
CONGRUENCES MODULO THE SQUARE OF A PRIME FOR SUMS

CONTAINING FIBONACCI NUMBERS

ALEXANDRU GICA

Abstract. Let p > 5 be a prime number and let U =
∑p−1

k=2

(−1)kFk−1

k
, V =

∑p

k=2
(−1)kFk

k−1
.

The aim of this paper is to prove that U ≡ 0 (mod p2), V ≡
Lp−1

p
(mod p2) if p ≡ 1, 4

(mod 5) and U ≡
1−Lp

p
(mod p2), V ≡ 0 (mod p2) in the case p ≡ 2, 3 (mod 5). We also

find similar results for some general Lucas sequences.

1. Introduction

In this paper, we will always consider a prime number p > 5. It is fairly easy to prove that
∑p−1

k=1 Fk/k ≡ 0 (mod p) (see [1] for a proof of this result). In 2014, Hao Pan and Zhi-Wei Sun
proved that

p−1
∑

k=1

Fk

k2
≡ −

1

5

(p

5

)

(

Lp − 1

p

)2

(mod p) (1.1)

(see [3], Remark 3.3, which follows the proof of Theorem 1.2); in the above formula,
(

p
5

)

is

the Legendre symbol (which is +1 if p ≡ 1, 4 (mod 5) and −1 if p ≡ 2, 3 (mod 5)). This result
of Pan and Sun will play an important role in our paper. In this article, we will denote by s
the number

s =

p−1
∑

k=1

Fk

k2
.

In their paper, Pan and Sun proved the following lemma.

Lemma 1.1. (Pan, Sun)

p−1
∑

k=1

(1− x)k

k
≡

1− xp − (1− x)p

p
− p

(

p−1
∑

k=1

xk

k2

)

(mod p2).

Remark: They proved a more general result (see [3], Lemma 4.1), but we only need this
particular version. We note that Pan and Sun extended a congruence of Granville (see [2]).
In his paper, Granville proved a conjecture of Skula: for every prime p > 3,

(2p−1 − 1

p

)2
≡ −

p−1
∑

k=1

2k

k2
(mod p).

We will use the following notations (of Granville):

g(x) =

p−1
∑

k=1

xk

k
,G(x) =

p−1
∑

k=1

xk

k2
, q(x) =

xp + (1− x)p − 1

p
.
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Granville proved in [2] the following congruences:

G(x) ≡ G(1 − x) + xpG

(

1−
1

x

)

(mod p), (1.2)

q(x)2 ≡ −2xpG(x)− 2(1 − xp)G(1 − x) (mod p). (1.3)

Replacing the value of G(x) given by (1.2) in (1.3), we have:

q(x)2 ≡ −2G(1 − x)− 2x2pG

(

1−
1

x

)

(mod p). (1.4)

In Section 5, as a simple consequence of Lemma 1.1, we will prove the following proposition
(which will be needed later).

Proposition 1.2. Let p > 5 be a prime number. Then,

a)

p−1
∑

k=1

Fk

k
≡ ps (mod p2),

b)

p−1
∑

k=1

(−1)kFk

k
≡

Fp − F2p

p
− ps (mod p2).

Looking to all these results of Granville and Pan and Sun, we realized that we are able to
prove the following result.

Theorem 1.3. Let p > 5 be a prime number, U =

p−1
∑

k=2

(−1)kFk−1

k
, and V =

p
∑

k=2

(−1)kFk

k − 1
.

The following congruences hold in the case p ≡ 1, 4 (mod 5):

U ≡ 0 (mod p2), V ≡
Lp − 1

p
(mod p2).

In the case p ≡ 2, 3 (mod 5), we have the congruences

U ≡
1− Lp

p
(mod p2), V ≡ 0 (mod p2).

Section 2 is devoted to some technical results. The proof of Theorem 1.3 is given in the
Sections 3, 4, and 5; in Section 3, we compute U (mod p2) in the case p ≡ 1, 4 (mod 5); in
Section 4, we compute V (mod p2) in the case p ≡ 2, 3 (mod 5); and in Section 5, we complete
the proof of the theorem (after we compute U + V (mod p2)). Section 6 is devoted to finding
a general pattern.

