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Abstract. Let the Lucas numbers {Ln} be defined by Ln+2 = Ln+1 +Ln with initial terms
L0 = 2, L1 = 1. It is well known that if N is an odd prime, then LN ≡ L1 ≡ 1 (mod N). If
N is a positive odd composite integer for which the above-mentioned congruence also holds,
then N is called a Dickson pseudoprime with respect to the Lucas numbers. Paul Bruckman
proved that if N is a Dickson pseudoprime with respect to the Lucas numbers for which
gcd(N, 6) = 1, then LN is also a Dickson pseudoprime with respect to the Lucas numbers.
We generalize this theorem by Bruckman from the Lucas numbers {Ln}∞n=0 to more general
second-order linear recurrences.

1. Introduction

Let the Lucas numbers {Ln} be defined by Ln+2 = Ln+2 + Ln with initial terms L0 = 2,
L1 = 1. It is well known that if N is an odd prime, then N satisfies the following condition:

LN ≡ L1 ≡ 1 (mod N) (1.1)

(see [1, p. 1392]). It also occurs rarely that the congruence (1.1) holds if N is a positive odd
composite integer. Such numbers are called Dickson pseudoprimes with respect to the Lucas
numbers (see [7]). The first few Dickson pseudoprimes with respect to the Lucas numbers are
705, 2465, 2737, 3745, 4181, 5777, 6721 (see Table 3 of [7]). Paul Bruckman [2] proved the
following theorem:

Theorem 1.1. (Bruckman) Let N be a Dickson pseudoprime with respect to the Lucas
numbers such that gcd(N, 6) = 1. Then, LN is also a Dickson pseudoprime with respect to the
Lucas numbers such that gcd(LN , 6) = 1.

We will generalize Theorem 1.1 to Dickson pseudoprimes with respect to particular second-
order linear recurrences. Let V (P,Q) and U(P,Q) be the Lucas sequences satisfying the
second-order recursion relation

Wn+2 = PWn+1 −QWn (1.2)

with discriminant D = P 2−4Q, where P and Q are integers, and the initial terms are V0 = 2,
V1 = P , U0 = 0, U1 = 1, respectively. We note that {Ln}∞n=0 = V (1,−1). Associated with
U(P,Q) and V (P,Q) is the characteristic polynomial

f(x) = x2 − Px+Q (1.3)

with characteristic roots α and β. We observe that D = (α− β)2. By the Binet formulas,

Un =
αn − βn

α− β
, Vn = αn + βn. (1.4)

Proposition 1.2 below follows from the Binet formulas (1.4).

Proposition 1.2. Consider the Lucas sequences U(P,Q) and V (P,Q) with discriminant D.
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(i) If n is a nonnegative integer, then U2n = UnVn.
(ii) If m | n, then Um | Un.
(iii) If m | n and n/m is odd, then Vm | Vn.
(iv) If 0 ≤ m ≤ n, then Vm+n −QmVn−m = DUmUn.
(v) If 0 ≤ m ≤ n, then Vm+n +QmVn−m = VmVn.

The Lucas sequences U(P,Q) and V (P,Q) with characteristic roots α and β are called
degenerate if PQ = 0 or α/β is a root of unity. It follows from the Binet formulas (1.4)
that Un(P,Q) or Vn(P,Q) can be equal to 0 for some n > 0 only if U(P,Q) and V (P,Q)
are degenerate. Because the characteristic polynomial of U(P,Q) and V (P,Q) is a quadratic
polynomial with integer coefficients, one sees that α/β can be a primitive nth root of unity
only if n ∈ {1, 2, 3, 4, 6}. The following theorem of Ward [8, p. 613] determines all degenerate
Lucas sequences U(P,Q) and V (P,Q).

