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Abstract. We explore the Jacobsthal versions of four finite sums involving Fibonacci poly-
nomials, and then extract their infinite counterparts and some special cases.

1. Introduction

Extended gibonacci polynomials zn(x) are defined by the recurrence zn+2(x) = a(x)zn+1(x)+
b(x)zn(x), where x is an arbitrary integer variable; a(x), b(x), z0(x), and z1(x) are arbitrary
integer polynomials; and n ≥ 0.

Suppose a(x) = x and b(x) = 1. When z0(x) = 0 and z1(x) = 1, zn(x) = fn(x), the
nth Fibonacci polynomial ; and when z0(x) = 2 and z1(x) = x, zn(x) = ln(x), the nth Lucas
polynomial. Clearly, fn(1) = Fn, the nth Fibonacci number; and ln(1) = Ln, the nth Lucas
number [2, 4].

Suppose a(x) = 1 and b(x) = x. When z0(x) = 0 and z1(x) = 1, zn(x) = Jn(x), the nth
Jacobsthal polynomial ; and when z0(x) = 2 and z1(x) = 1, zn(x) = jn(x), the nth Jacobsthal-
Lucas polynomial. Correspondingly, Jn = Jn(2) and jn = jn(2) are the nth Jacobsthal and
Jacobsthal-Lucas numbers, respectively. Clearly, Jn(1) = Fn and jn(1) = Ln [4].

Gibonacci and Jacobsthal polynomials are linked by the relationships Jn(x) = x(n−1)/2fn(1/
√
x)

and jn(x) = xn/2ln(1/
√
x) [3], and [4, p. 566].

In the interest of brevity, clarity, and convenience, we omit the argument in the functional
notation, when there is no ambiguity; so zn will mean zn(x). In addition, we let gn = fn or

ln, cn = Jn(x) or jn(x), ∆ =
√
x2 + 4, and D =

√
4x+ 1.

1.1. Jacobsthal Limits. We have deg Jn = ⌊(n− 1)/2⌋ and deg jn = ⌊n/2⌋, where deg f
denotes the degree of the polynomial f(x), ⌊x⌋ denotes the floor of the real number x, and
n ≥ 1. The leading coefficient of Jn is n/2 when n is even, and 1 otherwise; and that of jn is
2 when n is even, and n otherwise. Both Jn and jn end in 1.

Let x be a positive integer. Because deg J2m = m−1, deg J2
2m = 2m−2 and J2

2m = mx2m−2+

· · ·+ 1. So,
x2m−2

J2
2m

< 1 and hence, lim
m→∞

x2m−2

J2
2m

= 0 = lim
m→∞

x2m

J2
2m

. Similarly, lim
m→∞

x2m+1

J2
2m+1

= 0.

Likewise, lim
m→∞

xm

j2m
= 0, where m is odd or even.

1.2. Fibonacci Polynomial Sums. In [5], we studied the following finite sums involving
Fibonacci polynomials:

m∑
n=1

xf2(2n+1)(
f2
2n+1 − 1

)2 =
1

x2
− 1

f2
2m+2

; (1.1)

m∑
n=1

(x3 + 2x)f2(2n+2)(
f2
2n+2 − x2

)2 =
1

x2
+

1

(x3 + 2x)2
− 1

f2
2m+2

− 1

f2
2m+4

; (1.2)

194 VOLUME 60, NUMBER 3



SUMS INVOLVING JACOBSTHAL POLYNOMIALS

m∑
n=1

(x3 + 2x)f2(2n+1)(
f2
2n+1 + x2

)2 = 1 +
1

(x2 + 1)2
− 1

f2
2m+1

− 1

f2
2m+3

; (1.3)

m∑
n=1

xf2(2n+2)(
f2
2n+2 + 1

)2 =
1

(x2 + 1)2
− 1

f2
2m+3

. (1.4)

We will now find their Jacobsthal counterparts and then extract their infinite versions.

2. Jacobsthal Sums

We begin our discourse with sum (1.1) involving odd-numbered Fibonacci polynomials.

2.1. Jacobsthal Version of Sum (1.1).

Proof. Let A =
xf2(2n+1)(
f2
2n+1 − 1

)2 . Replacing x with 1/
√
x, and then multiplying the numerator

and denominator with x(4n+1)/2, we get

A =
x(4n−1)/2

[
x(4n+1)/2f2(2n+1)

]
√
x
[(
x2n/2f2n+1

)2 − x2n
]2

=
x2n−1J2(2n+1)(
J2
2n+1 − x2n

)2 ;
LHS =

m∑
n=1

x2n−1J2(2n+1)(
J2
2n+1 − x2n

)2 ,
where fn = fn(1/

√
x) and Jn = Jn(x).

