
FROBENIUS, LUCAS, AND DICKSON PSEUDOPRIMES

LAWRENCE SOMER AND MICHAL KŘÍŽEK

Abstract. We prove results about various types of pseudoprimes with respect to Lucas
sequences. In particular, we investigate Frobenius pseudoprimes that satisfy properties of
several different types of pseudoprimes. We also find Frobenius pseudoprimes with many
divisors for which each of its composite divisors is also a Frobenius pseudoprime.

1. Introduction

Let U(P,Q) and V (P,Q) be the Lucas sequences satisfying the second-order recursion re-
lation

Wn+2(P,Q) = PWn+1(P,Q)−QWn(P,Q), (1.1)

with discriminant D = D(P,Q) = P 2 − 4Q, where P and Q are integers, and the initial
terms are U0 = 0, U1 = 1, V0 = 2, V1 = P , respectively. We suppress the parameters P and Q
when they are understood. We will investigate various pseudoprimes connected with the Lucas
sequences U(P,Q) and V (P,Q). Associated with U(P,Q) and V (P,Q) is the characteristic
polynomial

f(x) = x2 − Px+Q (1.2)

with characteristic roots α and β. We observe that D = D(P,Q) = (α− β)2. We note that

α =
P +

√
D

2
, β =

P −
√
D

2
. (1.3)

By the Binet formulas,

Un =
αn − βn

α− β
, Vn = αn + βn. (1.4)

Proposition 1.1 below follows from the Binet formulas (1.4).

Proposition 1.1. For the Lucas sequences U(P,Q) and V (P,Q) we have:

(i) U2n(P,Q) = Un(P,Q)Vn(P,Q).

(ii) V 2
n (P,Q)−DU2

n(P,Q) = 4Qn.

(iii) If m | n, then Um | Un.

(iv) If m | n and n/m is odd, then Vm | Vn.

It is known that if N is an odd prime such that gcd(N,PQD) = 1, then the following four
congruences are all satisfied for given Lucas sequences U(P,Q) and V (P,Q), with discriminant
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D, where (D/N) denotes the Jacobi symbol (see [1, pp. 1391–1396] and Theorem 2.11 (ii)):

UN−(D/N) ≡ 0 (mod N), (1.5)

UN ≡ (D/N) (mod N), (1.6)

VN ≡ P (mod N), (1.7)

VN−(D/N) ≡ 2Q(1−(D/N))/2 (mod N). (1.8)

It also occurs rarely that at least one of the congruences (1.5)–(1.8) holds if N is a positive
odd composite integer. We note that by [1, p. 1392], any two of the four congruences above
imply the other two when N is a positive odd integer. We have the following definitions that
are given in [16].

Definition 1.2. The positive odd composite integer N is called a Lucas pseudoprime with
respect to the Lucas sequence U(P,Q) if gcd(N,QD) = 1 and congruence (1.5) holds. (We will
denote N as a Lucas pseudoprime if the Lucas sequence U(P,Q) is understood.)

Definition 1.3. The positive odd composite integer N is called a Lucas pseudoprime of the
second kind with respect to the Lucas sequence U(P,Q) if gcd(N,QD) = 1 and congruence
(1.6) holds.

Definition 1.4. The positive odd composite integer N is called a Dickson pseudoprime with
respect to the Lucas sequence V (P,Q) if congruence (1.7) holds.

Definition 1.5. The positive odd composite integer N is called a Dickson pseudoprime of
the second kind with respect to the Lucas sequence V (P,Q) if gcd(N,QD) = 1 and congruence
(1.8) holds.

For particular Lucas sequences U(P,Q) and V (P,Q), it is known that there exist infinitely
many odd composite integers N that satisfy each of the congruences (1.5)–(1.8) (see Theorem
2.24). This gives rise to the following definition appearing in [16].

Definition 1.6. The positive odd composite integer N is called a Frobenius pseudoprime with
respect to the Lucas sequences U(P,Q) and V (P,Q) if gcd(N,PQD) = 1 and congruences
(1.5)–(1.8) all hold.

In this paper, we will find Lucas pseudoprimes, Dickson pseudoprimes of the second kind,
and Frobenius pseudoprimes with respect to the given Lucas sequences U(P,Q) and V (P,Q).
In many cases, we will choose Q to be ±1.

We also define the following four types of pseudoprimes, which satisfy the same properties
as odd primes (see [1]). These definitions appear in [1].

