GENERALIZATION OF A THEOREM OF BRUCKMAN ON DICKSON PSEUDOPRIMES

LAWRENCE SOMER AND MICHAL KŘÍŽEK

ABSTRACT. Let the Lucas numbers $\{L_n\}$ be defined by $L_{n+2} = L_{n+1} + L_n$ with initial terms $L_0 = 2, L_1 = 1$. It is well known that if N is an odd prime, then $L_N \equiv L_1 \equiv 1 \pmod{N}$. If N is a positive odd composite integer for which the above-mentioned congruence also holds, then N is called a Dickson pseudoprime with respect to the Lucas numbers. Paul Bruckman proved that if N is a Dickson pseudoprime with respect to the Lucas numbers for which gcd(N, 6) = 1, then L_N is also a Dickson pseudoprime with respect to the Lucas numbers. We generalize this theorem by Bruckman from the Lucas numbers $\{L_n\}_{n=0}^{\infty}$ to more general second-order linear recurrences.

1. INTRODUCTION

Let the Lucas numbers $\{L_n\}$ be defined by $L_{n+2} = L_{n+2} + L_n$ with initial terms $L_0 = 2$, $L_1 = 1$. It is well known that if N is an odd prime, then N satisfies the following condition:

$$L_N \equiv L_1 \equiv 1 \pmod{N} \tag{1.1}$$

(see [1, p. 1392]). It also occurs rarely that the congruence (1.1) holds if N is a positive odd composite integer. Such numbers are called *Dickson pseudoprimes with respect to the Lucas numbers* (see [7]). The first few Dickson pseudoprimes with respect to the Lucas numbers are 705, 2465, 2737, 3745, 4181, 5777, 6721 (see Table 3 of [7]). Paul Bruckman [2] proved the following theorem:

Theorem 1.1. (Bruckman) Let N be a Dickson pseudoprime with respect to the Lucas numbers such that gcd(N, 6) = 1. Then, L_N is also a Dickson pseudoprime with respect to the Lucas numbers such that $gcd(L_N, 6) = 1$.

We will generalize Theorem 1.1 to Dickson pseudoprimes with respect to particular secondorder linear recurrences. Let V(P,Q) and U(P,Q) be the Lucas sequences satisfying the second-order recursion relation

$$W_{n+2} = PW_{n+1} - QW_n (1.2)$$

with discriminant $D = P^2 - 4Q$, where P and Q are integers, and the initial terms are $V_0 = 2$, $V_1 = P$, $U_0 = 0$, $U_1 = 1$, respectively. We note that $\{L_n\}_{n=0}^{\infty} = V(1, -1)$. Associated with U(P,Q) and V(P,Q) is the characteristic polynomial

$$f(x) = x^2 - Px + Q (1.3)$$

with characteristic roots α and β . We observe that $D = (\alpha - \beta)^2$. By the Binet formulas,

$$U_n = \frac{\alpha^n - \beta^n}{\alpha - \beta}, \quad V_n = \alpha^n + \beta^n.$$
(1.4)

Proposition 1.2 below follows from the Binet formulas (1.4).

Proposition 1.2. Consider the Lucas sequences U(P,Q) and V(P,Q) with discriminant D.

NOVEMBER 2022

THE FIBONACCI QUARTERLY

- (i) If n is a nonnegative integer, then $U_{2n} = U_n V_n$.
- (ii) If $m \mid n$, then $U_m \mid U_n$.
- (iii) If $m \mid n$ and n/m is odd, then $V_m \mid V_n$.
- (iv) If $0 \le m \le n$, then $V_{m+n} Q^m V_{n-m} = DU_m U_n$.
- (v) If $0 \le m \le n$, then $V_{m+n} + Q^m V_{n-m} = V_m V_n$.

