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Abstract. We prove a linear recurrence relation for a large family of generalized Schreier
sets, which generalizes the Fibonacci recurrence proved by Bird and higher order Fibonacci
recurrence proved by the second author, et al. Furthermore, we show a relationship between
Schreier-type sets and Turán graphs.

1. Introduction

A finite set F ⊂ N is said to be Schreier if minF ≥ |F |, where |F | is the cardinality of F .
The namesake of Schreier sets is Jósef Schreier who introduced these sets in the construction
of a Banach space solving a problem of Banach and Saks [7]. In a blog post [1], Alistair Bird
showed that the Fibonacci sequence appears if we count Schreier sets under certain conditions.
In particular, if we set Sn := {F ⊂ N : minF ≥ |F | and maxF = n}, then |S1| = 1, |S2| = 1,
and |Sn+2| = |Sn+1| + |Sn| for all n ≥ 1. There has been research on generalizing Bird’s
result to higher order recurrences (see [2, Theorems 4, 5, 6] and [3, Theorems 1.1, 1.3]) and
on investigating the relationship between Schreier-type sets and partial sums of the Fibonacci
and Gibonacci sequences [4, 5].

The first main result of this paper proves a recurrence relation from a large family of
generalized Schreier sets. For (p, q, n) ∈ N3, we define

Sp/q
n = {F ⊂ N : qminF ≥ p|F | and maxF = n}.

Observe that S
p/1
n is a special case considered in [3, Theorem 1.1].

Theorem 1.1. Let (p, q) ∈ N2. For n ∈ N with n ≥ p+ q, we have

|Sp/q
n | =

q∑
k=1

(−1)k+1

(
q

k

)
|Sp/q

n−k|+ |Sp/q
n−(p+q)|. (1.1)

If p = q = 1, we have the Fibonacci recurrence stated above and proved by Bird. If q = 1
and p ∈ N, we have [3, Theorem 1.1]

|Sp
n| = |Sp

n−1|+ |Sp
n−(p+1)|.

The cases q ∈ N and p = 1 are new and, in the authors’ opinion, unexpected and elegant.
We also note that p/q need not be in simplified form. For different forms p/q, (1.1) gives
equivalent recurrences.1

Our second result of this short note connects Schreier-type sets with Turán graphs. A Turán
graph, denoted by T (n, p), is the n-vertex complete p-partite graph whose parts differ in size
by at most 1. That is, T (n, p) has n vertices separated into p subsets, with sizes as equal
as possible, and two vertices are connected by an edge if and only if they belong to different

1This independence of the recurrence relation has the same spirit as [3, Remark 1.5], where the depth of the
recurrence is independent of one of the parameters.
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subsets [8]. With an abuse of notation, we also write T (n, p) to mean the number of edges
of the corresponding graph. For each fixed p ≥ 2, the sequence (T (n, p))∞n=1 is available in
OEIS [6] (for example, see https://oeis.org/A002620, https://oeis.org/A000212, https:
//oeis.org/A033436, and https://oeis.org/A033437.)

Define
Sr(n, p) = |{F ⊂ [n] : pminF ≥ |F | and F is an interval}| ,

where [n] = {1, 2, . . . , n}. Notice that in contrast to the definition of S
p/q
n , the definition of

Sr(n, p) does not require maxF = n.

Theorem 1.2. For all (n, p) ∈ N2 with n ≥ p, we have

Sr(n, p) = T (n+ 1, p+ 1).

2. Proof of Theorem 1.1

The main tool is the following lemma.

Lemma 2.1. Fix (p, q) ∈ N2, n ≥ p+ q, and let G ⊂ {n− q, . . . n− 1} be nonempty. Define

AG = {F ∈ Sp/q
n : G ∩ F = ∅}.

Then, |AG| = |Sp/q
n−|G||.

Proof. Fix G and let ψG : {1, . . . , n}\G→ {1, . . . , n−|G|} be the unique increasing bijection.

Define ϕG : AG → S
p/q
n−|G| by

ϕG(F ) = {ψG(i) : i ∈ F}.
Showing that ϕG is a bijection is straightforward but technical.

First, we show that ϕG is well-defined; that is, the range of ϕG is S
p/q
n−|G|. Let F ∈ AG.

By definition, n = maxF and so, n − |G| = maxϕG(F ). Note that p|ϕG(F )| = p|F |. If
minF < minG, then minϕG(F ) = minF , and in this case,

p|ϕG(F )| = p|F | ≤ qminF = qminϕG(F ),

as desired. Otherwise, minF > minG. In this case, minϕG(F ) ≥ n − q and |F | ≤ q because
G ⊂ {n− 1, . . . , n− q}, F ∩G = ∅, and G is nonempty. Because n ≥ p+ q, we have

p|ϕG(F )| = p|F | ≤ pq ≤ q(n− q) ≤ qminϕG(F ).

This is the desired result.
The injectivity of ϕG follows immediately from the definition of ψG and ϕG. It remains to

show that ϕG is surjective. Fix H ∈ S
p/q
n−|G|. Define

F = {ψ−1
G (i) : i ∈ H}.

By definition, ϕG(F ) = H and F ∩G = ∅. Note that maxF = n and

p|F | = p|H| ≤ qminH = qψG(minF ) ≤ qminF.

