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Abstract. Carmichael showed for sufficiently large L, FL has at least one prime divisor p
such that p ≡ ±1(modL). For a given FL, we will show that a product of distinct odd prime
divisors with this congruence condition is a Fibonacci pseudoprime. As a byproduct, this
result leads to a proof of the presumably known result that if L is prime and FL is com-
posite, then FL is a Fibonacci pseudoprime. Such pseudoprimes can be used in an attempt,
here unsuccessful, to find an example of a Baillie-PSW pseudoprime, i.e., an odd Fibonacci
pseudoprime n such that n ≡ ±2(mod 5) and is also a base-2 pseudoprime.

1. Introduction

For all odd prime numbers p we have p|Fp−( 5
p
), where (5p) is the Legendre symbol. This

is well-known and can be proved using the lemmas in Section 2. An odd composite integer
n is said to be a Fibonacci pseudoprime if n|Fn−( 5

n
), where ( 5n) is the Jacobi symbol, which

generalizes the Legendre symbol. Here are the six smallest Fibonacci pseudoprimes, their
prime factorizations, and the smallest positive Fibonacci number that each divides: 323 =
17 · 19|F18, 377 = 13 · 29|F14, 1891 = 31 · 61|F30, 3827 = 43 · 89|F44, 4181 = 37 · 113|F19, and
5777 = 53·109|F27. For each of the six smallest Fibonacci pseudoprimes n, if FL is the smallest
positive Fibonacci number for which n is a divisor (i.e., L = ordf (n)), then each prime divisor
pi of n satisfies pi ≡ ±1(modL). This is not always the case. The seventh smallest Fibonacci
pseudoprime is 6601 = 7·23·41|F120 and none of its prime divisors pi satisfy pi ≡ ±1(mod 120).
Nevertheless, we can use the above observation to create many Fibonacci pseudoprimes. We
construct them using the theorem below.

Theorem 1.1. Let L be a positive integer. For some k ≥ 2, let p1, . . ., pk be distinct odd
primes dividing FL with the property that for each i we have pi ≡ ±1(modL), assuming at

least two such primes exist. Then, P :=
∏k

i=1 pi is a Fibonacci pseudoprime.

It seems common for prime divisors pi of FL to satisfy pi ≡ ±1(modL). For example, four
of the prime divisors of F100 are 101, 401, 3001, and 570601 and F7560 has 30 prime divisors pi
that satisfy pi ≡ ±1(mod 7560). It follows from Proposition 2.10 that because 5|7560, all prime
divisors pi of F7560 that satisfy pi ≡ ±1(mod 7560) satisfy pi ≡ 1(mod 7560). All Fibonacci
numbers up to F1408 have been factored completely and complete or partial factorizations of
FL for 1409 ≤ L ≤ 9999 have been given (see [1]). For 1 ≤ L ≤ 1408, the average number of
odd prime divisors pi of FL that satisfy pi ≡ ±1(modL) is 7279/1408 ≈ 5.17.

Applying Theorem 1.1 to the fully and partially factored Fibonacci numbers FL for 1 ≤
L ≤ 9999, we can create approximately 231 Fibonacci pseudoprimes. However, they will not
all be distinct. For example, F19 = 4181 = 37 · 113. Not only do both prime divisors pi satisfy
pi ≡ ±1(mod 19), they both satisfy pi ≡ ±1(mod 38). So the Fibonacci pseudoprime 4181 will
appear for both L = 19 and L = 38. If L is odd and a Fibonacci pseudoprime can be created
from odd prime divisors pi of FL that satisfy pi ≡ ±1(modL), the same Fibonacci pseudoprime

320 VOLUME 60, NUMBER 4



FIBONACCI PSEUDOPRIMES

will arise from prime divisors of F2L, as odd prime divisors pi that satisfy pi ≡ ±1(modL)
also satisfy pi ≡ ±1(mod 2L). After removing repetitions, we are still left with approximately
231 distinct Fibonacci pseudoprimes.

One reason for the appearance of such prime divisors of Fibonacci numbers comes from [3],
Theorem XXVI. Carmichael proved that for every L ̸= 1, 2, 5, 6, 12, there is a prime divisor
p ≡ ±1(modL) of FL, which divides no FK for K < L. We leave it to the analytic number
theorists to study the expected number of prime divisors pi of FL that satisfy pi ≡ ±1(modL)
as a function of L.