Now, let B =
1

x2
− 1

f2
2m+2

. Replace x with 1/
√
x, and then multiply the numerator and

denominator with x2m+1. This yields

B = x− 1

f2
2m+2

= x− x2m+1[
x(2m+1)/2f2m+2

]2 ;
RHS = x− x2m+1

J2
2m+2

,

where fn = fn(1/
√
x) and Jn = Jn(x).

Equating the two sides, we get

m∑
n=1

x2nJ2(2n+1)(
J2
2n+1 − x2n

)2 = x2 − x2m+2

J2
2m+2

. (2.1)

□

The next sum involves even-numbered Fibonacci polynomials.
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2.2. Jacobsthal Version of Sum (1.2).

Proof. Let A =
(x3 + 2x)f2(2n+2)(

f2
2n+2 − x2

)2 . Replacing x with 1/
√
x, and then multiplying the numer-

ator and denominator with x4n yields

A =

√
x(2x+ 1)f2(2n+2)(
xf2

2n+2 − 1
)2 ;

=
(2x+ 1)x2n

[
x(4n+3)/2f2(2n+2)

]
x
[(
x(2n+1)/2f2n+2

)2 − x2n
]2 ;

LHS =
m∑

n=1

(2x+ 1)x2nJ2(2n+2)

x
(
J2
2n+2 − x2n

)2 ,

where fn = fn(1/
√
x) and Jn = Jn(x).

Now, let B =
1

x2
+

1

(x3 + 2x)2
− 1

f2
2m+2

− 1

f2
2m+4

. Replace x with 1/
√
x, and then multiply

the numerator and denominator with x2m+3. Then,

B = x+
x3

(2x+ 1)2
− 1

f2
2m+2

− 1

f2
2m+4

= x+
x3

(2x+ 1)2
− x2m+3

x2
[
x(2m+1)/2f2m+2

]2 − x2m+3[
x(2m+3)/2f2m+4

]2 ;
RHS = x+

x3

(2x+ 1)2
− x2m+1

J2
2m+2

− x2m+3

J2
2m+4

,

where fn = fn(1/
√
x) and Jn = Jn(x).

Equating the two sides yields
m∑

n=1

(2x+ 1)x2nJ2(2n+2)(
J2
2n+2 − x2n

)2 = x2 +
x4

(2x+ 1)2
− x2m+2

J2
2m+2

− x2m+4

J2
2m+4

. (2.2)

□

The next sum contains odd- and even-numbered Fibonacci polynomials.

2.3. Jacobsthal Version of Sum (1.3).

Proof. Let A =
(x3 + 2x)f2(2n+1)(

f2
2n+1 + x2

)2 . Replace x with 1/
√
x, and then multiply the numerator

and denominator with x2(2n−1). This yields
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A =
x(2x+ 1)f2(2n+1)
√
x
(
xf2

2n+1 + 1
)2

=
(2x+ 1)x2n−2

[
x(4n+1)/2f2(2n+1)

][(
x2n/2f2n+1

)2
+ x2n−1

]2
=

(2x+ 1)x2n−2J2(2n+1)(
J2
2n+1 + x2n−1

)2 ;

LHS =

m∑
n=1

(2x+ 1)x2n−2J2(2n+1)(
J2
2n+1 + x2n−1

)2 ,

where fn = fn(1/
√
x) and Jn = Jn(x).

Now, let B = 1 +
1

(x2 + 1)2
− 1

f2
2m+1

− 1

f2
2m+3

. Replacing x with 1/
√
x ,and then multiply-

ing the numerator and denominator with x2m+2, we get

B = 1 +
x2

(x+ 1)2
− 1

f2
2m+1

− 1

f2
2m+3

= 1 +
x2

(x+ 1)2
− x2m(

x2m/2f2m+1

)2 − x2m+2[
x(2m+2)/2f2m+3

]2 ;
RHS = 1 +

x2

(x+ 1)2
− x2m

J2
2m+1

− x2m+2

J2
2m+3

,

where fn = fn(1/
√
x) and Jn = Jn(x).

Combining the two sides, we get
∞∑
n=1

(2x+ 1)x2n−1J2(2n+1)(
J2
2n+1 + x2n−1

)2 = x+
x3

(x+ 1)2
− x2m+1

J2
2m+1

− x2m+3

J2
2m+3

. (2.3)

□

Finally, we explore the Jacobsthal counterpart of sum (1.4); it also involves only even-
numbered Fibonacci polynomials.

2.4. Jacobsthal Version of Sum (1.4).

Proof. Let A =
xf2(2n+2)(
f2
2n+2 + 1

)2 . Replacing x with 1/
√
x, and then multiply the numerator and

denominator with x2(2n+1), we then get

A =
f2(2n+2)

√
x
(
f2
2n+2 + 1

)2
=

x2n
[
x(4n+3)/2f2(2n+2)

]{[
x(2n+1)/2f2n+2

]2
+ x2n+1

}2 ;

LHS =

m∑
n=1

x2nJ2(2n+2)(
J2
2n+2 + x2n+1

)2 ,
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where fn = fn(1/
√
x) and Jn = Jn(x).