Theorem 1.3. Let M denote an arbitrary nonzero integer. Then, the Lucas sequences U(P,Q)
and V (P,Q) with characteristic roots α and β are degenerate only in the following cases:

(i) If Q = 0 and P is any integer, then D = P 2, Un = Pn−1, and Vn = Pn for n ≥ 1.
(ii) If α/β = 1, then P = 2M , Q = M2, and D = 0.
(iii) If α/β = −1, then P = 0, Q = M , and D = −4M .
(iv) If α/β is a primitive cube root of unity, then P = M , Q = M2, and D = −3M2.
(v) If α/β is a primitive fourth root of unity, then P = 2M , Q = 2M2, and D = −4M2.
(vi) If α/β is a primitive sixth root of unity, then P = 3M , Q = 3M2, and D = −3M2.

Remark 1.4. From here on, we will frequently consider the Lucas sequences V (P,Q) and
U(P,Q) for which Q = ±1. We note that by Theorem 1.3, V (P,±1) and U(P,±1) are
nondegenerate if and only if P ̸= 0 and it is not the case that the ordered pair (P,Q) = (±1, 1)
or (±2, 1). It then follows that D > 0 if V (P,Q) and U(P,Q) are nondegenerate, where
Q = ±1.

It is known that if N is an odd prime such that gcd(N,PQ) = 1, then the following
congruence is satisfied for the given nondegenerate Lucas sequence V (P,Q),

VN ≡ V1 ≡ P (mod N), (1.5)

(see [1, p. 1392]). The positive odd composite integer N is called a Dickson pseudoprime with
respect to the Lucas sequence V (P,Q) if N also satisfies (1.5) (see [7]). We simply say that
N is a Dickson pseudoprime if the Lucas sequence V (P,Q) is understood. Our main result of
this paper will be Theorem 1.5, which generalizes Theorem 1.1. We will prove Theorem 1.5 in
Section 3.

Theorem 1.5. Consider the nondegenerate Lucas sequences V (P,Q) and U(P,Q), where
P ̸= 0 and Q = ±1. Then, D > 0. Let N be a Dickson pseudoprime such that gcd(P,N) = 1.
Suppose that 3 ∤ N if P is odd. Then, P | VN and VN/P is also a Dickson pseudoprime with
respect to V (P,Q). Moreover, gcd(VN/P, P ) = 1 and 3 ∤ (VN/P ) if P is odd.

Remark 1.6. By Theorem 1 of [6], there exist infinitely many Dickson pseudoprimes N with
respect to the nondegenerate Lucas sequence V (P,±1), which are pairwise relatively prime.
Given a Dickson pseudoprime N1 with respect to V (P,±1) such that gcd(P,N1) = 1 and
3 ∤ N1 if P is odd, we can use Theorem 1.5 to explicitly find infinitely many other Dickson
pseudoprimes Ni with respect to V (P,±1). Let Ni+1 =

1
P VNi for i ≥ 1. Then,

N2, N3, N4, . . . ,

are also Dickson pseudoprimes with respect to V (P,±1).
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2. Preliminaries

The following results will be needed to prove our main result, Theorem 1.5.

Lemma 2.1. Let U(P,Q) and V (P,Q) be Lucas sequences for which 2 ∤ gcd(P,Q).

(i) Suppose P is odd and Q is even. Then 2 ∤ Un and 2 ∤ Vn for n ≥ 1.
(ii) Suppose P is even and Q is odd. Then, 2 | Un if and only if 2 | n, and 2 | Vn for all

n ≥ 0.
(iii) Suppose P and Q are both odd. Then, 2 | Un if and only if 3 | n, and 2 | Vn if and only

if 3 | n.

This is proved in Lemma 2.10 of [5].

Lemma 2.2. Let V (P,Q) be a Lucas sequence, where Q = ±1. Let λ(3) denote the period of
V (P,Q) modulo 3.