The Lucas sequences U(P,Q) and V(P,Q) with characteristic roots α and β are called degenerate if PQ = 0 or α/β is a root of unity. It follows from the Binet formulas (1.4) that $U_n(P,Q)$ or $V_n(P,Q)$ can be equal to 0 for some n > 0 only if U(P,Q) and V(P,Q)are degenerate. Because the characteristic polynomial of U(P,Q) and V(P,Q) is a quadratic polynomial with integer coefficients, one sees that α/β can be a primitive *n*th root of unity only if $n \in \{1, 2, 3, 4, 6\}$. The following theorem of Ward [8, p. 613] determines all degenerate Lucas sequences U(P,Q) and V(P,Q).

Theorem 1.3. Let M denote an arbitrary nonzero integer. Then, the Lucas sequences U(P,Q) and V(P,Q) with characteristic roots α and β are degenerate only in the following cases:

- (i) If Q = 0 and P is any integer, then $D = P^2$, $U_n = P^{n-1}$, and $V_n = P^n$ for $n \ge 1$.
- (ii) If $\alpha/\beta = 1$, then P = 2M, $Q = M^2$, and D = 0.
- (iii) If $\alpha/\beta = -1$, then P = 0, Q = M, and D = -4M.
- (iv) If α/β is a primitive cube root of unity, then P = M, $Q = M^2$, and $D = -3M^2$.
- (v) If α/β is a primitive fourth root of unity, then P = 2M, $Q = 2M^2$, and $D = -4M^2$.
- (vi) If α/β is a primitive sixth root of unity, then P = 3M, $Q = 3M^2$, and $D = -3M^2$.

Remark 1.4. From here on, we will frequently consider the Lucas sequences V(P,Q) and U(P,Q) for which $Q = \pm 1$. We note that by Theorem 1.3, $V(P,\pm 1)$ and $U(P,\pm 1)$ are nondegenerate if and only if $P \neq 0$ and it is not the case that the ordered pair $(P,Q) = (\pm 1,1)$ or $(\pm 2, 1)$. It then follows that D > 0 if V(P,Q) and U(P,Q) are nondegenerate, where $Q = \pm 1$.

It is known that if N is an odd prime such that gcd(N, PQ) = 1, then the following congruence is satisfied for the given nondegenerate Lucas sequence V(P, Q),

$$V_N \equiv V_1 \equiv P \pmod{N},\tag{1.5}$$

(see [1, p. 1392]). The positive odd composite integer N is called a *Dickson pseudoprime with* respect to the Lucas sequence V(P,Q) if N also satisfies (1.5) (see [7]). We simply say that N is a *Dickson pseudoprime* if the Lucas sequence V(P,Q) is understood. Our main result of this paper will be Theorem 1.5, which generalizes Theorem 1.1. We will prove Theorem 1.5 in Section 3.

Theorem 1.5. Consider the nondegenerate Lucas sequences V(P,Q) and U(P,Q), where $P \neq 0$ and $Q = \pm 1$. Then, D > 0. Let N be a Dickson pseudoprime such that gcd(P,N) = 1. Suppose that $3 \nmid N$ if P is odd. Then, $P \mid V_N$ and V_N/P is also a Dickson pseudoprime with respect to V(P,Q). Moreover, $gcd(V_N/P,P) = 1$ and $3 \nmid (V_N/P)$ if P is odd.

Remark 1.6. By Theorem 1 of [6], there exist infinitely many Dickson pseudoprimes N with respect to the nondegenerate Lucas sequence $V(P, \pm 1)$, which are pairwise relatively prime. Given a Dickson pseudoprime N_1 with respect to $V(P, \pm 1)$ such that $gcd(P, N_1) = 1$ and $3 \nmid N_1$ if P is odd, we can use Theorem 1.5 to explicitly find infinitely many other Dickson pseudoprimes N_i with respect to $V(P, \pm 1)$. Let $N_{i+1} = \frac{1}{P}V_{N_i}$ for $i \ge 1$. Then,

$$N_2, N_3, N_4, \ldots,$$

are also Dickson pseudoprimes with respect to $V(P, \pm 1)$.

