INFINITE SUMS INVOLVING JACOBSTHAL POLYNOMIALS

THOMAS KOSHY

ABSTRACT. We explore the Jacobsthal versions of four finite sums involving Fibonacci polynomials, and then extract their infinite counterparts and some special cases.

1. INTRODUCTION

Extended gibonacci polynomials $z_n(x)$ are defined by the recurrence $z_{n+2}(x) = a(x)z_{n+1}(x) + b(x)z_n(x)$, where x is an arbitrary integer variable; a(x), b(x), $z_0(x)$, and $z_1(x)$ are arbitrary integer polynomials; and $n \ge 0$.

Suppose a(x) = x and b(x) = 1. When $z_0(x) = 0$ and $z_1(x) = 1$, $z_n(x) = f_n(x)$, the *n*th *Fibonacci polynomial*; and when $z_0(x) = 2$ and $z_1(x) = x$, $z_n(x) = l_n(x)$, the *n*th *Lucas polynomial*. Clearly, $f_n(1) = F_n$, the *n*th Fibonacci number; and $l_n(1) = L_n$, the *n*th Lucas number [2, 4].

Suppose a(x) = 1 and b(x) = x. When $z_0(x) = 0$ and $z_1(x) = 1$, $z_n(x) = J_n(x)$, the *n*th Jacobsthal polynomial; and when $z_0(x) = 2$ and $z_1(x) = 1$, $z_n(x) = j_n(x)$, the *n*th Jacobsthal-Lucas polynomial. Correspondingly, $J_n = J_n(2)$ and $j_n = j_n(2)$ are the *n*th Jacobsthal and Jacobsthal-Lucas numbers, respectively. Clearly, $J_n(1) = F_n$ and $j_n(1) = L_n$ [4].

Gibonacci and Jacobsthal polynomials are linked by the relationships $J_n(x) = x^{(n-1)/2} f_n(1/\sqrt{x})$ and $j_n(x) = x^{n/2} l_n(1/\sqrt{x})$ [3], and [4, p. 566].

In the interest of brevity, clarity, and convenience, we omit the argument in the functional notation, when there is no ambiguity; so z_n will mean $z_n(x)$. In addition, we let $g_n = f_n$ or l_n , $c_n = J_n(x)$ or $j_n(x)$, $\Delta = \sqrt{x^2 + 4}$, and $D = \sqrt{4x + 1}$.

1.1. Jacobsthal Limits. We have deg $J_n = \lfloor (n-1)/2 \rfloor$ and deg $j_n = \lfloor n/2 \rfloor$, where deg f denotes the degree of the polynomial f(x), $\lfloor x \rfloor$ denotes the *floor* of the real number x, and $n \ge 1$. The leading coefficient of J_n is n/2 when n is even, and 1 otherwise; and that of j_n is 2 when n is even, and n otherwise. Both J_n and j_n end in 1.

Let x be a positive integer. Because deg $J_{2m} = m-1$, deg $J_{2m}^2 = 2m-2$ and $J_{2m}^2 = mx^{2m-2} + \dots + 1$. So, $\frac{x^{2m-2}}{J_{2m}^2} < 1$ and hence, $\lim_{m \to \infty} \frac{x^{2m-2}}{J_{2m}^2} = 0 = \lim_{m \to \infty} \frac{x^{2m}}{J_{2m}^2}$. Similarly, $\lim_{m \to \infty} \frac{x^{2m+1}}{J_{2m+1}^2} = 0$. Likewise, $\lim_{m \to \infty} \frac{x^m}{j_m^2} = 0$, where m is odd or even.

1.2. Fibonacci Polynomial Sums. In [5], we studied the following finite sums involving Fibonacci polynomials:

$$\sum_{n=1}^{m} \frac{x f_{2(2n+1)}}{\left(f_{2n+1}^2 - 1\right)^2} = \frac{1}{x^2} - \frac{1}{f_{2m+2}^2};$$
(1.1)

$$\sum_{n=1}^{m} \frac{(x^3 + 2x)f_{2(2n+2)}}{\left(f_{2n+2}^2 - x^2\right)^2} = \frac{1}{x^2} + \frac{1}{(x^3 + 2x)^2} - \frac{1}{f_{2m+2}^2} - \frac{1}{f_{2m+4}^2};$$
(1.2)