(i) The Lucas sequence V (P,Q) is purely periodic modulo 3.
(ii) If 3 | P and Q = −1, then λ(3) = 2 and 3 | Vn if and only if n ≡ 1 (mod 2).
(iii) If 3 | P and Q = 1, then λ(3) = 4 and 3 | Vn if and only if n ≡ 1 (mod 2).
(iv) If P ≡ −1 (mod 3) and Q = 1, then λ(3) = 1 and 3 ∤ Vn for n ≥ 0.
(v) If P ≡ 1 (mod 3) and Q = 1, then λ(3) = 2 and 3 ∤ Vn for n ≥ 0.
(vi) If P ≡ ±1 (mod 3) and Q = −1, then λ(3) = 8 and 3 | Vn if and only if n ≡ 2

(mod 4).

Proof. This follows by inspection of V (P,Q) modulo 3. □

The following lemma is mainly due to Hilton, Pedersen, and Somer and follows from Lemma
3 of [4] and Lemma 2.8 of [5].

Lemma 2.3. Let U(P,Q) and V (P,Q) be nondegenerate Lucas sequences such that D > 0.
Then, |Un| is increasing for n ≥ 2 and |Vn| is increasing for n ≥ 1. Further, if P > 0, then
Un > 0 for n ≥ 1 and Vn > 0 for n ≥ 0.

Lemma 2.4. Consider the nondegenerate Lucas sequence V (P,Q), where P is even and Q
odd. Suppose that 2k ∥ P , where k ≥ 1 and 2k ∥ P means that 2k | P , but 2k+1 ∤ P . Then,
2k ∥ V2n+1 for n ≥ 0.

Proof. We proceed by induction. We observe that 2 ∥ V0 and 2k ∥ V1. Suppose that 2 ∥ V2n

and 2k ∥ V2n+1 for some n ≥ 0. Then,

V2n+2 = PV2n+1 −QV2n ≡ 0− 2 ≡ 2 (mod 4)

and
V2n+3 = PV2n+2 −QV2n+1 ≡ 0− 2k ≡ 2k (mod 2k+1).

The result now follows. □

Lemma 2.5. Consider the nondegenerate Lucas sequence V (P, 1). Then, P | V2n+1 for n ≥ 0.
Moreover, V2n+1/P ≡ 1 (mod 4) if n ≥ 0 and it is the case that 3 ∤ 2n+ 1 when P is odd.

Proof. We note that V1 = P . It now follows from Proposition 1.2 (iii) that P | V2n+1 for n ≥ 0.
Suppose that n ≥ 0 and 3 ∤ 2n+ 1 if P is odd. We now show that V2n+1/P ≡ 1 (mod 4).

First suppose that P ≡ 1 (mod 2). Then, {Vn} is purely periodic modulo 8 with a period
equal to 3 or 6. The first eight terms of (Vn) modulo 8 starting with n = 0 are

2, P, −1, −2P, −1, P, 2, P.
It follows that Vn/P ≡ 1 (mod 8) if n ≡ ±1 (mod 6).
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We now suppose that 2k ∥ P , where k ≥ 1. Let ε ∈ {−1, 1}. Then, {Vn} is purely periodic
modulo 2k+2 with a period equal to 1, 2, or 4. If k = 1, then the first six terms of (Vn) modulo
8 starting with n = 0 are

2, P, 2, P, 2, P.

If k ≥ 2, then the first six terms of (Vn) modulo 2k+2 are

2, P, −2, P, 2, P.

It follows that Vn/P ≡ 1 (mod 4) if n ≡ ±1 (mod 4) for k ≥ 1. The result follows. □

Lemma 2.6 is due to Carmichael and follows from Theorem XI of [3].

Lemma 2.6. Consider the Lucas sequence V (P,Q), where gcd(P,Q) = 1. Let p be an odd
prime such that pi ∥ V1 and let m ≥ 1 be an odd integer. Then, pi+1 | Vm if and only if p | m.