Definition 1.7. Consider the Lucas sequences U(P,Q) and V (P,Q). The positive odd com-
posite integer N is called an Euler-Lucas pseudoprime if gcd(N,QD) = 1 and

U(N−(D/N))/2 ≡ 0 (mod N) if (Q/N) = 1, (1.9)

or
V(N−(D/N))/2 ≡ 0 (mod N) if (Q/N) = −1. (1.10)

Definition 1.8. Consider the Lucas sequences U(P,Q) and V (P,Q). Let N be a positive odd
composite integer such that gcd(N,QD) = 1 and N − (D/N) = 2sd, where d is odd. Then N
is called a strong Lucas pseudoprime if either

(i) Ud ≡ 0 (mod N), or
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(ii) V2rd ≡ 0 (mod N) for some r with 0 ≤ r < s.

It follows from Proposition 1.1 (i) and (iii) that Euler-Lucas pseudoprimes and strong Lucas
pseudoprimes are both Lucas pseudoprimes.

Definition 1.9. Let N be a positive odd composite integer, and let a be a positive integer
such that gcd(a,N)) = 1. Then, N is a pseudoprime to the base a if

aN−1 ≡ 1 (mod N). (1.11)

Definition 1.10. Let N be a positive odd composite integer, and let a be a positive integer
such that gcd(a,N) = 1. Then, N is an Euler pseudoprime to the base a if

a(N−1)/2 ≡ 1 (mod N) if (a/N) = 1, (1.12)

or
a(N−1)/2 ≡ −1 (mod N) if (a/N) = −1. (1.13)

It is clear that N is a pseudoprime to the base a if N is an Euler pseudoprime to the base a.
The Lucas sequences U(P,Q) and V (P,Q) with characteristic roots α and β are called

degenerate if PQ = 0 or α/β is a root of unity. It follows from the Binet formulas (1.4)
that Un(P,Q) or Vn(P,Q) can be equal to 0 for some n > 0 only if U(P,Q) and V (P,Q) are
degenerate. Because the characteristic polynomial f of U(P,Q) and V (P,Q) is a quadratic
polynomial with integer coefficients, one sees that α/β can be a primitive nth root of unity
only if n = 1, 2, 3, 4, or 6. The following theorem determines all degenerate Lucas sequences
U(P,Q) and V (P,Q).

Theorem 1.11. Let M denote an arbitrary nonzero integer. Then, the Lucas sequences
U(P,Q) and V (P,Q) with characteristic roots α and β are degenerate only in the following
cases:

(i) Q = 0, P is any integer. Then, D = P 2, Un = Pn−1, and Vn = Pn for n ≥ 1.
(ii) α/β = 1. Then, P = 2M , Q = M2, and D = 0.
(iii) α/β = −1. Then, P = 0, Q = M , and D = −4M .
(iv) α/β is a primitive cube root of unity. Then, P = M , Q = M2, and D = −3M2.
(v) α/β is a primitive fourth root of unity. Then, P = 2M , Q = 2M2, and D = −4M2.
(vi) α/β is a primitive sixth root of unity. Then, P = 3M , Q = 3M2, and D = −3M2.

This is proved in [19, p. 613].
From here on, we will let p denote an odd prime and we will always assume that the Lucas

sequences U(P,Q) and V (P,Q) are nondegenerate. We will frequently assume that Q = ±1.
In this case, it follows from Theorem 1.11 that D = P 2 − 4Q > 0.

2. Preliminaries and Known Results

We will need the following results and definitions for our main results of this paper.

Theorem 2.1. Consider the Lucas sequence U(P,Q). Let N be a composite odd integer
such that gcd(N,QD) = 1. If N is a strong Lucas pseudoprime, then N is an Euler-Lucas
pseudoprime.

This is proved in Theorem 3 of [1].

Theorem 2.2. Consider the Lucas sequence U(P,Q). Suppose that N is an Euler-Lucas
pseudoprime and N is an Euler pseudoprime to the base Q, where gcd(N,PQD) = 1. Then,
N is a Frobenius pseudoprime.
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Remark 2.3. Let m be a positive odd integer, and let Q = ±1. Then, by the properties of
the Jacobi symbol,

Q(m−1)/2 = (Q/m), (2.1)

and m is always an Euler pseudoprime to the bases 1 and −1.

Corollary 2.4. Consider the Lucas sequence U(P,Q), where Q = ±1. If N is a strong Lucas
pseudoprime, then N is a Frobenius pseudoprime.