Following suggestions made by the referee, we were able to prove a generalization of Theorem
1.3. In the sequel, (xn)n, (yn)n are the sequences defined by the conditions: x0 = 0, x1 = 1,
xn+2 = xn+1 + bxn, y0 = 2, y1 = 1, yn+2 = yn+1 + byn (b is a fixed integer), for any

nonnegative integer n. We will denote by U, V the following numbers: U =
∑p−1

k=2
(−1)kxk−1

bk−1k
,

V =
∑p

k=2
(−1)kxk

bk(k−1)
. The aforementioned generalization is the following.

Theorem 1.4. Let p > 3 be a prime number that does not divide b(4b + 1). The following
congruence holds:

U + bV ≡
x2p − xp

pbp
+

p

b

p−1
∑

k=1

xk
k2

(mod p2).
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If the discriminant ∆ = 1 + 4b is a quadratic residue modulo p, then

U ≡
xp−1(1− yp)

p
− 2p

p−1
∑

k=1

xk
k2

(mod p2).

If the discriminant ∆ is a quadratic nonresidue modulo p, then

V ≡
xp+1(yp − 1)

b2p
−

2p

b

p−1
∑

k=1

xk
k2

(mod p2).

We will use the standard notation for the Fibonacci and Lucas numbers: α = 1+
√

5
2 , β =

1−
√

5
2 , Fn = αn

−βn

α−β
, and Ln = αn + βn. If p > 5 is a prime, then αp ≡ α (mod p), βp ≡ β

(mod p) in the case p ≡ 1, 4 (mod 5) and αp ≡ β (mod p), βp ≡ α (mod p) in the case p ≡ 2, 3

(mod 5). With the above notation of Granville, we have q(α) = q(β) = αp+βp
−1

p
=

Lp−1
p

.

2. Some Preliminary Results

We need some technical results.

Lemma 2.1. Let p > 5 be a prime number. Then,
1−Lp

p
≡ −5

2
Fp−1

p
(mod p) in the case

p ≡ 1, 4 (mod 5), and
1−Lp

p
≡ −5

2
Fp+1

p
(mod p) in the case p ≡ 2, 3 (mod 5).

Proof. To prove the result in the case p ≡ 1, 4 (mod 5), we must show that

1− Lp

p
≡ −

5

2
·
Fp−1

p
(mod p).

This is equivalent to

2Lp − 2 ≡ 5Fp−1 (mod p2)

and (taking into account that 5Fn = Ln−1 + Ln+1),

2Lp − 2 ≡ Lp−2 + Lp (mod p2).

This is true because

Lp − Lp−2 = Lp−1 ≡ 2 (mod p2).

The last congruence holds because

Lp−1 − 2 = αp−1 + βp−1 − 2 = (α
p−1
2 −

1

α
p−1
2

)2 ≡ 0 (mod p2);

for the last congruence we used that αp−1 ≡ 1 (mod p) in the case p ≡ 1, 4 (mod 5).
Now, we analyze the case p ≡ 2, 3 (mod 5). To prove the statement, we must show, in this

case, that
1− Lp

p
≡ −

5

2
·
Fp+1

p
(mod p).

This is equivalent to

2Lp − 2 ≡ 5Fp+1 (mod p2)

and (taking into account that 5Fn = Ln−1 + Ln+1),

2Lp − 2 ≡ Lp+2 + Lp (mod p2).

This is true because

Lp+2 − Lp = Lp+1 ≡ −2 (mod p2).

AUGUST 2022 245



THE FIBONACCI QUARTERLY

The last congruence is true because

Lp+1 + 2 = αp+1 + βp+1 + 2 = (α
p+1
2 +

1

α
p+1
2

)2 ≡ 0 (mod p2);

for the last congruence we used that αp+1 ≡ −1 (mod p) in the case p ≡ 2, 3 (mod 5). �

Lemma 2.2. Let p > 5 be a prime number.

a) s =

p−1
∑

k=1

Fk

k2
≡

p−1
∑

k=1

F2k

k2
≡ −

1

5

(p

5

)(Lp − 1

p

)2
(mod p).

b)

p−1
∑

k=1

F2k−1

k2
≡ 2s (mod p), when p ≡ 1, 4 (mod 5).

c)

p−1
∑

k=1

F2k+1

k2
≡ −2s (mod p), when p ≡ 2, 3 (mod 5).

