INFINITE SUMS INVOLVING JACOBSTHAL POLYNOMIALS

THOMAS KOSHY

ABSTRACT. We explore the Jacobsthal versions of four finite sums involving Fibonacci poly-
nomials, and then extract their infinite counterparts and some special cases.

1. INTRODUCTION

Eztended gibonacci polynomials z,(x) are defined by the recurrence z,12(x) = a(x)zp4+1(x)+
b(x)zy (), where x is an arbitrary integer variable; a(z), b(x), zo(x), and z1(x) are arbitrary
integer polynomials; and n > 0.

Suppose a(z) = x and b(z) = 1. When zp(z) = 0 and z1(x) = 1, z,(z) = fu(x), the
nth Fibonacci polynomial; and when zo(z) = 2 and z1(z) = z, z,(z) = l,(x), the nth Lucas
polynomial. Clearly, f,(1) = F,, the nth Fibonacci number; and [,,(1) = L, the nth Lucas
number [2, 4].

Suppose a(x) = 1 and b(x) = z. When zp(x) = 0 and z1(x) = 1, z,(z) = Ju(x), the nth
Jacobsthal polynomial; and when zg(z) = 2 and z1(x) = 1, z,(x) = jn(x), the nth Jacobsthal-
Lucas polynomial. Correspondingly, J,, = J,(2) and j, = jn(2) are the nth Jacobsthal and
Jacobsthal-Lucas numbers, respectively. Clearly, J,,(1) = F,, and j,(1) = L,, [4 ]

Gibonacci and Jacobsthal polynomials are linked by the relationships J,, ( ) = (=21 (1/\/x)
and jy,(z) = xn/an(l/\/») 3], and [4, p. 566].

In the interest of brevity, clarity, and convenience, we omit the argument in the functional
notation, when there is no ambiguity; so z, will mean z,(z). In addition, we let g, = f, or

ln, ¢n = Jn(x) or jp(x), A =+vz?2+4,and D = 4z + 1.

1.1. Jacobsthal Limits. We have degJ, = |(n—1)/2] and degj, = [n/2], where deg f
denotes the degree of the polynomial f(x), |z] denotes the floor of the real number x, and
n > 1. The leading coefficient of J,, is n/2 when n is even, and 1 otherwise; and that of j, is
2 when n is even, and n otherwise. Both .J,, and j, end in 1.

Let z be a positive integer. Because deg Jo,,, = m—1, deg J3,, = 2m—2 and J2, = mz*" 2+

2m—2 2m—2 2m 2m—+1
-+ 1. So, —5— < 1 and hence, lim 5— =0= lim ——. Similarly, lim ——— =0.
Som m—oo Jy, m—=00 Jom m=00 Jomt1
Likewise, lim —— =0, where m is odd or even.
m—00 jm

1.2. Fibonacci Polynomial Sums. In [5], we studied the following finite sums involving
Fibonacci polynomials:

S fhewy 11 1)
R R :

n=1 (f22n+1 - 1) z f2m+2

(2% + 27) 1 1 1 1

Z ) 2nJZFZ) = 5 t73 27 2 — 72 (1.2)

= ([ —2?) x (% + 2x) LA
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(2% 4 22) faant) 1 1 1
= 1+ - - ; (1.3)
r; (f2n+l + $2)2 (x2 + 1)2 f22m+1 f22m+3
n=1 (f22n+2 + 1)2 ($2 + 1)2 f22m+3

We will now find their Jacobsthal counterparts and then extract their infinite versions.

2. JACOBSTHAL SUMS

We begin our discourse with sum (1.1) involving odd-numbered Fibonacci polynomials.

2.1. Jacobsthal Version of Sum (1.1).

T fa(ant1) . ) o
m. Replacing x with 1/4/x, and then multiplying the numerator

and denominator with z(4"*t1/2 we get

pUn=D/2 [gln+D/2p o ]

Vi [(1?2"/2f2n+1)2 - 1‘2”]2
" haen) |

(JBpn —a2)”

LHS — i zn 1J2 (2n+1)
— —
n=1 J2n+1 m%)

Proof. Let A =

A:

where f, = fn(1/v/x) and J,, = Jp(x).
1 1

Now, let B = f27 Replace = with 1/4/z, and then multiply the numerator and
2m+2

denominator with z2™*!. This yields

2

1
B = - ——
f22m+2
£2m+1
T [33(2m+1)/2f2m+2]2’
2m+1
RHS = z— 5 —,
Jimi2
where f, = fn(1/v/x) and J,, = Jp(x).
Equating the two sides, we get
22 Jo(o ) £2m+2
Z ("2n2:x2—ﬂ . (2.1)
=t (T3 — 21) 2m+2

