), (0101), (0100), (0001), (0000)}.

A sequence that is either an up-down or a down-up sequence is called a zigzag sequence.
These sequences have been considered before. They are known to be the vertices of the zigzag
order polytopes (which we call ZZ-topes) associated with zigzag or alternating permutations.
See [5] by Richard Stanley.

Natural operations on bit sequences include reversing the order and complementing all the
bits. Zigzag sequences and their lengths are preserved under these two operations (and their
composites). Depending upon the parity of the length, some of these may interchange up-down
sequences with down-up sequences.

3. Representations of Integers

We prove four propositions for representing integers using zigzag sequences in the spirit of
Zeckendorf’s Theorem.

Denote the mth Fibonacci number by Fm and recall that the Fibonacci numbers satisfy the
recursion relation

Fm = Fm−1 + Fm−2 for m ≥ 2 ,

with F0 = 0 and F1 = 1. If the recursive definition of the Fibonacci numbers is extended to
negative indices, we get F−1 = −1, F−2 = 1, F−3 = −2, . . . . In general, Fm = (−1)m−1F−m

if m < 0. Then, Fm = Fm−1 + Fm−2 for all integers m. These numbers, so defined, are
sometimes referred to as the signed Fibonacci numbers.

Let ε = (εn−1, εn−2, . . . , ε0) be a zero-one sequence of length n and define

||ε||Fib :=

n−1
∑

i=0

εi · Fi+1 and

||ε||sFib :=

n−1
∑

i=0

εi · F−i−2 .

Definition 3.1. Let ε = (εn−1, εn−2, . . . , ε0). Then, ε is a Fibonacci representation of an

integer k if ||ε||Fib = k and ε is a signed Fibonacci representation of k if ||ε||sFib = k.

Example 3.2. We have

||(1000100010)||Fib = 64 because 64 = F10 + F6 + F2 = 55 + 8 + 1,

||(100001)||sFib = 12 because 12 = F−2 + F−7 = −1 + 13,

||(100100001)||sFib = −43 because −43 = F−2 + F−7 + F−10 = −1 + 13− 55.
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Suppose that n is odd and that ε = (εn−1, εn−2, . . . , ε1, ε0) ∈ Ω(n). Then, ε1 ≤ ε0. Hence
if ε0 = 0, then ε1 = 0. From this, it follows that for n odd,

Ω(n) = {(εn−1, εn−2, . . . , ε2, 0, 0) | (εn−1, εn−2, . . . , ε2) ∈ Ω(n− 2)}

⊔ {(εn−1, εn−2, . . . , ε2, ε1, 1) | (εn−1, εn−2, . . . , ε2, ε1) ∈ Ω(n− 1)} .

Similarly for n even,

Ω(n) = {(εn−1, εn−2, . . . , ε2, 1, 1) | (εn−1, εn−2, . . . , ε2) ∈ Ω(n− 2)}

⊔ {(εn−1, εn−2, . . . , ε2, ε1, 0) | (εn−1, εn−2, . . . , ε2, ε1) ∈ Ω(n− 1)} .

From this, it follows by induction that #Ω(n) = Fn+2 for n ≥ 0.
For each n, there is a natural inclusion ιn : Ω(n) →֒ Ω(n + 2) given by ιn(ε) = (0, 0, ε).

Clearly, ||ε||Fib = ||ιn(ε)||Fib. We identify Ω(n) with the subset ιn(Ω(n)) of Ω(n+2) and define

Ω(even) :=

∞
⋃

i=0

Ω(2i) and

Ω(odd) :=

∞
⋃

i=0

Ω(2i+ 1) .

Proposition 3.3. Let k be a nonnegative integer. Then, there is a unique down-up zero-one

sequence ε ∈ Ω(odd) such that ||ε||Fib = k. Furthermore, there is a unique down-up zero-one

sequence ε ∈ Ω(even) such that ||ε||Fib = k.

Proof. We will show that || · ||Fib gives a bijection for all n between Ω(n) and the interval of
integers [0, Fn+2 − 1] = [0, Fn+2). We proceed by induction, treating the even and odd cases
in parallel. For n = 0, we have Ω(1) = {(0)} and {||ε||Fib | ε ∈ Ω(0)} = {0} = [0, F2). For
n = 1, we have Ω(1) = {(0), (1)} and {||ε||Fib | ε ∈ Ω(1)} = {0, 1} = [0, F3).

Suppose as an induction hypothesis that there is such a bijection for n − 2. Clearly Ω(n)
decomposes as a disjoint union:

Ω(n) = Ω(n)00 ⊔ Ω(n)10 ⊔ Ω(n)11,

where Ω(n)ij = {ε ∈ Ω(n) | εn−1 = i, εn−2 = j}. Clearly, Ω(n)00 = ι(Ω(n − 2)) = Ω(n − 2)
under our identification. Also, Ω(n)10 = {(1, 0, ε) | ε ∈ Ω(n− 2)} and Ω(n)11 ( {(1, 1, ε) | ε ∈
Ω(n− 2)}.