In Section 2, we prove Theorem 1.1. This theorem provides a new way of creating Fibonacci
pseudoprimes and thus can be added to the list of methods for constructing them found in [4],
[6], [10], [13], [18], and [19]. We can use this theorem to prove Proposition 2.9, which states
that if L is prime and FL is composite, then FL is a Fibonacci pseudoprime. The authors are
not aware of a reference for this result. Its similarity to Emma Lehmer’s result (see [10]) that
for L > 5 and prime, F2L is a Fibonacci pseudoprime leads us to believe that the result is
known.

There is much interest in finding an integer that is an odd Fibonacci pseudoprime n such that
n ≡ ±2(mod 5), and is simultaneously a base-2 pseudoprime. These are sometimes referred
to as Baillie-PSW pseudoprimes. There is a heuristic argument that an example exists (see
[4], which refers to ideas in [14]). However, no example is known and there is a $620 prize
(payable by Carl Pomerance, Sam Wagstaff, and the Number Theory Foundation, see [15]) for
those who find an example, or prove that none exists. In Section 3, we discuss how we used
Theorem 1.1 and Proposition 2.9 in an unsuccessful attempt at finding an example.

2. Proof of the Theorem

We will use the following five well-known lemmas. Lemmas 2.1 and 2.2 are proven in [11],
pp. 296-297.

Lemma 2.1. Let p ≡ ±1(mod 5) be prime. Then, p|Fp−1.

Lemma 2.2. Let p ≡ ±2(mod 5) be prime. Then, p|Fp+1.

Lemma 2.3 is proven in [9], p. 35.

Lemma 2.3. Let m,n be positive integers. If m|n, then Fm|Fn.

Though we cannot find the original source for Lemma 2.4, there is a proof in [17], p. 64.

Lemma 2.4. Let m,n be positive integers. Then, gcd(Fm, Fn) = Fgcd(m,n).

Lemma 2.5 follows from the definition of the Legendre symbol and Gauss’ law of quadratic
reciprocity.

Lemma 2.5. Let p be prime. If p ≡ ±1(mod 5), then (p5) = 1. If p ≡ ±2(mod 5), then

(p5) = −1. If p is odd, then (5p) = (p5).

Lemma 2.6. Let L be a positive integer and p be prime with p|FL. Then, gcd(L, p− (p5)) > 2.

Proof. The statement is true for p = 5 because 5|L if and only if 5|FL. Let p ̸= 5 be prime.
From Lemmas 2.1, 2.2, and 2.5, we have p|Fp−( p

5
). So, p|gcd(FL, Fp−( p

5
)). From Lemma 2.4, we

have p|Fgcd(L,p−( p
5
)). Because no prime divides Fm for m ≤ 2, we have gcd(L, p− (p5)) > 2. □

Lemma 2.7. Let L be a positive integer and p be prime with p|FL. Assume p ≡ ±1(modL).
Then, p ≡ (p5)(modL).
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Proof. Let p ≡ ϵ(modL), where ϵ ∈ {−1, 1}. We have p = kL+ ϵ for some k ∈ Z. Thus, from
Lemma 2.6, we have 2 < gcd(L, p − (p5)) = gcd(L, kL + ϵ − (p5)) = gcd(L, ϵ − (p5)). Because
|ϵ− (p5)| ≤ 2, we must have ϵ− (p5) = 0. □

In other words, consider the prime divisors pi of FL that satisfy pi ≡ ±1(modL). Those
pi that satisfy pi ≡ 1(modL) are those for which pi ≡ ±1(mod 5). Those that satisfy pi ≡
−1(modL) are those for which pi ≡ ±2(mod 5). We are now ready to prove Theorem 1.1.

Proof. For each i, we have pi|FL and pi ≡ ±1(modL). Note that it is impossible for 5|FL and
5 ≡ ±1(modL). So from Lemmas 2.5 and 2.7, for each i we have pi ≡ ( 5

pi
)(modL). Taking the

product of both sides over all i gives P ≡ ( 5
P )(modL). Thus, L|(P − ( 5

P )). From Lemma 2.3
we have FL|FP−( 5

P
). Because P |FL, we get P |FP−( 5

P
). □

Note that the construction described in Theorem 1.1 is related to, though not the same as,
the construction in [4] of Fibonacci pseudoprimes.

Corollary 2.8. Let L be an odd prime and p be a prime with p|FL. Then, p ≡ (p5)(modL).

Proof. From Lemma 2.6, because L is prime, we have L|p− (p5). □

As explained in the introduction, we assume the following proposition is known. It can
be proved independently of Theorem 1.1 and Corollary 2.8 using i) Lemma 2.3, ii) for L an
odd prime, we have FL ≡ ( 5L)(modL) (see [17], p. 60), and iii) for L odd, we have L ≡
±1(mod 5) implies FL ≡ ±1(mod 5) and L ≡ ±2(mod 5) implies FL ≡ ±2(mod 5). We leave
the construction of that proof to the reader.

