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ABSTRACT. Let the Lucas numbers {L,} be defined by Lpt2 = Ly4+1 + Ly, with initial terms
Lo =2, L1 = 1. It is well known that if NV is an odd prime, then Ly = L1 =1 (mod N). If
N is a positive odd composite integer for which the above-mentioned congruence also holds,
then N is called a Dickson pseudoprime with respect to the Lucas numbers. Paul Bruckman
proved that if N is a Dickson pseudoprime with respect to the Lucas numbers for which
ged(V,6) = 1, then Ly is also a Dickson pseudoprime with respect to the Lucas numbers.
We generalize this theorem by Bruckman from the Lucas numbers {L,}5> to more general
second-order linear recurrences.

1. INTRODUCTION

Let the Lucas numbers {L,} be defined by L,+2 = L,yo + L, with initial terms Ly = 2,
Ly = 1. It is well known that if N is an odd prime, then N satisfies the following condition:

LN = L1 =1 (mod N) (11)

(see [1, p.1392]). It also occurs rarely that the congruence (1.1) holds if N is a positive odd
composite integer. Such numbers are called Dickson pseudoprimes with respect to the Lucas
numbers (see [7]). The first few Dickson pseudoprimes with respect to the Lucas numbers are
705, 2465, 2737, 3745, 4181, 5777, 6721 (see Table 3 of [7]). Paul Bruckman [2] proved the
following theorem:

Theorem 1.1. (Bruckman) Let N be a Dickson pseudoprime with respect to the Lucas
numbers such that gcd(N,6) = 1. Then, Ly is also a Dickson pseudoprime with respect to the
Lucas numbers such that gcd(Ly,6) = 1.

We will generalize Theorem 1.1 to Dickson pseudoprimes with respect to particular second-
order linear recurrences. Let V(P,Q) and U(P,Q) be the Lucas sequences satisfying the
second-order recursion relation

Wi = PWoyr — QW (1.2)
with discriminant D = P? —4Q, where P and @ are integers, and the initial terms are Vj = 2,
Vi = P, Uy =0, Uy =1, respectively. We note that {L,}5°, = V(1,-1). Associated with
U(P,Q) and V(P,Q) is the characteristic polynomial

fz)=2*-Pr+Q (1.3)
with characteristic roots a and 3. We observe that D = (o — 8)2. By the Binet formulas,
am — Bn
Un==—p Va=a"+i" (L4)

Proposition 1.2 below follows from the Binet formulas (1.4).

Proposition 1.2. Consider the Lucas sequences U (P, Q) and V (P, Q) with discriminant D.
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i) If n is a nonnegative integer, then Us, = U,V,.
(ii) If m | n, then Uy, | Up.
(iii) If m | n and n/m is odd, then Vi, | Vy,.
(iv) If 0 <m <mn, then Vyin — Q"Vy—p, = DULU,.
(v) If 0 <m <mn, then Viin + Q"Viep = Vi, Vi,

The Lucas sequences U(P,Q) and V(P,Q) with characteristic roots o and f are called
degenerate if PQQ = 0 or a/f is a root of unity. It follows from the Binet formulas (1.4)
that U,(P,Q) or V,(P,Q) can be equal to 0 for some n > 0 only if U(P,Q) and V(P,Q)
are degenerate. Because the characteristic polynomial of U(P, Q) and V (P, Q) is a quadratic
polynomial with integer coefficients, one sees that «/f can be a primitive nth root of unity
only if n € {1,2,3,4,6}. The following theorem of Ward [8, p.613] determines all degenerate
Lucas sequences U(P, Q) and V (P, Q).

Theorem 1.3. Let M denote an arbitrary nonzero integer. Then, the Lucas sequences U (P, Q)
and V (P, Q) with characteristic roots o and [ are degenerate only in the following cases:
(i) If @ = 0 and P is any integer, then D = P%, U, = P" ', and V,, = P" forn > 1.

(i) Ifa/B =1, then P =2M, Q = M?, and D = 0.

(iii) If a/B = -1, then P =0, Q = M, and D = -4M.

(iv) If o/ is a primitive cube root of unity, then P = M, Q = M?, and D = -3M?.

(v) If a/B is a primitive fourth root of unity, then P = 2M, Q = 2M?, and D = -4M?.
(vi) If a/B is a primitive sizth root of unity, then P = 3M, Q = 3M?, and D = -3M?.

Remark 1.4. From here on, we will frequently consider the Lucas sequences V (P, Q) and
U(P,Q) for which @ = £1. We note that by Theorem 1.3, V(P,£1) and U(P,£1) are
nondegenerate if and only if P # 0 and it is not the case that the ordered pair (P, Q) = (+1,1)
or (£2,1). It then follows that D > 0 if V(P,Q) and U(P,Q) are nondegenerate, where
Q = +1.