Proof. a) Let x = α in formula (1.4). Because 1− α = β, 1− 1
α
= 1 + β = β2, we obtain

q(α)2 ≡ −2G(β) − 2α2pG(β2) (mod p). (2.1)

We also have (because β−2 = α2 and (p− k)2 ≡ k2 (mod p))

G(β2) =

p−1
∑

k=1

β2k

k2
=

p−1
∑

k=1

β2(p−k)

(p − k)2
≡ β2pG(α2) (mod p). (2.2)

If we combine (2.1) and (2.2), we get

q(α)2 ≡ −2G(β) − 2G(α2) (mod p). (2.3)

In the same way, we obtain the congruence

q(β)2 ≡ −2G(α) − 2G(β2) (mod p). (2.4)

We take into account that q(α) = q(β) =
Lp−1

p
(because α + β = 1). If we subtract (2.3)

from (2.4) and divide by α− β, we obtain the desired congruence

p−1
∑

k=1

F2k

k2
≡

p−1
∑

k=1

Fk

k2
(mod p).

The last congruence,

(

p−1
∑

k=1

Fk

k2
≡ −

1

5

(p

5

)(Lp − 1

p

)2
(mod p)

)

, was proved by Pan and Sun

in [3] (Theorem 1.2 and Remark 3.3).
b) In the case (p ≡ 1, 4 (mod 5)), we have βp ≡ β (mod p). Using formula (2.2), we obtain

G(β2) ≡ β2G(α2) ≡

p−1
∑

k=1

α2k−2

k2
(mod p). (2.5)

In the same way, we obtain

G(α2) ≡

p−1
∑

k=1

β2k−2

k2
(mod p). (2.6)
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We subtract (2.6) from (2.5) and obtain (dividing by α − β and using the first statement of
the Lemma)

p−1
∑

k=1

F2k−2

k2
≡ −

G(α2)−G(β2)

α− β
= −

p−1
∑

k=1

F2k

k2
≡ −s (mod p). (2.7)

The result follows at once:

p−1
∑

k=1

F2k−1

k2
=

p−1
∑

k=1

F2k − F2k−2

k2
≡ 2s (mod p).

Remark: We obtain, in the same way,

p−1
∑

k=1

F2k−1

k2
≡ −3s (mod p) in the case p ≡ 2, 3

(mod 5). We will not use this result in our paper.
c) In the case (p ≡ 2, 3 (mod 5)), we have βp ≡ α (mod p). Using formula (2.2), we obtain

G(β2) ≡ α2G(α2) ≡

p−1
∑

k=1

α2k+2

k2
(mod p). (2.8)

In the same way, we obtain

G(α2) ≡

p−1
∑

k=1

β2k+2

k2
(mod p). (2.9)

We subtract (2.9) from (2.8) and obtain (dividing by α − β and using the first statement of
the Lemma)

p−1
∑

k=1

F2k+2

k2
≡ −s (mod p). (2.10)

The result follows at once:

p−1
∑

k=1

F2k+1

k2
=

p−1
∑

k=1

F2k+2 − F2k

k2
≡ −2s (mod p).

Remark: We obtain, in the same way,

p−1
∑

k=1

F2k+1

k2
≡ 3s (mod p) in the case p ≡ 1, 4

(mod 5). We will not use this result in our paper. �

3. U ≡ 0 (mod p2) in the Case p ≡ 1, 4 (mod 5)

In Lemma 1.1, we let x = α2 and obtain (because (1− α2)p = (−α)p = −αp)

p−1
∑

k=1

(−α)k

k
≡

1− α2p + αp

p
− pG(α2) (mod p2). (3.1)

We multiply the last equality by −β and obtain (taking into account that −β · α = 1)

p−1
∑

k=1

(−1)kαk−1

k
≡

−β − α2p−1 + αp−1

p
− p

p−1
∑

k=1

α2k−1

k2
(mod p2). (3.2)

AUGUST 2022 247



THE FIBONACCI QUARTERLY

In the same way, we obtain the congruence

p−1
∑

k=1

(−1)kβk−1

k
≡

−α− β2p−1 + βp−1

p
− p

p−1
∑

k=1

β2k−1

k2
(mod p2). (3.3)

If we subtract (3.3) from (3.2) and divide by α− β, we get

U ≡
1 + Fp−1 − F2p−1

p
− p

p−1
∑

k=1

F2k−1

k2
(mod p2). (3.4)

We are now ready to compute U modulo p2 in the case p ≡ 1, 4 (mod 5) (which is one of the
statements from Theorem 1.3).