VOLUME 60, NUMBER 3

SUMS INVOLVING JACOBSTHAL POLYNOMIALS

$$\sum_{n=1}^{m} \frac{(x^3 + 2x)f_{2(2n+1)}}{\left(f_{2n+1}^2 + x^2\right)^2} = 1 + \frac{1}{(x^2 + 1)^2} - \frac{1}{f_{2m+1}^2} - \frac{1}{f_{2m+3}^2};$$
(1.3)

$$\sum_{n=1}^{m} \frac{x f_{2(2n+2)}}{\left(f_{2n+2}^2 + 1\right)^2} = \frac{1}{(x^2+1)^2} - \frac{1}{f_{2m+3}^2}.$$
(1.4)

We will now find their Jacobsthal counterparts and then extract their infinite versions.

2. Jacobsthal Sums

We begin our discourse with sum (1.1) involving odd-numbered Fibonacci polynomials.

2.1. Jacobsthal Version of Sum (1.1).

Proof. Let $A = \frac{xf_{2(2n+1)}}{(f_{2n+1}^2 - 1)^2}$. Replacing x with $1/\sqrt{x}$, and then multiplying the numerator and denominator with $x^{(4n+1)/2}$, we get

$$A = \frac{x^{(4n-1)/2} \left[x^{(4n+1)/2} f_{2(2n+1)} \right]}{\sqrt{x} \left[\left(x^{2n/2} f_{2n+1} \right)^2 - x^{2n} \right]^2}$$
$$= \frac{x^{2n-1} J_{2(2n+1)}}{\left(J_{2n+1}^2 - x^{2n} \right)^2};$$
LHS =
$$\sum_{n=1}^m \frac{x^{2n-1} J_{2(2n+1)}}{\left(J_{2n+1}^2 - x^{2n} \right)^2},$$

where $f_n = f_n(1/\sqrt{x})$ and $J_n = J_n(x)$. Now, let $B = \frac{1}{x^2} - \frac{1}{f_{2m+2}^2}$. Replace x with $1/\sqrt{x}$, and then multiply the numerator and denominator with x^{2m+1} . This yields

$$B = x - \frac{1}{f_{2m+2}^2}$$

= $x - \frac{x^{2m+1}}{\left[x^{(2m+1)/2}f_{2m+2}\right]^2};$
RHS = $x - \frac{x^{2m+1}}{J_{2m+2}^2},$

where $f_n = f_n(1/\sqrt{x})$ and $J_n = J_n(x)$.

Equating the two sides, we get

$$\sum_{n=1}^{m} \frac{x^{2n} J_{2(2n+1)}}{\left(J_{2n+1}^2 - x^{2n}\right)^2} = x^2 - \frac{x^{2m+2}}{J_{2m+2}^2}.$$
(2.1)

The next sum involves even-numbered Fibonacci polynomials.

AUGUST 2022

195

THE FIBONACCI QUARTERLY

2.2. Jacobsthal Version of Sum (1.2).

Proof. Let $A = \frac{(x^3 + 2x)f_{2(2n+2)}}{(f_{2n+2}^2 - x^2)^2}$. Replacing x with $1/\sqrt{x}$, and then multiplying the numerator and denominator with x^{4n} yields

$$A = \frac{\sqrt{x}(2x+1)f_{2(2n+2)}}{\left(xf_{2n+2}^2 - 1\right)^2};$$

= $\frac{(2x+1)x^{2n}\left[x^{(4n+3)/2}f_{2(2n+2)}\right]}{x\left[\left(x^{(2n+1)/2}f_{2n+2}\right)^2 - x^{2n}\right]^2};$
LHS = $\sum_{n=1}^m \frac{(2x+1)x^{2n}J_{2(2n+2)}}{x\left(J_{2n+2}^2 - x^{2n}\right)^2},$

where $f_n = f_n(1/\sqrt{x})$ and $J_n = J_n(x)$. Now, let $B = \frac{1}{x^2} + \frac{1}{(x^3 + 2x)^2} - \frac{1}{f_{2m+2}^2} - \frac{1}{f_{2m+4}^2}$. Replace x with $1/\sqrt{x}$, and then multiply the numerator and denominator with x^{2m+3} . Then,