It is known that if N is an odd prime such that gcd(N, PQ) = 1, then the following
congruence is satisfied for the given nondegenerate Lucas sequence V (P, Q),

VN = V1 =P (mod N), (15)

(see [1, p.1392]). The positive odd composite integer N is called a Dickson pseudoprime with
respect to the Lucas sequence V (P, Q) if N also satisfies (1.5) (see [7]). We simply say that
N is a Dickson pseudoprime if the Lucas sequence V (P, Q) is understood. Our main result of
this paper will be Theorem 1.5, which generalizes Theorem 1.1. We will prove Theorem 1.5 in
Section 3.

Theorem 1.5. Consider the nondegenerate Lucas sequences V(P,Q) and U(P,Q), where
P #0 and Q = +1. Then, D > 0. Let N be a Dickson pseudoprime such that gcd(P, N) = 1.
Suppose that 3+ N if P is odd. Then, P | Vi and Vi /P is also a Dickson pseudoprime with
respect to V (P, Q). Moreover, ged(Vy/P,P) =1 and 3t (Vy/P) if P is odd.

Remark 1.6. By Theorem 1 of [6], there exist infinitely many Dickson pseudoprimes N with

respect to the nondegenerate Lucas sequence V (P, £1), which are pairwise relatively prime.

Given a Dickson pseudoprime N; with respect to V(P,£1) such that ged(P, N;) = 1 and

31 Ny if P is odd, we can use Theorem 1.5 to explicitly find infinitely many other Dickson

pseudoprimes N; with respect to V(P,+1). Let N;j4q1 = %VNZ. for ¢ > 1. Then,
N27N37N47"'7

are also Dickson pseudoprimes with respect to V(P,+1).
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2. PRELIMINARIES

The following results will be needed to prove our main result, Theorem 1.5.

Lemma 2.1. Let U(P,Q) and V(P,Q) be Lucas sequences for which 2 1 ged(P, Q).
(i) Suppose P is odd and Q is even. Then 24U, and 21V, forn > 1.
(ii) Suppose P is even and Q is odd. Then, 2 | U, if and only if 2 | n, and 2 | V,, for all
n > 0.
(iii) Suppose P and Q are both odd. Then, 2 | U, if and only if 3 | n, and 2 | V,, if and only
if 3| n.

This is proved in Lemma 2.10 of [5].

Lemma 2.2. Let V(P,Q) be a Lucas sequence, where Q = £1. Let A\(3) denote the period of
V(P,Q) modulo 3.
(i) The Lucas sequence V (P, Q) is purely periodic modulo 3.
(ii) If 3| P and Q = -1, then A\(3) =2 and 3 | V,, if and only if n =1 (mod 2).
(iii) If3 | P and Q =1, then A(3) =4 and 3| V,, if and only if n =1 (mod 2).
(iv) If P=-1 (mod 3) and Q =1, then A(3) =1 and 31V}, forn > 0.
v) If P=1 (mod 3) and Q =1, then A\(3) =2 and 31V}, forn > 0.
(vi) If P = £1 (mod 3) and @ = -1, then A(3) = 8 and 3 | V,, if and only if n = 2
(mod 4).

Proof. This follows by inspection of V(P, Q) modulo 3. O

The following lemma is mainly due to Hilton, Pedersen, and Somer and follows from Lemma
3 of [4] and Lemma 2.8 of [5].

Lemma 2.3. Let U(P,Q) and V(P,Q) be nondegenerate Lucas sequences such that D > 0.
Then, |U,| is increasing for n > 2 and |V,| is increasing for n > 1. Further, if P > 0, then
U, >0 forn>1andV, >0 forn>0.

Lemma 2.4. Consider the nondegenerate Lucas sequence V(P,Q), where P is even and Q
odd. Suppose that 2% || P, where k > 1 and 2* | P means that 2F | P, but 281 § P. Then,
2% || Vaps1 forn > 0.

Proof. We proceed by induction. We observe that 2 || Vo and 2* || V4. Suppose that 2 || Va,
and 2% || Va1 for some n > 0. Then,

V2n+2 = P‘/2n+1 - QVQn =0—-2=2 (mod 4)
and
Vonis = PVapio — QVangir =0 —2F =2 (mod 28+,
The result now follows. O

Lemma 2.5. Consider the nondegenerate Lucas sequence V(P,1). Then, P | Vap41 forn > 0.
Moreover, Vap11/P =1 (mod 4) if n > 0 and it is the case that 312n + 1 when P is odd.

Proof. We note that V; = P. It now follows from Proposition 1.2 (iii) that P | Va,4+1 for n > 0.
Suppose that n > 0 and 31 2n + 1 if P is odd. We now show that Va,41/P =1 (mod 4).