Proof. The case p ≡ 1, 4 (mod 5). We use Lemma 2.2, part b)

p−1
∑

k=1

F2k−1

k2
≡ 2s (mod p). To

prove

U ≡ 0 (mod p2),

we must show that

ps ≡
1 + Fp−1 − F2p−1

2p
(mod p2).

This is the same as proving

2p2s ≡ 1 + Fp−1 − F2p−1 (mod p3). (3.5)

In this case, s ≡ −1
5

(

Lp−1
p

)2
(mod p) (according to formula (1.1) of Pan and Sun; here, the

Legendre symbol
(

p
5

)

= +1). We use Lemma 2.1:

1− Lp

p
≡ −

5

2

Fp−1

p
(mod p).

We get 2p2s ≡ −2
5(Lp − 1)2 ≡ −5

2F
2
p−1 (mod p3). Now, to prove (3.5), we must show

5F 2
p−1 ≡ 2(F2p−1 − Fp−1 − 1) (mod p3). (3.6)

Because 5F 2
p−1 = L2p−2 − 2 = F2p−1 + F2p−3 − 2, formula (3.6) is equivalent to

F2p−1 + F2p−3 ≡ 2F2p−1 − 2Fp−1 (mod p3)

and to

F2p−2 − 2Fp−1 ≡ 0 (mod p3).

The last congruence is true because

F2p−2 − 2Fp−1 = Fp−1(Lp−1 − 2),

Fp−1 ≡ 0 (mod p), and Lp−1 ≡ 2 (mod p2) (see the proof of Lemma 2.1). �
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4. V ≡ 0 (mod p2) in the Case p ≡ 2, 3 (mod 5)

We multiply formula (3.1) by −α and obtain

p−1
∑

k=1

(−α)k+1

k
≡

−α+ α2p+1 − αp+1

p
+ p

p−1
∑

k=1

α2k+1

k2
(mod p2). (4.1)

In the same way, we obtain the congruence

p−1
∑

k=1

(−β)k+1

k
≡

−β + β2p+1 − βp+1

p
+ p

p−1
∑

k=1

β2k+1

k2
(mod p2). (4.2)

If we subtract (4.2) from (4.1) and divide by α− β, we get

V ≡
−1− Fp+1 + F2p+1

p
+ p

p−1
∑

k=1

F2k+1

k2
(mod p2). (4.3)

We are now ready to compute V modulo p2 in the case p ≡ 2, 3 (mod 5), which is another
statement of Theorem 1.3.

Proof. The case p ≡ 2, 3 (mod 5). We use Lemma 2.2, part c)

p−1
∑

k=1

F2k+1

k2
≡ −2s (mod p). To

prove

V ≡ 0 (mod p2),

we must show that

ps ≡
−1− Fp+1 + F2p+1

2p
(mod p2).

This is the same as proving

2p2s ≡ −1− Fp+1 + F2p+1 (mod p3). (4.4)

According to formula (1.1) of Pan and Sun (here, the Legendre symbol
(

p
5

)

= −1), in this

case s ≡ 1
5

(

Lp−1
p

)2
(mod p). We use Lemma 2.1:

1− Lp

p
≡ −

5

2

Fp+1

p
(mod p).

We get 2p2s ≡ 2
5 (Lp − 1)2 ≡ 5

2F
2
p+1 (mod p3). Now, it is obvious that to prove (4.4), we must

show

5F 2
p+1 ≡ 2(F2p+1 − Fp+1 − 1) (mod p3). (4.5)

Because 5F 2
p+1 = L2p+2 − 2 = F2p+1 + F2p+3 − 2, formula (4.5) is equivalent to

F2p+1 + F2p+3 ≡ 2F2p+1 − 2Fp+1 (mod p3)

and to

F2p+2 + 2Fp+1 ≡ 0 (mod p3).

The last congruence is true because

F2p+2 + 2Fp+1 = Fp+1(Lp+1 + 2),

Fp+1 ≡ 0 (mod p), and Lp+1 ≡ −2 (mod p2) (see the proof of Lemma 2.1). �
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5. The Sum U + V (mod p2)

In Sections 3 and 4, we saw that U =

p−1
∑

k=2

(−1)kFk−1

k
≡ 0 (mod p2) if p ≡ 1, 4 (mod 5) and

V =

p
∑

k=2

(−1)kFk

k − 1
≡ 0 (mod p2) when p ≡ 2, 3 (mod 5).