$$B = x + \frac{x^3}{(2x+1)^2} - \frac{1}{f_{2m+2}^2} - \frac{1}{f_{2m+4}^2}$$

= $x + \frac{x^3}{(2x+1)^2} - \frac{x^{2m+3}}{x^2 [x^{(2m+1)/2} f_{2m+2}]^2} - \frac{x^{2m+3}}{[x^{(2m+3)/2} f_{2m+4}]^2}$
RHS = $x + \frac{x^3}{(2x+1)^2} - \frac{x^{2m+1}}{J_{2m+2}^2} - \frac{x^{2m+3}}{J_{2m+4}^2}$,

where $f_n = f_n(1/\sqrt{x})$ and $J_n = J_n(x)$. Equating the two sides yields

$$\sum_{n=1}^{m} \frac{(2x+1)x^{2n}J_{2(2n+2)}}{\left(J_{2n+2}^2 - x^{2n}\right)^2} = x^2 + \frac{x^4}{(2x+1)^2} - \frac{x^{2m+2}}{J_{2m+2}^2} - \frac{x^{2m+4}}{J_{2m+4}^2}.$$
(2.2)

The next sum contains odd- and even-numbered Fibonacci polynomials.

2.3. Jacobsthal Version of Sum (1.3).

Proof. Let $A = \frac{(x^3 + 2x)f_{2(2n+1)}}{(f_{2n+1}^2 + x^2)^2}$. Replace x with $1/\sqrt{x}$, and then multiply the numerator and denominator with $x^{2(2n-1)}$. This yields

$$\begin{split} A &= \frac{x(2x+1)f_{2(2n+1)}}{\sqrt{x}\left(xf_{2n+1}^2+1\right)^2} \\ &= \frac{(2x+1)x^{2n-2}\left[x^{(4n+1)/2}f_{2(2n+1)}\right]}{\left[\left(x^{2n/2}f_{2n+1}\right)^2+x^{2n-1}\right]^2} \\ &= \frac{(2x+1)x^{2n-2}J_{2(2n+1)}}{\left(J_{2n+1}^2+x^{2n-1}\right)^2}; \\ \mathrm{LHS} &= \sum_{n=1}^m \frac{(2x+1)x^{2n-2}J_{2(2n+1)}}{\left(J_{2n+1}^2+x^{2n-1}\right)^2}, \end{split}$$

where $f_n = f_n(1/\sqrt{x})$ and $J_n = J_n(x)$. Now, let $B = 1 + \frac{1}{(x^2+1)^2} - \frac{1}{f_{2m+1}^2} - \frac{1}{f_{2m+3}^2}$. Replacing x with $1/\sqrt{x}$, and then multiply-ing the numerator and denominator with x^{2m+2} , we get

$$B = 1 + \frac{x^2}{(x+1)^2} - \frac{1}{f_{2m+1}^2} - \frac{1}{f_{2m+3}^2}$$
$$= 1 + \frac{x^2}{(x+1)^2} - \frac{x^{2m}}{(x^{2m/2}f_{2m+1})^2} - \frac{x^{2m+2}}{[x^{(2m+2)/2}f_{2m+3}]^2}$$
RHS = $1 + \frac{x^2}{(x+1)^2} - \frac{x^{2m}}{J_{2m+1}^2} - \frac{x^{2m+2}}{J_{2m+3}^2}$,

where $f_n = f_n(1/\sqrt{x})$ and $J_n = J_n(x)$.

Combining the two sides, we get

$$\sum_{n=1}^{\infty} \frac{(2x+1)x^{2n-1}J_{2(2n+1)}}{\left(J_{2n+1}^2 + x^{2n-1}\right)^2} = x + \frac{x^3}{(x+1)^2} - \frac{x^{2m+1}}{J_{2m+1}^2} - \frac{x^{2m+3}}{J_{2m+3}^2}.$$
(2.3)

Finally, we explore the Jacobsthal counterpart of sum (1.4); it also involves only evennumbered Fibonacci polynomials.

2.4. Jacobsthal Version of Sum (1.4).

Proof. Let $A = \frac{xf_{2(2n+2)}}{\left(f_{2n+2}^2+1\right)^2}$. Replacing x with $1/\sqrt{x}$, and then multiply the numerator and denominator with $x^{2(2n+1)}$, we then get

$$A = \frac{f_{2(2n+2)}}{\sqrt{x} (f_{2n+2}^2 + 1)^2}$$

=
$$\frac{x^{2n} [x^{(4n+3)/2} f_{2(2n+2)}]}{\left\{ [x^{(2n+1)/2} f_{2n+2}]^2 + x^{2n+1} \right\}^2};$$

LHS =
$$\sum_{n=1}^m \frac{x^{2n} J_{2(2n+2)}}{(J_{2n+2}^2 + x^{2n+1})^2},$$

AUGUST 2022

THE FIBONACCI QUARTERLY

where $f_n = f_n(1/\sqrt{x})$ and $J_n = J_n(x)$.