First suppose that P =1 (mod 2). Then, {V,,} is purely periodic modulo 8 with a period
equal to 3 or 6. The first eight terms of (V;,) modulo 8 starting with n = 0 are

2. P, -1, -2P, -1, P, 2, P.
It follows that V,,/P =1 (mod 8) if n = £1 (mod 6).
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We now suppose that 2% || P, where k > 1. Let € € {~1,1}. Then, {V},} is purely periodic
modulo 2572 with a period equal to 1, 2, or 4. If k = 1, then the first six terms of (V},) modulo
8 starting with n = 0 are

2. P,2, P, 2, P.
If k£ > 2, then the first six terms of (V},) modulo 2k+2 are
2, P, -2, P, 2, P.
It follows that V,,/P =1 (mod 4) if n = +1 (mod 4) for k£ > 1. The result follows. O

Lemma 2.6 is due to Carmichael and follows from Theorem XI of [3].

Lemma 2.6. Consider the Lucas sequence V(P,Q), where ged(P,Q) = 1. Let p be an odd
prime such that p* || Vi and let m > 1 be an odd integer. Then, p"™1 | Vi, if and only if p | m.

3. PROOF OF THE MAIN THEOREM

Proof of Theorem 1.5. We first show that we can assume that P > 0. We claim that the
Dickson pseudoprime N with respect to V(P, Q) is also a Dickson pseudoprime with respect
to V(-P, Q). By the recursion relation (1.2) defining V (P, Q) and induction, we see that

Vn(-P,Q) = (-1)NVy(P,Q) = (-1)NP=-P (mod N),

and N is a Dickson pseudoprime with respect to V(-P, Q). We observe that ged(-P, N) =
ged(P,N) =1 and 31 N if =P is odd. We also note that V (P, Q) and V(-P, Q) have the same
discriminant P? — 4Q). Suppose that P > 0 and we have proven that m = Vy(P,Q)/P is a
Dickson pseudoprime with respect to V(P, Q) such that ged(P,m) =1 and 3t m if P is odd.
Then,
Vn(-P,Q)/(-P) = (-)"VN(P,Q)/(-P) = Vn(P,Q)/P = m.

It now follows from our arguments above that Vy(-P,Q)/(-P) = m is also a pseudoprime
with respect to V (=P, @) such that ged(-P,m) =1 and 31 m if =P is odd. It follows that we
can assume that P > 0 in our proof.

Because Vi = P and N is odd, it follows from Proposition 1.2 (iii) that P | Vy. By
Remark 1.4 and Lemma 2.3, D > 0, V,, > 0 for n > 0, and V,, is increasing for n > 1. Let
r = Vn/P. By our previous discussion, r > 0. Because N is a Dickson pseudoprime and
ged(N, P) = 1, we see that r = 1 (mod N). We now show that r is odd and composite. If
P is odd, then r is odd because 3 t+ N and by Lemma 2.1 (iii). If P is even, then r is odd
because N is odd and by Lemma 2.4. Because N is odd and composite, there exists an odd
integer a such that 3 < a < N and a is a divisor of N. Because V,, is increasing for n > 1,
P =V, <V, < Vy. Noting that P | V, and V, | Vi by Proposition 1.2 (iii), it follows that
Vi /P is composite. Moreover, ged(r, P) = 1 by Lemma 2.6, since N is odd and ged(N, P) = 1.
We now demonstrate that if P is odd, then 3 { 7. By assumption, 31 N. Suppose that 3 | P.
Then, 3 1 Vy/P = r by Lemma 2.6. Now suppose that 3 { P. Then, 3 { Vx by Lemma 2.2
(iv)—(vi), since N is odd. Therefore, 31 Vy/P = 1.

Let s = (r —1)/2 = 27t, where j > 0 and ¢ is odd. Because 7 = 1 (mod N), we observe
that N | 2s. Noting that N is odd, we find that N | ¢. It now follows from Proposition 1.2
(iif) that

r=(Vn/P)| VN[ Vi (3.1)
First suppose that j > 1. By repeated applications of Proposition 1.2 (i), we observe that
Us =UViVoy - - - Vv2j*1ta (32)
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which implies by (3.1) that r | Us. Noting that s is even and r = 2s + 1, it follows by (3.1),
(3.2), and Proposition 1.2 (iv) that

V,—QViy =V, — P=DUyUs11 =0 (mod r). (3.3)

Hence, by (3.3), V,, = P (mod r) and r = Vy/P is a Dickson pseudoprime.

Now suppose that j = 0. Then, s = ¢t and s is odd. Because s is odd, » = 3 (mod 4),
which would contradict Lemma 2.5 were @ equal 1. Thus, @ = -1. It now follows by (3.1)
and Proposition 1.2 (v) that

Vit QVi=V, 4+ (-1)*P =V, —P=V,Ves1 =0 (mod r). (3.4)
Therefore by (3.4), V., = P (mod r) and r = Vv /P is again a Dickson pseudoprime. [
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