2. Preliminaries

The following results will be needed to prove our main result, Theorem 1.5.

Lemma 2.1. Let U(P,Q) and V(P,Q) be Lucas sequences for which $2 \nmid \operatorname{gcd}(P,Q)$.

- (i) Suppose P is odd and Q is even. Then $2 \nmid U_n$ and $2 \nmid V_n$ for $n \ge 1$.
- (ii) Suppose P is even and Q is odd. Then, $2 | U_n$ if and only if 2 | n, and $2 | V_n$ for all $n \ge 0$.
- (iii) Suppose P and Q are both odd. Then, $2 | U_n$ if and only if 3 | n, and $2 | V_n$ if and only if 3 | n.

This is proved in Lemma 2.10 of [5].

Lemma 2.2. Let V(P,Q) be a Lucas sequence, where $Q = \pm 1$. Let $\lambda(3)$ denote the period of V(P,Q) modulo 3.

- (i) The Lucas sequence V(P,Q) is purely periodic modulo 3.
- (ii) If $3 \mid P \text{ and } Q = -1$, then $\lambda(3) = 2$ and $3 \mid V_n$ if and only if $n \equiv 1 \pmod{2}$.
- (iii) If $3 \mid P \text{ and } Q = 1$, then $\lambda(3) = 4$ and $3 \mid V_n$ if and only if $n \equiv 1 \pmod{2}$.
- (iv) If $P \equiv -1 \pmod{3}$ and Q = 1, then $\lambda(3) = 1$ and $3 \nmid V_n$ for $n \geq 0$.
- (v) If $P \equiv 1 \pmod{3}$ and Q = 1, then $\lambda(3) = 2$ and $3 \nmid V_n$ for $n \geq 0$.
- (vi) If $P \equiv \pm 1 \pmod{3}$ and Q = -1, then $\lambda(3) = 8$ and $3 \mid V_n$ if and only if $n \equiv 2 \pmod{4}$.

Proof. This follows by inspection of V(P,Q) modulo 3.

The following lemma is mainly due to Hilton, Pedersen, and Somer and follows from Lemma 3 of [4] and Lemma 2.8 of [5].

Lemma 2.3. Let U(P,Q) and V(P,Q) be nondegenerate Lucas sequences such that D > 0. Then, $|U_n|$ is increasing for $n \ge 2$ and $|V_n|$ is increasing for $n \ge 1$. Further, if P > 0, then $U_n > 0$ for $n \ge 1$ and $V_n > 0$ for $n \ge 0$.

Lemma 2.4. Consider the nondegenerate Lucas sequence V(P,Q), where P is even and Q odd. Suppose that $2^k \parallel P$, where $k \ge 1$ and $2^k \parallel P$ means that $2^k \mid P$, but $2^{k+1} \nmid P$. Then, $2^k \parallel V_{2n+1}$ for $n \ge 0$.

Proof. We proceed by induction. We observe that $2 \parallel V_0$ and $2^k \parallel V_1$. Suppose that $2 \parallel V_{2n}$ and $2^k \parallel V_{2n+1}$ for some $n \ge 0$. Then,

$$V_{2n+2} = PV_{2n+1} - QV_{2n} \equiv 0 - 2 \equiv 2 \pmod{4}$$

and

$$V_{2n+3} = PV_{2n+2} - QV_{2n+1} \equiv 0 - 2^k \equiv 2^k \pmod{2^{k+1}}.$$

The result now follows.

Lemma 2.5. Consider the nondegenerate Lucas sequence V(P,1). Then, $P \mid V_{2n+1}$ for $n \ge 0$. Moreover, $V_{2n+1}/P \equiv 1 \pmod{4}$ if $n \ge 0$ and it is the case that $3 \nmid 2n + 1$ when P is odd.

Proof. We note that $V_1 = P$. It now follows from Proposition 1.2 (iii) that $P \mid V_{2n+1}$ for $n \ge 0$. Suppose that $n \ge 0$ and $3 \nmid 2n + 1$ if P is odd. We now show that $V_{2n+1}/P \equiv 1 \pmod{4}$.