We now let $B = \frac{1}{(x^2+1)^2} - \frac{1}{f_{2m+3}^2}$. Replacing x with $1/\sqrt{x}$, and then multiplying the numerator and denominator with x^{2m+2} , we then get

$$B = \frac{x^2}{(x+1)^2} - \frac{1}{f_{2m+3}^2}$$
$$= \frac{x^2}{(x+1)^2} - \frac{x^{2m+2}}{\left[x^{(2m+2)/2}f_{2m+3}\right]^2};$$
RHS = $\frac{x^2}{(x+1)^2} - \frac{x^{2m+2}}{J_{2m+3}^2},$

where $f_n = f_n(1/\sqrt{x})$ and $J_n = J_n(x)$. Equating the two sides, we get

$$\sum_{n=1}^{m} \frac{x^{2n+1} J_{2(2n+2)}}{\left(J_{2n+2}^2 + x^{2n+1}\right)^2} = \frac{x^3}{(x+1)^2} - \frac{x^{2m+3}}{J_{2m+3}^2}.$$
(2.4)

3. INFINITE JACOBSTHAL SUMS

Equations (2.1) through (2.4) yield the following infinite sums:

$$\sum_{n=1}^{\infty} \frac{x^{2n} J_{2(2n+1)}}{\left(J_{2n+1}^2 - x^{2n}\right)^2} = x^2;$$
(3.1)

$$\sum_{n=1}^{\infty} \frac{(2x+1)x^{2n} J_{2(2n+2)}}{\left(J_{2n+2}^2 - x^{2n}\right)^2} = x^2 + \frac{x^4}{(2x+1)^2};$$
(3.2)

$$\sum_{n=1}^{m} \frac{(2x+1)x^{2n-1}J_{2(2n+1)}}{\left(J_{2n+1}^2 + x^{2n-1}\right)^2} = x + \frac{x^3}{(x+1)^2};$$
(3.3)

$$\sum_{n=1}^{\infty} \frac{x^{2n+1} J_{2(2n+2)}}{\left(J_{2n+2}^2 + x^{2n+1}\right)^2} = \frac{x^3}{(x+1)^2},$$
(3.4)

respectively.

It then follows that [5]

$$\sum_{n=1}^{\infty} \frac{F_{2(2n+1)}}{\left(F_{2n+1}^2 - 1\right)^2} = 1; \qquad \sum_{n=1}^{\infty} \frac{F_{2(2n+2)}}{\left(F_{2n+2}^2 - 1\right)^2} = \frac{10}{27};$$
$$\sum_{n=1}^{\infty} \frac{F_{2(2n+1)}}{\left(F_{2n+1}^2 + 1\right)^2} = \frac{5}{12}; \qquad \sum_{n=1}^{\infty} \frac{F_{2(2n+2)}}{\left(F_{2n+2}^2 + 1\right)^2} = \frac{1}{4},$$

respectively. Consequently, we have

$$\sum_{n=1}^{\infty} \frac{F_{2n}}{(F_n^2 - 1)^2} = \frac{37}{27}; \qquad \sum_{n=1}^{\infty} \frac{F_{2n}}{(F_n^2 + 1)^2} = \frac{5}{3},$$

as in [1, 6].

It also follows that

VOLUME 60, NUMBER 3

198

SUMS INVOLVING JACOBSTHAL POLYNOMIALS

$$\sum_{n=1}^{\infty} \frac{4^n J_{2(2n+1)}}{\left(J_{2n+2}^2 - 4^n\right)^2} = 4; \qquad \sum_{n=1}^{\infty} \frac{4^n J_{2(2n+2)}}{\left(J_{2n+2}^2 - 4^n\right)^2} = \frac{116}{125};$$
$$\sum_{n=1}^{\infty} \frac{4^n J_{2(2n+1)}}{\left(J_{2n+1}^2 + 2^{2n-1}\right)^2} = \frac{52}{45}; \qquad \sum_{n=1}^{\infty} \frac{4^n J_{2(2n+2)}}{\left(J_{2n+2}^2 + 2^{2n+1}\right)^2} = \frac{4}{9},$$

respectively.