Proof. By Theorem 2.1, N is also an Euler-Lucas pseudoprime. The result now follows from
Theorem 2.2 and Remark 2.3. □

Theorem 2.5. Consider the Lucas sequence U(P,Q). Suppose that N is an Euler-Lucas
pseudoprime and N is a Frobenius pseudoprime, where gcd(N,PQD) = 1. Then, N is an
Euler pseudoprime to the base Q.

Theorem 2.6. Consider the Lucas sequence U(P,Q). Suppose that N is a Frobenius pseudo-
prime and N is an Euler pseudoprime to the base Q, where gcd(N, 2PQD) = 1. Then, N is
an Euler-Lucas pseudoprime.

Theorem 2.7. Consider the Lucas sequence U(P,Q). Suppose that N is a square free
Dickson pseudoprime of the second kind and N is an Euler pseudoprime to the base Q, where
gcd(N,QD) = 1. Then, N is an Euler-Lucas pseudoprime.

Theorems 2.2, 2.5, and 2.7 are proved in [15], and Theorem 2.6 is proved in Theorem 5
of [1].

Theorem 2.8. Consider the Lucas sequence U(P,Q), where Q = ±1. Let N > 1 be an odd
integer such that gcd(N,PD) = 1. If N is a square free Dickson pseudoprime of the second
kind, then N is a Frobenius pseudoprime.

Proof. By Theorem 2.7 and Remark 2.3, N is an Euler-Lucas pseudoprime. It now follows by
Theorem 2.2 that N is a Frobenius pseudoprime. □

Rotkiewicz [16] proved Theorem 2.8 for the case in which U(P,Q) is the Fibonacci sequence.
His proof is essentially the same as that given for the proof of Theorem 2.8.

Given the Lucas sequence U(P,Q) and a positive integerm, we define the rank of appearance
ρ(m) to be the least positive integer k such that m | Uk. We say that the prime p is a primitive
prime divisor of Un if ρ(p) = n. We have the following two theorems on primitive prime
divisors.

Theorem 2.9. (Carmichael) Consider the Lucas sequence U(P,Q), where gcd(P,Q) = 1
and D > 0. Then, Un has a primitive prime divisor if n ̸= 1, 2, 3, 6, or 12.

This is proved in Theorem XXIII of [3].

Theorem 2.10. (Bilu, Hanrot, and Voutier) Consider the Lucas sequence U(P,Q), where
gcd(P,Q) = 1. Then, Un has a primitive prime divisor if n > 30.

This is proved in [2].
The following theorem presents well-known properties of the Lucas sequences U(P,Q) and

V (P,Q).

Theorem 2.11. Consider the Lucas sequences U(P,Q) and V (P,Q) with discriminant D.
Let m and n be positive integers.

(i) If gcd(m,Q) = 1, then m | Un if and only if ρ(m) | n.

328 VOLUME 60, NUMBER 4



FROBENIUS, LUCAS, AND DICKSON PSEUDOPRIMES

(ii) If p is an odd prime and p ∤ QD, then p | Up−(D/p).
(iii) If p | D and p ∤ Q, then ρ(p) = p.
(iv) If p ∤ QD, then p | U(p−(D/p))/2 if and only if (Q/p) = 1.
(v) If p ∤ QD, then p | V(p−(D/p))/2 if and only if (Q/p) = −1.
(vi) If gcd(mn,Q) = 1 and m | n, then ρ(m) | ρ(n).
(vii) If p ∤ Q, ρ(pk) = ρ(p), and ρ(pk+1) ̸= ρ(pk), then ρ(pj) = pmax(j−k,0)ρ(p) for j ≥ 1.
(viii) If gcd(m,n) = gcd(mn,Q) = 1, then ρ(mn) = lcm(ρ(m), ρ(n)).
(ix) If p ∤ QD and ρ(p) = m, then p ≡ (D/p) (mod m).

This follows from the results in [13, pp. 53–74], [3] and [8].

Lemma 2.12. Let U(P, Q) and V(P, Q) be Lucas sequences for which 2 ∤ gcd(P,Q).

(i) Suppose P is odd and Q is even. Then, 2 ∤ Un and 2 ∤ Vn for n ≥ 1.
(ii) Suppose P is even and Q is odd. Then, 2 | Un if and only if 2 | n, and 2 | Vn for all

n ≥ 0.
(iii) Suppose P and Q are odd. Then, 2 | Un if and only if 3 | n, and 2 | Vn if and only if

3 | n.
(iv) If ρ(2) exists, then ρ(2) ≤ 3.

This is proved in Lemma 2.10 of [9].

