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Abstract. We explore sums involving gibonacci polynomials, and deduce the Pell versions
for two of them.

1. Introduction

Extended gibonacci polynomials zn(x) are defined by the recurrence zn+2(x) = a(x)zn+1(x)+
b(x)zn(x), where x is an arbitrary integer variable; a(x), b(x), z0(x), and z1(x) are arbitrary
integer polynomials; and n ≥ 0.

Suppose a(x) = x and b(x) = 1. When z0(x) = 0 and z1(x) = 1, zn(x) = fn(x), the
nth Fibonacci polynomial ; and when z0(x) = 2 and z1(x) = x, zn(x) = ln(x), the nth Lucas
polynomial. They can also be defined by the Binet-like formulas. Clearly, fn(1) = Fn, the nth
Fibonacci number; and ln(1) = Ln, the nth Lucas number [1, 3].

Pell polynomials pn(x) and Pell-Lucas polynomials qn(x) are defined by pn(x) = fn(2x) and
qn(x) = ln(2x), respectively [3].

In the interest of brevity, clarity, and convenience, we omit the argument in the functional
notation, when there is no ambiguity; so zn will mean zn(x). In addition, we let gn = fn or

ln, bn = pn or qn, ∆ =
√
x2 + 4, and E =

√
x2 + 1.

It follows by the Binet-like formulas that lim
n→∞

gn+k

gn
= αk(x), where 2α(x) = x+∆.

1.1. Fundamental Gibonacci Identities. Gibonacci polynomials satisfy the following prop-
erties [3]:

fn+k − fn−k =

{
fnlk, if k is odd;

fkln, otherwise;
(1)

ln+k − ln−k =

{
lkln, if k is odd;

∆2fkfn, otherwise;
(2)

l2n −∆2f2
n = 4(−1)n; (3)

gn+kgn−k − g2n =

{
(−1)n+k+1f2

k , if gn = fn;

(−1)n+k∆2f2
k , otherwise.

(4)

[Note: Identity (2) gives the correct version of Exercise 40 on page 57 in [3].]
Using the gibonacci recurrence and identity (4), we can establish that

gn+2gn−3 − gn+1gn−2 =

{
(−1)nf4, if gn = fn;

(−1)n+1∆2f4, otherwise;
(5)

gn+2gn−2 − gn+1gn−1 =

{
(−1)n+1f3, if gn = fn;

(−1)n∆2f3, otherwise.
(6)

Identities (5) and (6) with gn = fn and x = 1 appear in [2, 10].
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It also follows from identity (4) that [3, 4]

fn+2fn+1fn−1fn−2 = f4
n − (−1)n(x2 − 1)f2

n − x2. (7)

This is the polynomial version of the Gelin-Cesàro identity [4, 8]

Fn+2Fn+1Fn−1Fn−2 = F 4
n − 1.

The Lucas counterpart of identity (7) is [3, 4]

ln+2ln+1ln−1ln−2 = l4n + (−1)n(x2 − 1)∆2l2n −∆4x2. (8)

This implies

Ln+2Ln+1Ln−1Ln−2 = L4
n − 25.

These properties play a pivotal role in our discourse.

2. Gibonacci Polynomial Sums

With the above background, we begin our explorations with three lemmas.

Lemma 1. Let gn = fn or ln, and k be a positive integer. Then,

∞∑
n=k+1
k≥1

(
1

gngn−k
− 1

gn+kgn

)
=

k∑
r=1

1

gk+rgr
. (9)

Proof. Using recursion [3], we will first establish that

m∑
n=k+1
k≥1

(
1

gngn−k
− 1

gn+kgn

)
=

k∑
r=1

1

gk+rgr
−

k∑
r=1

1

gm+rgm+r−k
.

To this end, we let Am = LHS and Bm = RHS. Then,

Bm −Bm−1 =
k∑

r=1

(
1

gm−1+rgm−1+r−k
− 1

gm+rgm+r−k

)
=

1

gmgm−k
− 1

gm+kgm
= Am −Am−1.