4. Alternate Forms

Using the identity $j_n^2 - D^2 J_n^2 = 4(-x)^n$ [4], we can rewrite the summations (3.1) through (3.4) as follows, where $D = \sqrt{4x+1}$:

$$\begin{split} \sum_{n=1}^{\infty} \frac{D^4 x^{2n} J_{2(2n+1)}}{\left(j_{2n+1}^2 - x^{2n}\right)^2} &= x^2;\\ \sum_{n=1}^{\infty} \frac{D^4 (2x+1) x^{2n} J_{2(2n+2)}}{\left[j_{2n+2}^2 - (2x+1)^2 x^{2n}\right]^2} &= x^2 + \frac{x^4}{(2x+1)^2};\\ \sum_{n=1}^{\infty} \frac{D^4 (2x+1) x^{2n-1} J_{2(2n+1)}}{\left[j_{2n+1}^2 + (2x+1)^2 x^{2n-1}\right]^2} &= x + \frac{x^3}{(x+1)^2};\\ \sum_{n=1}^{\infty} \frac{D^4 x^{2n+1} J_{2(2n+2)}}{\left(j_{2n+2}^2 + x^{2n+1}\right)^2} &= \frac{x^3}{(x+1)^2}, \end{split}$$

respectively.

In particular, we then have [5]

$$\sum_{n=1}^{\infty} \frac{F_{2(2n+1)}}{\left(L_{2n+1}^2 - 1\right)^2} = \frac{1}{25}; \qquad \sum_{n=1}^{\infty} \frac{F_{2(2n+2)}}{\left(L_{2n+2}^2 - 9\right)^2} = \frac{2}{135};$$
$$\sum_{n=1}^{\infty} \frac{F_{2(2n+1)}}{\left(L_{2n+1}^2 + 9\right)^2} = \frac{1}{60}; \qquad \sum_{n=1}^{\infty} \frac{F_{2(2n+2)}}{\left(L_{2n+2}^2 + 1\right)^2} = \frac{1}{100};$$

respectively.

They also yield the following results:

$$\sum_{n=1}^{\infty} \frac{4^n J_{2(2n+1)}}{\left(j_{2n+2}^2 - 4^n\right)^2} = \frac{4}{81}; \qquad \sum_{n=1}^{\infty} \frac{4^n J_{2(2n+2)}}{\left(j_{2n+2}^2 - 25 \cdot 4^n\right)^2} = \frac{116}{10, 125};$$
$$\sum_{n=1}^{\infty} \frac{4^n J_{2(2n+1)}}{\left(j_{2n+1}^2 + 25 \cdot 2^{2n-1}\right)^2} = \frac{52}{3, 645}; \qquad \sum_{n=1}^{\infty} \frac{4^n J_{2(2n+2)}}{\left(j_{2n+2}^2 + 2^{2n+1}\right)^2} = \frac{4}{729};$$

respectively.

5. Acknowledgment

The author thanks the reviewer for a careful reading of the article, and for constructive suggestions and encouraging words.

THE FIBONACCI QUARTERLY

References

[1] J. Bartz, Solution to Problem B-1181, The Fibonacci Quarterly, 55.1 (2017), 84–85.

[2] M. Bicknell, A primer for the Fibonacci numbers: Part VII, The Fibonacci Quarterly, 8.4 (1970), 407-420.

[3] A. F. Horadam, Vieta polynomials, The Fibonacci Quarterly, 40.3 (2002), 223-232.

[4] T. Koshy, Fibonacci and Lucas Numbers with Applications, Volume II, Wiley, Hoboken, New Jersey, 2019.

[5] T. Koshy, Infinite sums involving gibonacci polynomials, The Fibonacci Quarterly, 60.2 (2022), 104–110.

[6] H. Ohtsuka, Problem B-1181, The Fibonacci Quarterly, 54.1 (2016), 80.

MSC2020: 11B39, 11B83, 11C08

DEPARTMENT OF MATHEMATICS, FRAMINGHAM STATE UNIVERSITY, FRAMINGHAM, MA 01701 *Email address*: tkoshy@emeriti.framingham.edu