First suppose that $P \equiv 1 \pmod{2}$. Then, $\{V_n\}$ is purely periodic modulo 8 with a period equal to 3 or 6. The first eight terms of (V_n) modulo 8 starting with n = 0 are

$$2, P, -1, -2P, -1, P, 2, P.$$

It follows that $V_n/P \equiv 1 \pmod{8}$ if $n \equiv \pm 1 \pmod{6}$.

NOVEMBER 2022

THE FIBONACCI QUARTERLY

We now suppose that $2^k \parallel P$, where $k \ge 1$. Let $\varepsilon \in \{-1, 1\}$. Then, $\{V_n\}$ is purely periodic modulo 2^{k+2} with a period equal to 1, 2, or 4. If k = 1, then the first six terms of (V_n) modulo 8 starting with n = 0 are

If $k \geq 2$, then the first six terms of (V_n) modulo 2^{k+2} are

$$2, P, -2, P, 2, P.$$

It follows that $V_n/P \equiv 1 \pmod{4}$ if $n \equiv \pm 1 \pmod{4}$ for $k \ge 1$. The result follows.

Lemma 2.6 is due to Carmichael and follows from Theorem XI of [3].

Lemma 2.6. Consider the Lucas sequence V(P,Q), where gcd(P,Q) = 1. Let p be an odd prime such that $p^i \parallel V_1$ and let $m \ge 1$ be an odd integer. Then, $p^{i+1} \mid V_m$ if and only if $p \mid m$.

3. Proof of the Main Theorem

Proof of Theorem 1.5. We first show that we can assume that P > 0. We claim that the Dickson pseudoprime N with respect to V(P,Q) is also a Dickson pseudoprime with respect to V(-P,Q). By the recursion relation (1.2) defining V(P,Q) and induction, we see that

$$V_N(-P,Q) = (-1)^N V_N(P,Q) \equiv (-1)^N P \equiv -P \pmod{N},$$

and N is a Dickson pseudoprime with respect to V(-P,Q). We observe that gcd(-P,N) = gcd(P,N) = 1 and $3 \nmid N$ if -P is odd. We also note that V(P,Q) and V(-P,Q) have the same discriminant $P^2 - 4Q$. Suppose that P > 0 and we have proven that $m = V_N(P,Q)/P$ is a Dickson pseudoprime with respect to V(P,Q) such that gcd(P,m) = 1 and $3 \nmid m$ if P is odd. Then,

$$V_N(-P,Q)/(-P) = (-1)^N V_N(P,Q)/(-P) = V_N(P,Q)/P = m.$$

It now follows from our arguments above that $V_N(-P,Q)/(-P) = m$ is also a pseudoprime with respect to V(-P,Q) such that gcd(-P,m) = 1 and $3 \nmid m$ if -P is odd. It follows that we can assume that P > 0 in our proof.

Because $V_1 = P$ and N is odd, it follows from Proposition 1.2 (iii) that $P | V_N$. By Remark 1.4 and Lemma 2.3, D > 0, $V_n > 0$ for $n \ge 0$, and V_n is increasing for $n \ge 1$. Let $r = V_N/P$. By our previous discussion, r > 0. Because N is a Dickson pseudoprime and gcd(N, P) = 1, we see that $r \equiv 1 \pmod{N}$. We now show that r is odd and composite. If P is odd, then r is odd because $3 \nmid N$ and by Lemma 2.1 (iii). If P is even, then r is odd because N is odd and by Lemma 2.4. Because N is odd and composite, there exists an odd integer a such that $3 \le a < N$ and a is a divisor of N. Because V_n is increasing for $n \ge 1$, $P = V_1 < V_a < V_N$. Noting that $P \mid V_a$ and $V_a \mid V_N$ by Proposition 1.2 (iii), it follows that V_N/P is composite. Moreover, gcd(r, P) = 1 by Lemma 2.6, since N is odd and gcd(N, P) = 1. We now demonstrate that if P is odd, then $3 \nmid r$. By assumption, $3 \nmid N$. Suppose that $3 \mid P$. Then, $3 \nmid V_N/P = r$ by Lemma 2.6. Now suppose that $3 \nmid P$. Then, $3 \nmid V_N$ by Lemma 2.2 (iv)–(vi), since N is odd. Therefore, $3 \nmid V_N/P = r$.