Recursively, this yields

Am −Bm = Am−1 −Bm−1 = · · · = Ak+1 −Bk+1

=

(
1

gk+1g1
− 1

g2k+1gk+1

)
−

(
k∑

r=1

1

gk+rgr
−

k∑
r=1

1

gk+r+1gr+1

)
= 0.

Thus, Am = Bm, as desired.

Because lim
m→∞

1

gm
= 0, the given result now follows. □
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Consequences: Lemma 1 has interesting consequences, depending on the value of gn and the
parity of k. First, notice that

∞∑
n=k+1
k≥1

gn+k − gn−k

gn+kgngn−k
=

∞∑
n=k+1
k≥1

(
1

gngn−k
− 1

gn+kgn

)

=

k∑
r=1

1

gk+rgr
. (10)

Case 1. Suppose gn = fn. If k is odd, then by equation (1), this yields

∞∑
n=k+1
k≥1, odd

lk
fn+kfn−k

=

k∑
r=1

1

fk+rfr
. (11)

Consequently,
∞∑
n=3

1

fn+1fn−1
=

1

f2
2

− 1

f3
.

On the other hand, if k is even, we get

∞∑
n=k+1

k≥2, even

fkln
fn+kfnfn−k

=
k∑

r=1

1

fk+rfr
. (12)

Case 2. Suppose gn = ln. If k is odd, then by equations (2) and (10), we get

∞∑
n=k+1
k≥1, odd

lk
ln+kln−k

=

k∑
r=1

1

lk+rlr
; (13)

otherwise, we get
∞∑

n=k+1
k≥2, even

∆2fkfn
ln+klnln−k

=

k∑
r=1

1

lk+rlr
. (14)

With identity (4), equations (11) and (13) yield

∞∑
n=k+1
k≥1, odd

lk
f2
n + (−1)nf2

k

=

k∑
r=1

1

fk+rfr
; (15)

∞∑
n=k+1
k≥1, odd

lk
l2n − (−1)n∆2f2

k

=

k∑
r=1

1

lk+rlr
,

respectively.
Consequently, we have

∞∑
n=2

1

F 2
n + (−1)n

= 1;

∞∑
n=2

1

L2
n − 5(−1)n

=
1

3
.
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With the sum
∞∑
n=0

x

f2
2n + 1

= α(x) [4], formula (15) yields

∞∑
n=1

x

f2
2n + 1

+
∞∑
n=2

x

f2
2n−1 − 1

=
∞∑
n=2

x

f2
n + (−1)n

=
1

x
;

∞∑
n=2

x

f2
2n−1 − 1

=
1

x
− [α(x)− x]

=
x2 − xα(x) + 1

x
.

This implies
∞∑
n=2

1

F 2
2n−1 − 1

=
3−

√
5

2
.

It follows from equations (12) and (14) that
∞∑
n=3

Ln

Fn+2FnFn−2
=

5

6
;

∞∑
n=3

Fn

Ln+2LnLn−2
=

5

84
,

respectively.
Using identity (4), we can rewrite equations (12) and (14) in a different way:

∞∑
n=3

xln
f3
n − (−1)nx2fn

=
1

f3f1
+

1

f4f2
;

∞∑
n=3

xfn
l3n + (−1)n∆2x2ln

=
1

∆2

(
1

l311
+

1

l4l2

)
,

respectively.
Consequently, we have

∞∑
n=3

xln
fn+2fnfn−2

=
1

f3f1
+

1

f4f2
;

∞∑
n=3

Ln

F 3
n − (−1)nFn

=
5

6
;

∞∑
n=3

xfn
ln+2lnln−2

=
1

∆2

(
1

l3l1
+

1

l4l2

)
;

∞∑
n=3

Fn

L3
n + 5(−1)nLn

=
5

84
.

The next lemma explores an application of identity (5).