How do we prove that

U ≡
1− Lp

p
(mod p2)

when p ≡ 2, 3 (mod 5)? And how do we prove that

V ≡
Lp − 1

p
(mod p2)

in the case p ≡ 1, 4 (mod 5)? The idea is simple. We combine the facts that we already know
(U ≡ 0 (mod p2) when p ≡ 1, 4 (mod 5) and V ≡ 0 (mod p2) when p ≡ 2, 3 (mod 5)) with
the result about the sum U + V modulo p2. It is easy to check that

U + V = −

p−1
∑

k=1

(−1)kFk

k
.

We need to find

p−1
∑

k=1

(−1)kFk

k
(mod p2); therefore, we have to prove Proposition 1.2.

Proof. Again, we look to formula (3.1):

p−1
∑

k=1

(−α)k

k
≡

1− α2p + αp

p
− pG(α2) (mod p2).

In the same way, we obtain

p−1
∑

k=1

(−β)k

k
≡

1− β2p + βp

p
− pG(β2) (mod p2). (5.1)

We subtract (5.1) from (3.1) and divide by α− β. Then, we use Lemma 2.2, part a)

G(α2)−G(β2)

α− β
=

p−1
∑

k=1

F2k

k2
≡ s (mod p)

and we obtain
p−1
∑

k=1

(−1)kFk

k
≡

Fp − F2p

p
− ps (mod p2).

At that point, we proved part b) of Proposition 1.2. The proof of part a) is straightforward.
We let x = α in Lemma 1.1 and get

p−1
∑

k=1

βk

k
≡

1− Lp

p
− p

p−1
∑

k=1

αk

k2
(mod p2).
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Now, we let x = β in Lemma 1.1 and get

p−1
∑

k=1

αk

k
≡

1− Lp

p
− p

p−1
∑

k=1

βk

k2
(mod p2).

We subtract the last two congruences and obtain part a) of Proposition 1.2. �

Let us return to the sum U + V . If we take into account part b) of the Proposition 1.2, we
get

U + V ≡
F2p − Fp

p
+ ps (mod p2). (5.2)

The case p ≡ 1, 4 (mod 5). Using (5.2), U ≡ 0 (mod p2), the well-known identity F2p =

FpLp, and the formula of s obtained by Pan and Sun (s ≡ −1
5

(

Lp−1
p

)2
(mod p)), we get

V ≡ U + V ≡
Lp − 1

5p
(5Fp − Lp + 1) (mod p2). (5.3)

To find the formula of V (mod p2) in this case, it is enough to prove that

5Fp − Lp + 1 ≡ 5 (mod p2).

This is straightforward because

5Fp − Lp − 4 = Lp−1 + Lp+1 − Lp − 4 = 2(Lp−1 − 2) ≡ 0 (mod p2);

for the last congruence, we used Lp−1 ≡ 2 (mod p2), in the case p ≡ 1, 4 (mod 5).
The case p ≡ 2, 3 (mod 5). Using (5.2), V ≡ 0 (mod p2), the identity F2p = FpLp, and the

formula of Pan and Sun (s ≡ 1
5

(

Lp−1
p

)2
(mod p)), we get

U ≡ U + V ≡
Lp − 1

5p
(5Fp + Lp − 1) (mod p2). (5.4)

To find the formula of U (mod p2) in this case, it is enough to prove that

5Fp + Lp − 1 ≡ −5 (mod p2).

This is straightforward because

5Fp + Lp + 4 = Lp−1 + Lp+1 + Lp + 4 = 2(Lp+1 + 2) ≡ 0 (mod p2);

for the last congruence, we used Lp+1 ≡ −2 (mod p2) in the case p ≡ 2, 3 (mod 5). �

Remark: Pan and Sun (see Theorem 1.2 in [3]) proved the following result:

p−1
∑

k=1

Lk

k2
≡ 0 (mod p).

Using this result and the same path as in the proof of Theorem 1.3, we can prove the following
statement.