The next sum involves even-numbered Fibonacci polynomials.
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2.2. Jacobsthal Version of Sum (1.2).
(® + 22) fan2)
(3 — %)’

ator and denominator with %" yields
V(22 + 1) foania)
(2 f3012 — 1)2 7
(22 + 1)z*" [$(4n+3)/2f2(2n+2)} _
T [(m(2”+1)/2f2n+2)2 - x%} t

(22 + 1) x*™ Iya,
s = & )27 o =
n=1 < (J2n+2 —x2")
where f, = fn(l/\r) and Jn =Jn ( )

1
Now, let B= — + . Replace x with 1/y/x, and then multiply
x? (2% + 21)? f2m+2 f2m+4

the numerator and denominator with 2?™+3. Then,

Proof. Let A = . Replacing x with 1/y/x, and then multiplying the numer-

A

- 23 1 1
P N et B B
3 x2mt3 z2m 3
N Qu+1)2 42 [$(2m+1)/2f2m+2]2 B [17(2m+3)/2f2m+4]2;
RHS = o4 L oM o

e +1)2  J30  Jomis

where f, = fn(1/v/x) and J,, = Jp(x).
Equating the two sides yields

i (22 4 1)2*" Jy(2n12) _ 2 A R
= (3. — :1:2")2 Qe+1)?  Jie  Sima

(2.2)

The next sum contains odd- and even-numbered Fibonacci polynomials.
2.3. Jacobsthal Version of Sum (1.3).
(% + 22) fo(2n41)

2
(f22n+1 + ‘T2)
and denominator with 2227~ This yields

Proof. Let A =

. Replace x with 1/y/x, and then multiply the numerator
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z(2z + 1) faant1)
2
Va (2f3,41 +1)
(21. + 1)x2n72 [$(4n+1)/2f2(2n+1)]
2
|:($2n/2f2n+1)2 + $2n71:|
(22 + 1)552”_2J2(2n+1) '
(J3np1 + $2n_1)2 7
LHS = Zm: (22 + 1)a®"™ 2J2(2n+1)
2 Y
n=1 J2n+1 + 2% 1)
where f, = fn(1/v/x) and J,, = Jp(x).
1

1 1
Now, let B =1+ - - . Replacing x with 1/y/x ,and then multiply-
(.%'2 + 1)2 f22m+1 f22m+3

ing the numerator and denominator with x2m+2, we get
2
x 1 1
B = 1+ — —
(.1‘ + 1>2 f22m+1 f22m+3
. 22 z2m p2m+2 '
= 2 - 2 - 27
(x+1) (22m/2 for11) [2Cmt2/2 fo, ]
2 2m 2m—+2
RHS = 14—~ * v

($ + 1)2 N J22m+1 N J22m+3’
where f, = fn(1/y/z) and J,, = J,(x).

Combining the two sides, we get

21, 4 1) 2n— 1J2(2n+1) $3 x2m+l x2m+3
5 =T+ 5~ =3 — . (2.3)
= (3 + 2 (@+1)?  Jinpr James

L

Finally, we explore the Jacobsthal counterpart of sum (1.4); it also involves only even-
numbered Fibonacci polynomials.

2.4. Jacobsthal Version of Sum (1.4).

x
Proof. Let A = % Replacing = with 1//z, and then multiply the numerator and
(f2n+2 + 1)
denominator with 2227+ we then get
4 — f2§2n+2) i
Va (f3pia +1)

72n [«T(4n+3)/2f2(2n+2)]

[z@n+D/2f,, +2]2 i x2n+1}

€x nJ2(2n+2)
LHS = Z —
(J3ppo +a?mtl)

