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Abstract. In 1977, Parberry introduced and proved a fifth-order and a sixth-order nonlinear
recurrence relation for the sequence (FFn : n ∈ N0), where Fn denotes the nth Fibonacci
number. In this article, we prove an identity for FFn given by a Fibonacci-like recursion with
matrix multiplication used in place of integer addition.

1. Introduction

The linear recurrence Fn = Fn−1+Fn−2 used to define the famous and ubiquitous Fibonacci
sequence (Fn : n ∈ N0) forms one of the most well-known recurrence relations in all of math-
ematics. This inspires the exploration of “Fibonacci-like” recurrences, and there has been a
long history of research devoted to such recurrences, as in with the study of Lucas numbers,
Tribonacci numbers, etc. We are interested in using matrix multiplication in place of integer
addition to construct sequences that satisfy Fibonacci-like recurrences, and this has led us to
discover an identity for the integer sequence

(FFn : n ∈ N0) (1.1)

given by the Fibonacci sequence F composed with itself, which is one of the sequences indexed
in the On-line Encyclopedia of Integer Sequences (OEIS) [6], as given by the entry labeled
as A007570. Our new recursions for (1.1) significantly build upon the work of Parberry [8]
considered in Section 1.1 below.

Every linear recursion can be expressed via the powers of a fixed matrix, and this leads us to
consider a variant of this property. In particular, in place of the recurrence Fn−2+Fn−1 = Fn,
we consider recursions of the form Mn−2Mn−1 = Mn, where the binary operation on the left
side of this latter equation is matrix multiplication. For example, setting M0 as the 2 × 2

identity matrix I2, and letting M1 =

(
1 1
0 1

)
, and then, by enforcing the Fibonacci-like

recurrence Mn = Mn−2Mn−1, it is almost immediate that

Mn =

(
1 Fn

0 1

)
for all n ∈ N0. Similarly, by letting M0 be as before, and using the same recursion, but with

M1 =

(
1 1
1 1

)
, it is almost immediate that

Mn =

(
2Fn−1 2Fn−1

2Fn−1 2Fn−1

)
for all natural numbers n. A similar set-up, as in Theorem 2.1, has led us to experimentally
discover a new recursion for (1.1), with the companion sequence

(FFn−1 : n ∈ N0)
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indexed as A130589 in the OEIS [6], and along with

(FFn+1 : n ∈ N0) ,

which is listed in the OEIS [6] as A005370.
The recursion given as Theorem 2.1 appears to be new, but proving this result is nontrivial,

and this result has not been given in any of the above referred OEIS sequences or in Parberry’s
work [8] on (1.1) or in subsequent references concerning A007570. The previously known
recurrences for (1.1) [6, 8] are fundamentally different from Theorem 2.1, and we find it
worthwhile to briefly review these previous results.

1.1. Parberry’s Recursions. As in [8], we state that the problem of finding a recurrence
for (1.1) dates back to Whitney’s work [13], in 1966. Writing fn = FFn , Parberry [8], in 1977,
proved the identity

fn =
(
5f2

n−2 + (−1)Fn+1

)
fn−3 + (−1)Fn

(
fn−3 − (−1)Fn+1fn−6

)
fn−2/fn−5. (1.2)

This is proved via the identity

F (a+ b) = F (a)L(b)− (−1)bF (a− b)

that Parberry had previously proved [7], letting the Lucas numbers be defined by Ln+1 =
Ln+Ln−1, where L1 = 1 and L2 = 3. Similarly, Parberry [8] proved a much more complicated
fifth-order recursion resembling the quotient in (1.2). These identities make the Fibonacci-like
recurrence given as Theorem 2.1 all the more remarkable. In the OEIS entry A007570 [6],
Chris Street also provided a recurrence resembling the quotient identity in (1.2), in contrast
to our matrix identity given as Theorem 2.1 below.

2. A Matrix-based Recursion Relation for FFn

Our proof of Theorem 2.1 mainly relies on Binet’s famous Fibonacci number formula

Fn =
ϕn − (−ϕ)−n

√
5

,

letting ϕ = 1+
√
5

2 denote the famous golden ratio constant [5].
We note that identities as in (2.2) are nontrivial in that computer algebra systems such as

Mathematica are not able to verify or confirm such results, even with the use of commands
such as FunctionExpand.

Theorem 2.1. Let M0 = I2, M1 =

(
0 1
1 1

)
, and Mn = Mn−2Mn−1 for n ∈ N≥2. It then

follows that

Mn =

(
FFn−1 FFn

FFn FFn+1

)
(2.1)

for all n ∈ N0.

Proof. The base cases for n = 0 and n = 1 are easily verified. Inductively, we may assume that
(2.1) holds for n < m. So, rewriting the matrix product Mm−2Mm−1 according to (2.1), and
then evaluating this resultant product, we proceed to examine the entries that we obtain. We
see that the (1, 1)-entry of the product under consideration, under our inductive hypothesis,
is such that we need to show that

FFm−1 = FFm−2−1FFm−1−1 + FFm−2FFm−1 . (2.2)
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So, we need to show that

1

5

ϕ
ϕm−2−(− 1

ϕ)
m−2

√
5

−1 −
(
− 1

ϕ

)ϕm−2−(− 1
ϕ)

m−2

√
5

−1


ϕ

ϕm−1−(− 1
ϕ)

m−1

√
5

−1 −
(
− 1

ϕ

)ϕm−1−(− 1
ϕ)

m−1

√
5

−1

+

1

5

ϕ
ϕm−2−(− 1

ϕ)
m−2

√
5 −

(
− 1

ϕ

)ϕm−2−(− 1
ϕ)

m−2

√
5


ϕ

ϕm−1−(− 1
ϕ)

m−1

√
5 −

(
− 1

ϕ

)ϕm−1−(− 1
ϕ)

m−1

√
5


evaluates as

ϕ
ϕm−(− 1

ϕ)
m

√
5

−1 −
(
− 1
ϕ

)ϕm−(− 1
ϕ)

m

√
5

−1

√
5

.