Theorem 2.13. (McDaniel) Consider the Lucas sequences U(P,Q) and V (P,Q), where
gcd(P,Q) = 1. Let m = 2am′ and n = 2bn′ be positive integers, where m′ and n′ are odd and
a, b ≥ 0. Let d = gcd(m,n). Then,

(i) gcd(Um, Un) = |Ud|,
(ii)

gcd(Vm, Vn) =

{
|Vd|, if a = b,

1 or 2, if a ̸= b,

(iii)

gcd(Um, Vn) =

{
|Vd|, if a > b,

1 or 2, if a ≤ b.

This is proved in [10].
Given the positive integer m, the 2-adic valuation of m, denoted by ν2(m), is defined to be

the largest nonnegative integer i such that 2i | m.

Corollary 2.14. Consider the Lucas sequences U(P,Q) and V (P,Q), where gcd(P,Q) = 1.
Let p and q be distinct odd primes.

(i) If ρ(p) is odd, then p ∤ Vn for any n ≥ 0.
(ii) If ν2(p) ̸= ν2(q), then pq ∤ Vn for any n ≥ 0.

Proof. Part (i) follows from Theorem 2.13 (iii), while part (ii) follows from Theorem 2.13
(ii). □

Lemma 2.15. Let U(P,Q) and V (P,Q) be Lucas sequences such that D > 0. Then, |Un| is
strictly increasing for n ≥ 2 and |Vn| is strictly increasing for n ≥ 1. Further, if P > 0, then
Un > 0 for n ≥ 1 and Vn > 0 for n ≥ 0. Moreover, if it is not the case that |P | = Q = 1, then
|U3| ≥ 3.

This follows from Lemma 3 of [5] and Lemma 2.8 of [9].
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Theorem 2.16. Let U(P1, Q1) and V (P1, Q1) be nondegenerate Lucas sequences for which
gcd(P1, Q1) = 1. Let k ≥ 2 and let P = Vk(P1, Q1) and Q = Qk

1. Let D1 = D(P1, Q1) and
D = D(P,Q) be the discriminants of U(P1, Q1) and U(P,Q), respectively. Then, U(P,Q) is
also a nondegenerate Lucas sequence for which

Un(P,Q) =
Ukn(P1, Q1)

Uk(P1, Q1)
,

gcd(P,Q) = 1, and D = D1U
2
k (P1, Q1).

This follows from the proof of Lemma 2.20 in [9].

Proposition 2.17. Consider the Lucas sequence U(P,Q). Let N be a Lucas pseudoprime
such that gcd(N,QD) = 1. Let p be a prime such that p | N . Suppose that ρ(pk) = ρ(p) and
ρ(pk+1) ̸= ρ(p). If pi | N , then 1 ≤ i ≤ k.

Proof. Suppose that i > k and pi | N . Then, ρ(pi) | ρ(N) by Theorem 2.11 (vi). It follows by
Theorem 2.11 (vii) that p | ρ(pi). Because N | UN−(D/N), we see that ρ(N) | N − (D/N) by
Theorem 2.11 (i). Thus, gcd(N, ρ(N)) = 1, which contradicts p | ρ(N). □

Proposition 2.18. Consider the Lucas sequence U(P,Q). Let

N =
s∏

i=1

pkii

be an odd composite integer such that gcd(N,QD) = 1. Suppose that N is a Lucas pseudo-

prime. Then, ρ(pkii ) = ρ(pi) for 1 ≤ i ≤ s. If N is also a strong Lucas pseudoprime, then
ν2(ρ(pi)) = ν2(ρ(pj)) for 1 ≤ i < j ≤ s.

Conversely, if N is a Lucas pseudoprime such that ν2(ρ(pi)) = ν2(ρ(pj)) for 1 ≤ i < j ≤ s,
then N is in addition a strong Lucas pseudoprime.

Proof. This follows from Proposition 2.17, the definition of a strong Lucas pseudoprime, and
the discussion on page 1397 of [1]. □

Corollary 2.19. Consider the Lucas sequence U(P,Q). Let N be a Lucas pseudoprime for
which gcd(N,DQ) = 1. Then, N is a strong Lucas pseudoprime if ρ(N) is odd.

Proof. By Theorem 2.11 (vi), if p | N , then ρ(p) | ρ(N). The result now follows from Propo-
sition 2.18. □

Definition 2.20. Consider the Lucas sequence U(P,Q). Let N be a positive composite odd
integer such that gcd(N,QD) = 1. Then, N is called a super Lucas pseudoprime if each divisor
of N greater than 1 is a prime or a Lucas pseudoprime.