Lemma 2. Let gn = fn or ln. Then,
∞∑
n=3

(−1)n
(
gn−3

gn−2
− gn+1

gn+2

)
= −g0

g1
+

g1
g2

− g2
g3

+
g3
g4

. (16)

Proof. Let R = RHS. We will first establish that
m∑

n=3

(−1)n
(
gn−3

gn−2
− gn+1

gn+2

)
= R+ (−1)m

(
gm−2

gm−1
− gm−1

gm
+

gm
gm+1

− gm+1

gm+2

)
. (17)

Clearly, the LHS is a telescoping sum. So, when m is odd, we get LHS = R− Sm, where

Sm =
gm−2

gm−1
− gm−1

gm
+

gm
gm+1

− gm+1

gm+2
;
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otherwise, we get RHS = R+ Sm.
Combining the two cases, we get formula (17), as expected.

Because lim
n→∞

gn
gn+1

=
1

α(x)
, it follows that lim

n→∞
Sm = 0. Consequently, formula (17) yields

the given result, as desired. □

In particular, we have

∞∑
n=3

(−1)n
(
Fn−3

Fn−2
− Fn+1

Fn+2

)
=

7

6
;

∞∑
n=3

(−1)n
(
Ln−3

Ln−2
− Ln+1

Ln+2

)
= −155

84
.

This lemma yields has a delightful byproduct.

Lemma 3. Let gn = fn or ln, and Sg3 =
g0
g1

− g1
g2

+
g2
g3

− g3
g4

. Then,

∞∑
n=3

1

gn+2gn−2
=

{
− 1
f4
Sf3 , if gn = fn;

1
∆2f4

Sl3 , otherwise.
(18)

Proof. We will establish this using identity (5) and Lemma 2.

Case 1. Let gn = fn. Then,

∞∑
n=3

1

fn+2fn−2
=

1

f4

∞∑
n=3

(−1)n fn+2fn−3 − fn+1fn−2

fn+2fn−2

=
1

f4

∞∑
n=3

(−1)n
(
fn−3

fn−2
− fn+1

fn+2

)
= − 1

f4

(
f0
f1

− f1
f2

+
f2
f3

− f3
f4

)
= − 1

f4
Sf3 .

Case 2. Let gn = ln. Then,

∞∑
n=3

1

ln+2ln−2
= − 1

∆2f4

∞∑
n=3

(−1)n ln+2ln−3 − ln+1ln−2

ln+2ln−2

= − 1

∆2f4

∞∑
n=3

(−1)n
(
ln−3

ln−2
− ln+1

ln+2

)
=

1

∆2f4

(
l0
l1

− l1
l2

+
l2
l3

− l3
l4

)
=

1

∆2f4
Sl3 .

Combining the two cases, we get the desired result. □

It follows from equation (18) that
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∞∑
n=3

1

f2
n − (−1)nx2

= − 1

f4
Sf3 ;

∞∑
n=3

1

F 2
n − (−1)n

=
7

18
.

∞∑
n=2

1

F 2
2n − 1

+
∞∑
n=2

1

F 2
2n−1 + 1

=
7

18
;

∞∑
n=3

1

l2n + (−1)n∆2x2
=

1

∆2f4
Sl3

∞∑
n=3

1

L2
n + 5(−1)n

=
31

252
;

∞∑
n=2

1

L2
2n + 5

+

∞∑
n=2

1

L2
2n−1 − 5

=
31

252
.

The lemmas, coupled with identities (6) through (8), yield the next result.

Theorem 1.
∞∑
n=3

(−1)n

f4
n − (−1)n(x2 − 1)f2

n − x2
= − 1

f3f2
4

. (19)

Proof. With identities (6) through (8) and the lemmas, we get

LHS =
∞∑
n=3

(−1)n

fn+2fn+1fn−1fn−2

= − 1

f3

∞∑
n=3

fn+2fn−2 − fn+1fn−1

fn+2fn+1fn−1fn−2

= − 1

f3

∞∑
n=3

(
1

fn+1fn−1
− 1

fn+2fn−2

)
= − 1

f3

[(
1

f2
2

− 1

f3

)
+

1

f4

(
f0
f1

− f1
f2

+
f2
f3

− f3
f4

)]
= − 1

f3f2
4

,

as desired. □

Using the identity l2n −∆2f2
n = 4(−1)n [3], we can rewrite equation (17) in a different way:

∞∑
n=3

(−1)n∆4

l4n − (−1)n[(x2 − 1)∆2 + 8]l2n − (x4 + 4)∆2 + 16
= − 1

f3f2
4

. (20)