Proposition 5.1. Let p > 5 be a prime number. We let U1 =

p−1
∑

k=1

(−1)kLk−1

k
and V1 =

p
∑

k=2

(−1)kLk

k − 1
. The following congruences hold: U1 ≡

Lp−1−L2p−1−1
p

(mod p2), V1 ≡
L2p−1+Lp−2

p

(mod p2) if p ≡ 1, 4 (mod 5) and V1 ≡
L2p+1−Lp+1−1

p
(mod p2), U1 ≡

Lp+2−L2p+1

p
(mod p2) if

p ≡ 2, 3 (mod 5).
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6. Is There a General Pattern?

The anonymous referee gave us the idea of considering general Lucas sequences to see if
similar results to Theorem 1.3 hold. Let a, b be integers and let (xn)n and (yn)n be sequences
defined by the conditions x0 = 0, x1 = a, y0 = 2, y1 = a, and xn+2 = axn+1 + bxn, yn+2 =
ayn+1+byn, for any nonnegative integer n. Is it possible to find the remainder when we divide
the numbers

U =

p−1
∑

k=2

(−1)kxk−1

k
, V =

p
∑

k=2

(−1)kxk
k − 1

by the square of the prime number p? The results obtained for the Fibonacci numbers suggest
the following remarks. To solve the above mentioned problems, we have to be able to compute
∑p−1

k=1
xk

k2
modulo a prime p. In the case of the Fibonacci numbers, we were fortunate that Pan

and Sun were able to compute
∑p−1

k=1
Fk

k2
modulo the prime p. Their proof cannot be adapted

for the general case (for random integers a, b).
Let us denote by α and β the roots of the equation x2 − ax − b = 0. Suppose, for the

moment, that α 6= β, α · β 6= 0. Then,

xn =
αn − βn

α− β
, yn = αn + βn.

The tools we used for solving our results (Lemma 1.1 of Pan and Sun and the formulas of
Granville) suggest that there is an interplay with two Lucas sequences: z0 = 0, z1 = c,
zn+2 = czn+1 + dzn, t0 = 0, t1 = e, tn+2 = etn+1 + ftn, for any nonnegative integer n. The
rational numbers c, d, e, f could be found easily considering the second degree equations having
as roots 1− α, 1− β, and 1− 1

α
, 1− 1

β
:

c = (1− α) + (1− β) = 2− a, d = −(1− α)(1 − β) = a+ b− 1,

e = (1−
1

α
) + (1−

1

β
) = 2 +

a

b
, f = −(1−

1

α
)(1−

1

β
) = −1 +

1− a

b
.

Another factor that needs to be taken into account are two cases, when the discriminant
∆ = a2 + 4b of the polynomial f(X) = X2 − aX − b is a quadratic residue (or nonresidue)
modulo the prime p.

We looked carefully at our proof and we saw that, indeed, we could prove a more general
result (for a = 1), but we are not able to settle the general case (with random integers a, b).

The success in the case a = 1 follows from q(α) = q(β) =
yp−1
p

. But, there is a cost (when

working with b 6= 1). We have to change the numbers U, V a little bit. In the sequel (xn)n,
(yn)n are the sequences defined by the conditions: x0 = 0, x1 = 1, xn+2 = xn+1 + bxn, y0 = 2,
y1 = 1, yn+2 = yn+1+ byn (b is a fixed integer), for any nonnegative integer n. We will denote
by U, V the following numbers:

U =

p−1
∑

k=2

(−1)kxk−1

bk−1k
, V =

p
∑

k=2

(−1)kxk
bk(k − 1)

.

It turns out that Theorem 1.4 is true.

Proof. We will not write all the details of the proof of Theorem 1.4 because it is, basically, the
same proof as the one given for formulas (3.4), (4.3), and (5.2). The only difference is when
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we plug in x = α2

b
instead of α2 in Lemma 1.1 (as we did in the proof of Theorem 1.3). Doing

this, we obtain the congruences:

U + bV ≡
x2p − xp

pbp
+

p

b

p−1
∑

k=1

xk
k2

(mod p2). (6.1)

If the discriminant ∆ = 1 + 4b is a quadratic residue modulo p, then

U ≡
bp−1 + xp−1 − x2p−1

bp−1p
− 2p

p−1
∑

k=1

xk
k2

(mod p2). (6.2)

If the discriminant ∆ is a quadratic nonresidue modulo p, then

V ≡
−bp − xp+1 + x2p+1

bp+1p
−

2p

b

p−1
∑

k=1

xk
k2

(mod p2). (6.3)

We will show that formula (6.2) is the same as the formula given in the statement of Theorem
1.4. We have to prove that

bp−1 + xp−1 − x2p−1

bp−1p
≡

xp−1(1− yp)

p
(mod p2). (6.4)

Because −b = α · β, xn = αn
−βn

α−β
, and yn = αn + βn, we have

bp−1 + xp−1 − x2p−1 = xp−1(1− yp).