)
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where f, = fn(1/v/x) and J,, = Jp(x).
1
We now let B = CESIE — f22m+3

numerator and denominator with z2m+2

, we then get

B — x? 1
(‘T + 1)2 f22m+3
B 22 2242
o (z+1)2 [22m+2)/2fy o] 27
22 22m+2
RHS =

(x +1)2 J22m+3’

where f, = fn(1/v/x) and J,, = Jp(x).
Equating the two sides, we get

m 2n+1
T n+ J2(2n+2) - 1,3 m2m+3

1 (V2,0 + :c2”+1)2 (x+1)2 J3 .4

3. INFINITE JACOBSTHAL SUMS

Equations (2.1) through (2.4) yield the following infinite sums:

i 22" Jo(an+1) _ 2
2 ?
n=1 (J22n+1 - x2n)
i (22 + 1)2*" Jy(2n12) 2 at
n=1 (‘]22n+2 - $2n)2 (21. + 1>2’
i (22 + )2 N Jy(ant1) _ ?
n=1 (J22n+l + x2n_1)2 (.’E + 1)2’
2 2Py 0019) 23
D (B +at)® (@D
respectively.
It then follows that [5]
i F2(2n+1) - 1 i F2(2n+2) E
2 ’ 2 ’
nozol (F22n+1 - 1) no:ol (F22n+2 - 1) 2
Z Fyoni1 5 Z Fy@nt2) 1
2 — T S N2 T
n=1 (F22n—|—1 + 1) 12 n=1 (F22n+2 + 1) 4
respectively. Consequently, we have
i Fo, 37 i Fo 5
Y 3 = o5 T 3 = o
n=1 (Fg - 1) 27 n=1 (Fg + 1) 3

as in [1, 6].
It also follows that

. Replacing z with 1/y/z, and then multiplying the
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i 4" Joont1y L i 4" Jo(2n+2) _ 116

~ n=1 J2n+2 —4r ) no:ol J2n+2 4n) 125
Z 4" J2(2n+1) . 52' Z 4" J2(2n+2 B 4
2 — e —  q
n=1 (J22n+1 + 22”71) 45 n=1 J2n+2 + 22n+1) 9

respectively.

4. ALTERNATE FORMS

Using the identity j2 — D?J2 = 4(-x)" [4], we can rewrite the summations (3.1) through
(3.4) as follows, where D = v/4x + 1:

- D4$2nJ2(2n+1)

p o2 Y
n=1 (]2n+1 -z n)
i D42z + 1)z Jo(2n 4.2 _ o2y o
; 2 27
n=1 [.]%n+2 - (21‘ + 1)2x2n] (2:1; + 1)
2, D2z 4+ 1) i1 n 23
= [ + (22 + 1% (w+1)?
0 D4x2n+lj2(2n+2) B x3
; 2 = 27
n=1 (J§n+2 + $2n+1) (l‘ * 1)
respectively.
In particular, we then have [5]
i Byonyy 1 i Fyent2) 2
2 ’ 2 )
Z F2 (2n+1) . i Z F2(2n+2) N 1
= 5 2 - Y
n=1 L2n+1 + 9) 60 n=1 (L%n-‘rQ + 1) 100
respectively.
They also yield the following results:
i 4”J2(2n+1) _ i i 4n J2(2n+2) . 116 )
. 2 ’ 2 )
- n=1 (]2271-1-2 _4n) 81 n=1 32n+2 25-4n ) 10,125
Z 4nJ2(2n+1) . 52 . Z 4" J2 2n+2) o 4
R 2 - ) - =an’
n=1 (]22n+1 + 25- 22n 1) 3’ 645 n=1 j2n+2 + 22n+1) 729
respectively.

5. ACKNOWLEDGMENT

The author thanks the reviewer for a careful reading of the article, and for constructive
suggestions and encouraging words.

AUGUST 2022 199



THE FIBONACCI QUARTERLY

REFERENCES
[1] J. Bartz, Solution to Problem B-1181, The Fibonacci Quarterly, 55.1 (2017), 84-85.
[2] M. Bicknell, A primer for the Fibonacci numbers: Part VII, The Fibonacci Quarterly, 8.4 (1970), 407-420.
[3] A. F. Horadam, Vieta polynomials, The Fibonacci Quarterly, 40.3 (2002), 223-232.
[4] T. Koshy, Fibonacci and Lucas Numbers with Applications, Volume II, Wiley, Hoboken, New Jersey, 2019.
[6] T. Koshy, Infinite sums involving gibonacci polynomials, The Fibonacci Quarterly, 60.2 (2022), 104-110.
(6]

MSC2020: 11B39, 11B83, 11C08

DEPARTMENT OF MATHEMATICS, FRAMINGHAM STATE UNIVERSITY, FRAMINGHAM, MA 01701
Email address: tkoshy@emeriti.framingham.edu

200 VOLUME 60, NUMBER 3