This is easily seen to be equivalent to the equality of

(
ϕ2 + 1

)ϕ2
(
− 1
ϕ

) (ϕ+1)ϕm+(1−ϕ)ϕ3(− 1
ϕ)

m

√
5ϕ2 + ϕ

(ϕ+1)ϕm+(1−ϕ)ϕ3(− 1
ϕ)

m

√
5ϕ2


5ϕ2

and

ϕ
ϕm−(− 1

ϕ)
m

√
5 + ϕ2

(
− 1
ϕ

)ϕm−(− 1
ϕ)

m

√
5

√
5ϕ

.

From the equality

ϕ2 + 1

5ϕ2
=

1√
5ϕ

, (2.3)

in order to prove (2.2), it remains to prove that

ϕ2

(
− 1

ϕ

) (ϕ+1)ϕm+(1−ϕ)ϕ3(− 1
ϕ)

m

√
5ϕ2

+ ϕ
(ϕ+1)ϕm+(1−ϕ)ϕ3(− 1

ϕ)
m

√
5ϕ2

equals

ϕ
ϕm−(− 1

ϕ)
m

√
5 + ϕ2

(
− 1

ϕ

)ϕm−(− 1
ϕ)

m

√
5

.

Comparing the powers of − 1
ϕ and of ϕ, the desired formula in (2.2) then easily follows.
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Again, under our inductive hypothesis, let us consider the (1, 2)-entry of the product
Mm−2Mm−1. In this case, we need to prove that

FFm = FFm−2−1FFm−1 + FFm−2FFm−1+1. (2.4)

In this case, it remains to prove that

1

5

ϕ
ϕm−1−(− 1

ϕ)
m−1

√
5 −

(
− 1

ϕ

)ϕm−1−(− 1
ϕ)

m−1

√
5


ϕ

ϕm−2−(− 1
ϕ)

m−2

√
5

−1 −
(
− 1

ϕ

)ϕm−2−(− 1
ϕ)

m−2

√
5

−1

+

1

5

ϕ
ϕm−2−(− 1

ϕ)
m−2

√
5 −

(
− 1

ϕ

)ϕm−2−(− 1
ϕ)

m−2

√
5


ϕ

ϕm−1−(− 1
ϕ)

m−1

√
5

+1 −
(
− 1

ϕ

)ϕm−1−(− 1
ϕ)

m−1

√
5

+1


equals

ϕ
ϕm−(− 1

ϕ)
m

√
5 −

(
− 1
ϕ

)ϕm−(− 1
ϕ)

m

√
5

√
5

. (2.5)

Simplifying this second-to-last expression, it remains to show that

(
ϕ2 + 1

)ϕ
(ϕ+1)ϕm+(1−ϕ)ϕ3(− 1

ϕ)
m

√
5ϕ2 −

(
− 1
ϕ

) (ϕ+1)ϕm+(1−ϕ)ϕ3(− 1
ϕ)

m

√
5ϕ2


5ϕ

equals (2.5). According to the golden ratio formula in (2.3), it remains to prove that

ϕ
(ϕ+1)ϕm+(1−ϕ)ϕ3(− 1

ϕ)
m

√
5ϕ2 −

(
− 1

ϕ

) (ϕ+1)ϕm+(1−ϕ)ϕ3(− 1
ϕ)

m

√
5ϕ2

equals

ϕ
ϕm−(− 1

ϕ)
m

√
5 −

(
− 1

ϕ

)ϕm−(− 1
ϕ)

m

√
5

.

By comparing the above powers, we may easily establish that the desired identity for FFn holds.
The remaining identities, which correspond to the (2, 1)- and (2, 2)-entries of Mm−2Mm−1, are
such that

FFm = FFm−2FFm−1−1 + FFm−2+1FFm−1

and

FFm+1 = FFm−2FFm−1 + FFm−2+1FFm−1+1,
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and both of these remaining identities may be proved similarly, compared with our proofs for
(2.2) and (2.4). □

3. Conclusion

We are broadly interested in the subject of Fibonacci-like recursions, inspired, in part, by
past research on such recursions as in [1, 2, 9, 10, 12]. We note that Bakir Farhi has obtained
a number of interesting infinite series evaluations involving FFn [4], as in the formula

∞∑
n=1

(−1)Fn
FFn+1

FFnFFn+1

= 1−
√
5,

and we encourage the consideration as to how identities as in Theorem 2.1 relate to such series
evaluations. As in [4], we note that closed-form evaluations such as

∞∑
n=1

(−1)Fn
FFn−1

FFnFFn+1

=
1−

√
5

2

were also given by Bruckman and Good in [3]; see also [11].
We greatly encourage the development of generalizations of the Fibonacci-like recurrence

given in Theorem 2.1. In this direction, it seems that there is a great amount to explore. For
example, setting M0 = I3 and

M1 =

 1 0 1
0 1 1
1 1 1

 ,

and again enforcing the recursion Mn = Mn−2Mn−1, we have experimentally discovered that
the (1, 3)-, (2, 3)-, (3, 1)-, and (3, 2)-entries of Mn agree with entry A179823 in the OEIS [6],
which concerns denominators in the approximation of

√
2. For the sake of brevity, we save

this topic for a separate research endeavour.
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