This finishes the proof of the lemma. □

Proof of Theorem 1.1. Using notation from Lemma 2.1, the set S
p/q
n \ ∪q

i=1A{n−i} is

A := {F ∈ Sp/q
n : {n− q, . . . , n− 1} ⊂ F}.

We claim that |A| = |Sp/q
n−(p+q)|. The bijection ϕ : A→ S

p/q
n−(p+q) is defined by

ϕ(F ) = (F \ {n− q + 1, . . . , n})− p.
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Note first that n− q = max(F \{n− q+1, . . . , n}) and so n− (p+ q) = maxϕ(F ). In addition
we have

p|ϕ(F )| = p(|F | − q) ≤ qminF − pq = q(minF − p) = qminϕ(F ).

Therefore, ϕ(F ) ∈ S
p/q
n−(p+q). To see that ϕ is injective is trivial. We show that ϕ is surjective.

Let H ∈ S
p/q
n−(p+q) and define F = (H + p) ∪ {n− q + 1, . . . , n}. Then, ϕ(F ) = H and F ∈ A,

because
p|F | = p(|H|+ q) ≤ q(minH + p) = qminF.

Let Gi = {G ⊂ {n−q, . . . , n−1} : |G| = i}. By the inclusion-exclusion principle and Lemma
2.1, we obtain

|Sp/q
n | = |A|+

∑
G∈G1

|AG| −
∑
G∈G2

|AG|+
∑
G∈G3

|AG| − · · ·+ (−1)q+1
∑
G∈Gq

|AG|

= |Sp/q
n−(p+q)|+

(
q

1

)
|Sp/q

n−1| −
(
q

2

)
|Sp/q

n−2|+ · · ·+ (−1)q+1

(
q

q

)
|Sp/q

n−q|.
(2.1)

This is the desired result. □

3. Proof of Theorem 1.2

The following is well-known and can, for example, be found on the Wikipedia page for Turán
graphs.

Lemma 3.1. For all (n, p) ∈ N2 with n > p, it holds that

T (n, p) =
p− 1

2p
(n2 − q2) +

(
q

2

)
, (3.1)

where q := n− p⌊n/p⌋.

Lemma 3.2. We use a ∧ b to indicate min{a, b}. For all (n, p) ∈ N2, it holds that

Sr(n, p) =

n∑
m=1

pm ∧ (n+ 1−m) (3.2)

=


1, if n = 1;(
n+1
2

)
, if p > n ≥ 2;

1
2 (p(∆ + 1)∆ + (n−∆+ 1)(n−∆)) , if p ≤ n;

(3.3)

where ∆ = ⌊(n+ 1)/(p+ 1)⌋.

Proof. We build a set F ⊂ [n] that satisfies: 1) pminF ≥ |F | and 2) F is an interval. We
denote the smallest element of F by m, which can be chosen from 1 to n. Once m is fixed,
we choose c := |F |, which must satisfy c ≤ pm and c +m − 1 ≤ n. The latter condition is
to guarantee that maxF ≤ n. Once m and c are chosen, then F is unique because it is an
interval. We obtain the formula for Sr(n, p).

Sr(n, p) =

n∑
m=1

pm∧(n+1−m)∑
c=1

1 =
n∑

m=1

pm ∧ (n+ 1−m),

which is (3.2).
We now derive (3.3):

(1) By (3.2), Sr(1, p) = p ∧ 1 = 1.
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(2) When p > n ≥ 2, we have pm ∧ (n+ 1−m) = n+ 1−m and so,

Sr(n, p) =
n∑

m=1

(n+ 1−m) =

(
n+ 1

2

)
.

(3) When p ≤ n, we have

n∑
m=1

pm ∧ (n+ 1−m) =
∆∑

m=1

pm+
n+1∑

m=∆+1

(n+ 1−m)

=
1

2
p(1 + ∆)∆ +

1

2
(n−∆)(n−∆+ 1).

This proves (3.3). □

Proof of Theorem 1.2. We prove Sr(n, p) = T (n+ 1, p+ 1) for all (n, p) ∈ N2 with n ≥ p. If

n = p, then by definitions, T (n+1, p+1) =
(
n+1
2

)
, and Sr(n, p) = n+(n−1)+ · · ·+1 =

(
n+1
2

)
.

If n > p, by Lemmas 3.1 and 3.2, we want to show that

p((n+ 1)2 − q2)

2(p+ 1)
+

(
q

2

)
=

1

2
(p(∆ + 1)∆ + (n−∆+ 1)(n−∆)) ,

which is equivalent to

p∆(2n+ 2− (p+ 1)∆) + (n+ 1− (p+ 1)∆)(n− (p+ 1)∆)

= p∆(∆+ 1) + (n−∆+ 1)(n−∆). (3.4)

Simple algebraic manipulation of the three variables p, n, and ∆ confirms that two sides of
(3.4) are equal. This completes our proof. □

It would be interesting to see a proof of Theorem 1.2 that gives an explicit bijection between
the edges of T (n+ 1, p+ 1) and the elements of the set

{F ⊂ [n] : pminF ≥ |F | and F is an interval} .
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