It follows from equations (19) and (20) that [2, 5]

∞∑
n=3

(−1)n

F 4
n − 1

= − 1

18
; (21)

∞∑
n=3

(−1)n

L4
n − 8(−1)nL2

n − 9
= − 1

450
, (22)

respectively.
Equation (21), coupled with the equation [4, 6, 8]

∞∑
n=3

1

F 4
n − 1

=
35

18
− 5

√
5

6
,
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yields

−
∞∑
n=2

1

F 4
2n−1 − 1

+
∞∑
n=2

1

F 4
2n − 1

= − 1

18
;

∞∑
n=2

1

F 4
2n−1 − 1

+
∞∑
n=2

1

F 4
2n − 1

=
35

18
− 5

√
5

6
,

respectively. It follows from these two equations that
∞∑
n=2

1

F 4
2n − 1

=
17

18
− 5

√
5

12
;

∞∑
n=2

1

F 4
2n−1 − 1

= 1− 5
√
5

12
.

Equation (22) implies

∞∑
n=2

1

L4
2n−1 + 8L2

2n−1 − 9
−

∞∑
n=2

1

L4
2n − 8L2

2n − 9
=

1

450
.

2.1. Lucas Versions. We now explore the Lucas version of Theorem 1 and its consequences.

Theorem 2.
∞∑
n=3

(−1)n

l4n + (−1)n(x2 − 1)∆2l2n −∆4x2
= − 1

f4l4l3l2
. (23)

Proof. By equation (13) and Lemma 3, we have

∞∑
n=3

1

ln+1ln−1
=

1

l2l21
− 1

l3l1
;

∞∑
n=3

1

ln+2ln−2
=

1

∆2f4

(
l0
l1

− l1
l2

+
l2
l3

− l3
l4

)
,

respectively.
Using identities (6) and (8), we then get

∞∑
n=3

(−1)n

l4n − (−1)n(x2 − 1)∆2l2n −∆4x2
=

1

∆2f3

∞∑
n=3

ln+2ln−2 − ln+1ln−1

ln+2ln+1ln−1ln−2

=
1

∆2f3

∞∑
n=3

(
1

ln+1ln−1
− 1

ln+2ln−2

)
=

1

∆2f3

[(
1

l2l21
− 1

l3l1

)
− 1

∆2f4

(
l0
l1

− l1
l2

+
l2
l3

− l3
l4

)]
= − 1

f4l4l3l2
,

as desired. □

In particular, we have
∞∑
n=3

(−1)n

L4
n − 25

= − 1

252
;

∞∑
n=1

1

L4
2n − 25

−
∞∑
n=2

1

L4
2n−1 − 25

=
7

504
. (24)

350 VOLUME 60, NUMBER 4



SUMS INVOLVING GIBONACCI POLYNOMIALS

Equation (24), coupled with the result [4, 7, 9]
∞∑
n=3

1

L4
n − 25

=
5

63
−

√
5

30

yields
∞∑
n=1

1

L4
2n − 25

=
1

18
−

√
5

60
;

∞∑
n=2

1

L4
2n−1 − 25

=
1

24
−

√
5

60
.

With identity (3), we can rewrite equation (23) as
∞∑
n=3

(−1)n

∆4f4
n + (−1)n∆2[(x2 − 1)∆2 + 2]f2

n −∆2(x4 + 3x2 + 1)
= − 1

f4l4l3l2
.

This yields
∞∑
n=3

(−1)n

5F 4
n + 2(−1)nF 2

n − 5
= − 5

252
.

3. Pell Implications

The Pell versions of sums involving gibonacci polynomials can be obtained using the rela-
tionship bn(x) = gn(2x). For example, those of equations (19) and (23) are:

∞∑
n=3

(−1)n

p4n − (−1)n(4x2 − 1)p2n − 4x2
= − 1

p3p24
;

∞∑
n=3

(−1)n

q4n + 4(−1)n(4x2 − 1)E2q2n − 64x2E4
= − 1

p4q4q3q2
,

respectively. In the interest of brevity, we omit the others.
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