Proposition 2.9. Let L be prime and FL be composite. Then, FL is a Fibonacci pseudoprime.

Proof. This result follows immediately from Theorem 1.1 and Corollary 2.8. □

Proposition 2.10. Let L be a positive integer with 5|L. Let p be an odd prime with p|FL and
p ≡ ±1(modL). Then, p ≡ 1(modL).

Proof. From Lemma 2.7, we have p ≡ (p5)(modL). Because 5|L and p ≡ ±1(modL), we have
p ≡ ±1(mod 5). The result follows from Lemma 2.5. □

3. The Search for a Baillie-PSW Pseudoprime

There is a $620 prize for a Baillie-PSW pseudoprime or a proof that none exists. A Baillie-
PSW pseudoprime is an odd Fibonacci pseudoprime n that satisfies n ≡ ±2(mod 5) and is also
a base-2 pseudoprime. This problem was originally posed in [16]. Jan Feitsma and William
Galway (see [7]) have computed all base-2 pseudoprimes up to 264. Sam Wagstaff has checked
all of those to determine if there were any $620 winners and there were none (see [15]). The
search is also described in [2], [4], [5], [12], [14], [16], and [19].

Our first search was inspired by Theorem 1.1. Fix a Fibonacci number FL. For j = −1, 1
we let Sj be the set of odd prime divisors of FL that are congruent to j modulo L. Recall,
from Lemma 2.7, that the primes pi in S−1 satisfy pi ≡ ±2(mod 5) and those in S1 satisfy
pi ≡ ±1(mod 5). When possible, we created products of at least two distinct primes from
S−1 ∪ S1 such that the product contains an odd number of primes from S−1. That way the
product P satisfies P ≡ ±2(mod 5). For example, for F258 we have |S−1| = 5 and |S1| = 4.

Thus, we can create
(
5
1

)
· (24 − 1) +

(
5
3

)
· 24 +

(
5
5

)
· 24 = 251 different products, each of which

is an odd Fibonacci pseudoprime P that satisfies P ≡ ±2(mod 5). From Proposition 2.10, if
5|L, then S−1 is empty and we can ignore such an L.
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For our search, we used the complete and partial factorizations of Fibonacci numbers FL into
prime divisors for 1 ≤ L ≤ 9999 found in [1] in Spring 2021. Using the construction described
in the previous paragraph and these factorizations, we created approximately 223 distinct odd
Fibonacci pseudoprimes P that satisfy P ≡ ±2(mod 5). We then checked each P to see if it
is a base-2 pseudoprime, i.e., if 2P ≡ 2(modP ). Alas, none were base-2 pseudoprimes. For
programs and data, see [8].

Some of the Fibonacci pseudoprimes we created are huge. For example, because 9967 is
prime and F9967 is composite (F9967 has been fully factored - see [1]), we see from Propo-

sition 2.9 that F9967 is a Fibonacci pseudoprime. Note F9967 ≈ 26918. If P =
∏k

i=1 pi is a
huge Fibonacci pseudoprime, then using the relatively fast repeated squares algorithm to re-
duce 2P (modP ) can still be slow. Instead we note, by the Chinese Remainder Theorem, that
2P ≡ 2(modP ) if and only if 2P ≡ 2(mod pi) for each i. We order the prime divisors of P
as p1 < p2 < · · · < pk. First, we reduce 2P (mod p1). If the remainder is not 2, as is usually
the case, then we know P is not a base-2 pseudoprime. If the remainder is 2, we do the same
computation for p2, and so on. As soon as we get a remainder that is not 2, we can quit. If
all k remainders are, in fact 2, then P is a base-2 pseudoprime (which never occurred for us).

We can speed up the computation of 2P (mod pi) by noting that if P ≡ ri(mod pi − 1), with
0 ≤ ri < pi − 1, then 2P ≡ 2ri(mod pi), which is a consequence of Fermat’s Little Theorem.
Instead, we can reduce 2ri modulo pi. To determine ri, we can iteratively multiply together
((p1 · p2) · p3) . . ., reducing modulo pi − 1 after each multiplication. That way, the largest
integer ever appearing in the algorithm is at most pk−1pk.

Our second search was inspired by Proposition 2.9. We checked increasing primes L up
to 100000, which satisfy L ≡ ±2(mod 5) (otherwise FL ≡ ±1(mod 5)). For each such L, we
used a pseudo-primality test to see which FL were determined to be composite. If so, we then
tested to see if FL is a base-2 pseudoprime. Again, none were. For programs and data, see [8].
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