Let $s = (r-1)/2 = 2^{j}t$, where $j \ge 0$ and t is odd. Because $r \equiv 1 \pmod{N}$, we observe that $N \mid 2s$. Noting that N is odd, we find that $N \mid t$. It now follows from Proposition 1.2 (iii) that

$$r = (V_N/P) \mid V_N \mid V_t. \tag{3.1}$$

First suppose that $j \ge 1$. By repeated applications of Proposition 1.2 (i), we observe that

$$U_s = U_t V_t V_{2t} \cdots V_{2^{j-1}t}, (3.2)$$

VOLUME 60, NUMBER 4

360

which implies by (3.1) that $r \mid U_s$. Noting that s is even and r = 2s + 1, it follows by (3.1), (3.2), and Proposition 1.2 (iv) that

$$V_r - Q^s V_1 = V_r - P = DU_s U_{s+1} \equiv 0 \pmod{r}.$$
(3.3)

Hence, by (3.3), $V_r \equiv P \pmod{r}$ and $r = V_N/P$ is a Dickson pseudoprime.

Now suppose that j = 0. Then, s = t and s is odd. Because s is odd, $r \equiv 3 \pmod{4}$, which would contradict Lemma 2.5 were Q equal 1. Thus, Q = -1. It now follows by (3.1) and Proposition 1.2 (v) that

$$V_r + Q^s V_1 = V_r + (-1)^s P = V_r - P = V_s V_{s+1} \equiv 0 \pmod{r}.$$
(3.4)

Therefore by (3.4), $V_r \equiv P \pmod{r}$ and $r = V_N/P$ is again a Dickson pseudoprime. \Box

Acknowledgment

This paper was supported by RVO 67985840 of the Czech Republic.

References

- [1] R. Baillie and S. S. Wagstaff, Jr., Lucas pseudoprimes, Math. Comp., 35 (1980), 1391–1417.
- [2] P. S. Bruckman, On the infinitude of Lucas pseudoprimes, The Fibonacci Quarterly, 32.2 (1994), 153–154.
- [3] R. D. Carmichael, On the numerical factors of the arithmetic forms $\alpha^n \pm \beta^n$, Ann. of Math., 15 (1913), 30–70.
- [4] P. Hilton, J. Pedersen, and L. Somer, On Lucasian numbers, The Fibonacci Quarterly, 35.1 (1997), 43-47.
- [5] F. Luca and L. Somer, Lucas sequences for which $4 \mid \phi(|u_n|)$ for almost all n, The Fibonacci Quarterly, **44.3** (2006), 249–263.
- [6] A. Rotkiewicz, On the pseudoprimes with respect to the Lucas sequence, Bull. Acad. Polon. Sci. Sér. Math. Astronom. Phys., 21 (1973), 793–797.
- [7] A. Rotkiewicz, Lucas and Frobenius pseudoprimes Ann. Math. Sil., 17 (2003), 17–39.
- [8] M. Ward, Prime divisors of second order recurring sequences, Duke Math. J., 21 (1954), 607–614.

MSC2020: 11B39, 11A51

LAWRENCE SOMER, DEPARTMENT OF MATHEMATICS, CATHOLIC UNIVERSITY OF AMERICA, WASHINGTON, D.C. 20064, U.S.A.

 $Email \ address: \ \texttt{somer@cua.edu}$

Michal Křížek, Institute of Mathematics, Czech Academy of Sciences, Žitná 25, CZ – 11567 Prague 1, Czech Republic

Email address: krizek@math.cas.cz