3. Proof of the Main Theorem

Proof of Theorem 1.5. We first show that we can assume that P > 0. We claim that the
Dickson pseudoprime N with respect to V (P,Q) is also a Dickson pseudoprime with respect
to V (−P,Q). By the recursion relation (1.2) defining V (P,Q) and induction, we see that

VN (−P,Q) = (−1)NVN (P,Q) ≡ (−1)NP ≡ −P (mod N),

and N is a Dickson pseudoprime with respect to V (−P,Q). We observe that gcd(−P,N) =
gcd(P,N) = 1 and 3 ∤ N if −P is odd. We also note that V (P,Q) and V (−P,Q) have the same
discriminant P 2 − 4Q. Suppose that P > 0 and we have proven that m = VN (P,Q)/P is a
Dickson pseudoprime with respect to V (P,Q) such that gcd(P,m) = 1 and 3 ∤ m if P is odd.
Then,

VN (−P,Q)/(−P ) = (−1)NVN (P,Q)/(−P ) = VN (P,Q)/P = m.

It now follows from our arguments above that VN (−P,Q)/(−P ) = m is also a pseudoprime
with respect to V (−P,Q) such that gcd(−P,m) = 1 and 3 ∤ m if −P is odd. It follows that we
can assume that P > 0 in our proof.

Because V1 = P and N is odd, it follows from Proposition 1.2 (iii) that P | VN . By
Remark 1.4 and Lemma 2.3, D > 0, Vn > 0 for n ≥ 0, and Vn is increasing for n ≥ 1. Let
r = VN/P . By our previous discussion, r > 0. Because N is a Dickson pseudoprime and
gcd(N,P ) = 1, we see that r ≡ 1 (mod N). We now show that r is odd and composite. If
P is odd, then r is odd because 3 ∤ N and by Lemma 2.1 (iii). If P is even, then r is odd
because N is odd and by Lemma 2.4. Because N is odd and composite, there exists an odd
integer a such that 3 ≤ a < N and a is a divisor of N . Because Vn is increasing for n ≥ 1,
P = V1 < Va < VN . Noting that P | Va and Va | VN by Proposition 1.2 (iii), it follows that
VN/P is composite. Moreover, gcd(r, P ) = 1 by Lemma 2.6, since N is odd and gcd(N,P ) = 1.
We now demonstrate that if P is odd, then 3 ∤ r. By assumption, 3 ∤ N . Suppose that 3 | P .
Then, 3 ∤ VN/P = r by Lemma 2.6. Now suppose that 3 ∤ P . Then, 3 ∤ VN by Lemma 2.2
(iv)–(vi), since N is odd. Therefore, 3 ∤ VN/P = r.

Let s = (r − 1)/2 = 2jt, where j ≥ 0 and t is odd. Because r ≡ 1 (mod N), we observe
that N | 2s. Noting that N is odd, we find that N | t. It now follows from Proposition 1.2
(iii) that

r = (VN/P ) | VN | Vt. (3.1)

First suppose that j ≥ 1. By repeated applications of Proposition 1.2 (i), we observe that

Us = UtVtV2t · · ·V2j−1t, (3.2)
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which implies by (3.1) that r | Us. Noting that s is even and r = 2s + 1, it follows by (3.1),
(3.2), and Proposition 1.2 (iv) that

Vr −QsV1 = Vr − P = DUsUs+1 ≡ 0 (mod r). (3.3)

Hence, by (3.3), Vr ≡ P (mod r) and r = VN/P is a Dickson pseudoprime.
Now suppose that j = 0. Then, s = t and s is odd. Because s is odd, r ≡ 3 (mod 4),

which would contradict Lemma 2.5 were Q equal 1. Thus, Q = −1. It now follows by (3.1)
and Proposition 1.2 (v) that

Vr +QsV1 = Vr + (−1)sP = Vr − P = VsVs+1 ≡ 0 (mod r). (3.4)

Therefore by (3.4), Vr ≡ P (mod r) and r = VN/P is again a Dickson pseudoprime. □
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