Because xp−1 ≡ 1 − yp ≡ 0 (mod p) (when ∆ is a quadratic residue modulo p) and bp−1 ≡ 1
(mod p), formula (6.4) follows at once. The formula in Theorem 1.4 for V in the case when
∆ is a quadratic nonresidue modulo p follows from formula (6.3) in the same way. �

Remark: We avoided, in the writing of the statement of Theorem 1.4, the formula for
U modulo p2 when ∆ is a quadratic nonresidue modulo p (and the formula for V modulo
p2 when ∆ is a quadratic residue modulo p). These formulas follow from the above theorem
(using U+bV modulo p2 and that we know the formula for U modulo p2 when ∆ is a quadratic
residue modulo p and the formula for V modulo p2 when ∆ is a quadratic nonresidue modulo
p).

We want to discuss the following interesting issue. If we are looking at Theorem 1.4, we
see (because xp−1 ≡ 1 − yp ≡ 0 (mod p)) that U ≡ 0 (mod p) for any prime p which is not a
divisor of b∆ and such that ∆ is a quadratic residue modulo p. The Fibonacci sequence has the
property that U ≡ 0 (mod p2) for any prime p ≡ 1, 4 (mod 5). Is this true in the general case?

Problem: For which values of b can we assert that

U ≡ 0 (mod p2)

for any prime p > 3 that is not a divisor of b∆ and such that ∆ is a quadratic residue modulo
p? We can raise the similar problem for the number V .

We will finish this paper by analyzing two different cases of the above problem.

First example, b = −1. In this case, ∆ = −3 and we have to consider a prime number p
such that −3 is a quadratic residue modulo p. Using quadratic reciprocity, this means that
p = 6k + 1, where k is a positive integer. It is fairly easy to check that

x6t+1 = x6t+2 = 1, x6t = x6t+3 = 0, x6t+4 = x6t+5 = −1 (6.5)
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for any nonnegative integer t. We know from Theorem 1.4 that

U ≡
xp−1(1− yp)

p
− 2p

p−1
∑

k=1

xk
k2

(mod p2). (6.6)

Because p = 6k + 1, we get xp−1 = 0. Therefore, checking U ≡ 0 (mod p2) is the same as
proving that

p−1
∑

k=1

xk
k2

≡ 0 (mod p). (6.7)

It is easy to check that for p = 7, this is not true:

6
∑

k=1

xk
k2

≡ 4 (mod 7).

Remark: The problem of deciding if there exists a prime p = 6k + 1 such that

p−1
∑

k=1

xk
k2

≡ 0 (mod p) (6.8)

seems to be an interesting one.

Second example, b = 2. In this case, α = 2, β = −1, xn = 2n−(−1)n

3 , yn = 2n + (−1)n, and
∆ = 9. Therefore, we can consider any prime p > 3. We will see that, in this case,

U ≡ 0 (mod p2).

To prove this, according to Theorem 1.4, we have to prove that

2p

3

p−1
∑

k=1

2k − (−1)k

k2
≡

(2p−1 − 1)(2 − 2p)

3
(mod p2). (6.9)

Because

p−1
∑

k=1

(−1)k

k2
≡ 0 (mod p), formula (6.9) is equivalent to

p

p−1
∑

k=1

2k

k2
≡ −

(2p−1 − 1)2

p
(mod p2) (6.10)

and to
p−1
∑

k=1

2k

k2
≡ −

(2p−1 − 1)2

p2
(mod p). (6.11)

This is Skula’s conjecture proved by Andrew Granville in [2].

Remark: From the above discussion, it follows that in some cases (as b = 1 and b = 2),
U ≡ 0 (mod p2) and in others (as b = −1), we can have U 6≡ 0 (mod p2).
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