Thus by the induction hypothesis, {||ε||Fib | ε ∈ Ω(n)00} = [0, Fn) and {||ε||Fib | ε ∈
Ω(n)10} = Fn + [0, Fn) = [Fn, 2Fn). Clearly, || · ||Fib is injective when restricted to Ω(n)11.
We consider the image of this restriction. This is {||ε||Fib | ε ∈ Ω(n)11}, which is contained
in Fn + Fn−1 + [0, Fn) = [Fn+1, Fn+2). Note that if ε ∈ Ω(n)11, then εn−3 = 1 and thus,
||ε||Fib ≥ Fn + Fn−1 + Fn−2 = 2Fn for all ε ∈ Ω(n)11.

Therefore, there are three injective maps

|| · ||Fib : Ω(n)00 → [0, Fn),

|| · ||Fib : Ω(n)10 → [Fn, 2Fn),

|| · ||Fib : Ω(n)11 → [2Fn, Fn+2),

which combine to give the injection

|| · ||Fib : Ω(n) → [0, Fn+2).

Finally, #Ω(n) = Fn+2 = #[0, Fn+2) and so || · ||Fib is a bijection. �
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Working with up-down sequences, there is a similar family of inclusions ιn : Ω(n) →֒ Ω(n+2)
satisfying ||ε||Fib = ||ι(ε)||Fib. The inclusion ιn is more complicated than ιn. It is defined as
follows.

(1) If εn−1 = 0, then ιn(ε) = (0, 0, εn−1, εn−2, . . . , ε0).
(2) For ε = (1, 1, . . . , 1), we put

ιn(ε) =

{

(0, 1, 0, 1, . . . , 0, 1, 0), if n is odd;

(0, 1, 0, 1, . . . , 0, 1, 0, 0), if n is even.

(3) If ε = (1, 1, . . . , 1, 0), then n must be odd and we put

ιn(ε) = (0, 1, 0, 1, . . . , 0, 1, 0).

(4) Finally, suppose that εn−1 = · · · = εn−t = 1 and εn−t−1 = 0 with t < n − 1. Then,
ε = (1, 1, . . . , 1, 0, εn−t−2, . . . , ε0) and

ιn(ε) = (0, 1, 0, 1, . . . , 0, 1, 0, 0, 0, εn−t−2 , . . . , ε0).

As before, we identify Ω(n− 2) ⊂ Ω(n) with the subset ιn−2(Ω(n − 2)). In particular, if
ε = (εn−1, εn−2, . . . , ε0) ∈ Ω(n− 2) ⊂ Ω(n), then

ιn(ε) = (0, 0, εn−1, εn−2, . . . , ε0) ∈ Ω(n+ 2) .

Using these inclusions, we define Ω(odd) :=
⋃

∞

i=0
Ω(2i+ 1) and Ω(even) :=

⋃

∞

i=0
Ω(2i) as

we did above.
We now give three more results on representing integers using the Fibonacci numbers and

zigzag sequences. The proofs of these three propositions are quite similar to the proof of
Proposition 3.3 and so we omit them.

Proposition 3.4. Let k be any integer. Then, there is a unique down-up zero-one sequence

ε ∈ Ω(odd) ∪Ω(even) such that ||ε||sFib = k. Moreover, if k is positive, then ε has even length

and if k is negative, then ε has odd length.

Note that in this proposition, we identify the all zeros strings of even and odd length so
that there is a unique signed Fibonacci representation of the integer 0.

Proposition 3.5. Let k be a nonnegative integer. Then, there is a unique up-down zero-one

sequence ε ∈ Ω(odd) such that ||ε||Fib = k. Furthermore, there is a unique up-down zero-one

sequence ε ∈ Ω(even) such that ||ε||Fib = k.

Proposition 3.6. Let k be any integer. Then, there is a unique up-down zero-one sequence

ε ∈ Ω(odd) such that ||ε||sFib = k. Furthermore, there is a unique up-down zero-one sequence

ε ∈ Ω(even) such that ||ε||sFib = k.

Example 3.7. The following tables illustrate Propositions 1–4.
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Down-up Representations Up-down Representations

Set Sequence ε ||ε||Fib ||ε||sFib Set Sequence ε ||ε||Fib ||ε||sFib

Ω(0) (0) 0 0 Ω(0) (0) 0 0

Ω(1) (1) 1 −1 Ω(1) (1) 1 1
(0) 0 0 (0) 0 0

Ω(2) (11) 2 1 Ω(2) (11) 2 1
(10) 1 2 (01) 1 −1
(00) 0 0 (00) 0 0

Ω(3) (111) 4 −2 Ω(3) (111) 4 −2
(101) 3 −4 (010) 1 2
(100) 2 −3 (011) 2 −1
(001) 1 −1 (110) 3 1
(000) 0 0 (000) 0 0

Ω(4) (1111) 7 3 Ω(4) (1111) 7 3
(1110) 6 4 (0111) 4 −2
(1011) 5 6 (1101) 6 1
(1010) 4 7 (0101) 3 −4
(1000) 3 5 (0001) 1 −1
(0011) 2 1 (1100) 5 2
(0010) 1 2 (0100) 2 −3
(0000) 0 0 (0000) 0 0
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