We now let B =
1

(x2 + 1)2
− 1

f2
2m+3

. Replacing x with 1/
√
x, and then multiplying the

numerator and denominator with x2m+2, we then get

B =
x2

(x+ 1)2
− 1

f2
2m+3

=
x2

(x+ 1)2
− x2m+2[

x(2m+2)/2f2m+3

]2 ;
RHS =

x2

(x+ 1)2
− x2m+2

J2
2m+3

,

where fn = fn(1/
√
x) and Jn = Jn(x).

Equating the two sides, we get

m∑
n=1

x2n+1J2(2n+2)(
J2
2n+2 + x2n+1

)2 =
x3

(x+ 1)2
− x2m+3

J2
2m+3

. (2.4)

□

3. Infinite Jacobsthal Sums

Equations (2.1) through (2.4) yield the following infinite sums:

∞∑
n=1

x2nJ2(2n+1)(
J2
2n+1 − x2n

)2 = x2; (3.1)

∞∑
n=1

(2x+ 1)x2nJ2(2n+2)(
J2
2n+2 − x2n

)2 = x2 +
x4

(2x+ 1)2
; (3.2)

m∑
n=1

(2x+ 1)x2n−1J2(2n+1)(
J2
2n+1 + x2n−1

)2 = x+
x3

(x+ 1)2
; (3.3)

∞∑
n=1

x2n+1J2(2n+2)(
J2
2n+2 + x2n+1

)2 =
x3

(x+ 1)2
, (3.4)

respectively.
It then follows that [5]

∞∑
n=1

F2(2n+1)(
F 2
2n+1 − 1

)2 = 1;

∞∑
n=1

F2(2n+2)(
F 2
2n+2 − 1

)2 =
10

27
;

∞∑
n=1

F2(2n+1)(
F 2
2n+1 + 1

)2 =
5

12
;

∞∑
n=1

F2(2n+2)(
F 2
2n+2 + 1

)2 =
1

4
,

respectively. Consequently, we have
∞∑
n=1

F2n

(F 2
n − 1)2

=
37

27
;

∞∑
n=1

F2n

(F 2
n + 1)2

=
5

3
,

as in [1, 6].
It also follows that
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∞∑
n=1

4nJ2(2n+1)(
J2
2n+2 − 4n

)2 = 4;
∞∑
n=1

4nJ2(2n+2)(
J2
2n+2 − 4n

)2 =
116

125
;

∞∑
n=1

4nJ2(2n+1)(
J2
2n+1 + 22n−1

)2 =
52

45
;

∞∑
n=1

4nJ2(2n+2)(
J2
2n+2 + 22n+1

)2 =
4

9
,

respectively.

4. Alternate Forms

Using the identity j2n − D2J2
n = 4(−x)n [4], we can rewrite the summations (3.1) through

(3.4) as follows, where D =
√
4x+ 1:

∞∑
n=1

D4x2nJ2(2n+1)(
j22n+1 − x2n

)2 = x2;

∞∑
n=1

D4(2x+ 1)x2nJ2(2n+2)[
j22n+2 − (2x+ 1)2x2n

]2 = x2 +
x4

(2x+ 1)2
;

∞∑
n=1

D4(2x+ 1)x2n−1J2(2n+1)[
j22n+1 + (2x+ 1)2x2n−1

]2 = x+
x3

(x+ 1)2
;

∞∑
n=1

D4x2n+1J2(2n+2)(
j22n+2 + x2n+1

)2 =
x3

(x+ 1)2
,

respectively.
In particular, we then have [5]

∞∑
n=1

F2(2n+1)(
L2
2n+1 − 1

)2 =
1

25
;

∞∑
n=1

F2(2n+2)(
L2
2n+2 − 9

)2 =
2

135
;

∞∑
n=1

F2(2n+1)(
L2
2n+1 + 9

)2 =
1

60
;

∞∑
n=1

F2(2n+2)(
L2
2n+2 + 1

)2 =
1

100
,

respectively.
They also yield the following results:

∞∑
n=1

4nJ2(2n+1)(
j22n+2 − 4n

)2 =
4

81
;

∞∑
n=1

4nJ2(2n+2)(
j22n+2 − 25 · 4n

)2 =
116

10, 125
;

∞∑
n=1

4nJ2(2n+1)(
j22n+1 + 25 · 22n−1

)2 =
52

3, 645
;

∞∑
n=1

4nJ2(2n+2)(
j22n+2 + 22n+1

)2 =
4

729
,

respectively.
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