Remark 2.21. It is immediately seen that each composite divisor of a super Lucas pseudo-
prime is also a super Lucas pseudoprime. If N is a Lucas pseudoprime that is a product of
exactly two distinct odd primes, then N is a super Lucas pseudoprime, because its only proper
divisors greater than 1 are primes. Such super Lucas pseudoprimes are not that interesting.
Phong [12] proved that there exist infinitely many super Lucas pseudoprimes with respect to
an arbitrary Lucas sequence U(P,Q) having exactly three distinct prime divisors. Somer and
Kř́ıžek [18] generalized this result by finding infinitely many super Lucas pseudoprimes with
respect to particular Lucas sequences U(P,Q) that have exactly four distinct prime divisors.
We similarly define a super Frobenius pseudoprime as a positive composite odd integer N for
which each divisor of N greater than 1 is a prime or a Frobenius pseudoprime, etc.
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Theorem 2.22. Consider the Lucas sequence U(P,Q). Let p1, p2, . . . , ps be distinct odd

primes each relatively prime to QD such that ρ(pmi
i ) = ρ(pi) but ρ(pmi+1

i ) ̸= ρ(pi) for i ∈
{1, . . . , s}. Let

h = lcm(ρ(p1), ρ(p2), . . . , ρ(ps)).

Let N be a composite integer such that

N =
s∏

i=1

pkii ,

where 1 ≤ ki ≤ mi. Then, ρ(N) = h and N is a super Lucas pseudoprime if and only if for
each i = 1, . . . , s,

pi ≡ (D/pi) (mod h). (2.2)

Proof. It follows by Theorem 2.11 (viii) that ρ(N) = h. By Proposition 2.17, a necessary

condition for N to be a super Lucas pseudoprime is that ρ(pkii ) = ρ(pi) for i = 1, . . . , s.
Suppose that (2.2) holds for i ∈ {1, . . . , s}. Let d = pg11 pg22 · · · pgss be a composite divisor of N ,
where 0 ≤ gi ≤ ki for i = 1, . . . , s. To show that d is a Lucas pseudoprime and thus N is a
super Lucas pseudoprime, it suffices, by Theorem 2.11 (i), to establish that

ρ(d) | d− (D/d). (2.3)

Because pi ≡ (D/pi) (mod h) for i = 1, . . . , s, we see by the properties of the Jacobi symbol
that

d ≡
s∏

i=1

(D/pi)
gi ≡

s∏
i=1

(D/pgii ) ≡ (D/d) (mod h), (2.4)

or equivalently,

d− (D/d) ≡ 0 (mod h). (2.5)

Let ρi = ρ
(
pgii

)
. We observe that if gi ≥ 1, then ρ

(
pgii

)
= ρ(pi), otherwise ρ(pgii ) = 1. It now

follows from Theorem 2.11 (viii) that

ρ(d) = lcm(ρ(p1), ρ(p2), . . . , ρ(ps)) | h. (2.6)

It now follows from (2.5) and (2.6) that (2.3) holds. The remainder of the proof of Theorem
2.22 follows from the proof of Theorem 12.25 on pp. 141–142 of [7] and the proof of Lemma 2
of [12]. □

Proposition 2.23. Consider the Lucas sequence U(P,Q), where Q = ±1. Let

N =

s∏
i=1

pkii

be an odd composite integer such that gcd(N,PD) = 1. Suppose that

ρ(pkii ) = ρ(pi) = ρ(p
kj
j ) = ρ(pj) for 1 ≤ i ≤ j ≤ s.

(Note that we allow the possibility that i can equal j.) Then, N is a super strong Lucas
pseudoprime and a super Frobenius Lucas pseudoprime.

Proof. Let d be a positive composite divisor of N . It follows from Theorem 2.11 (ix) and
Theorem 2.22 and its proof that d is a super Lucas pseudoprime. We now see by Proposition
2.18 that d is also a strong Lucas pseudoprime. The result now follows by Corollary 2.4. □
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Theorem 2.24. (Rotkiewicz) Consider the Lucas sequence U(P,Q), where Q = ±1. Then,
there exist infinitely many integers N of the form p1p2, where p1 and p2 are distinct odd
primes, that are simultaneously strong Lucas pseudoprimes and Frobenius pseudoprimes.

This is proved in Theorem 1 of [14].
We observe that if N = p1p2 is a strong Lucas pseudoprime and a Frobenius pseudoprime,

then it is trivially a super strong Lucas pseudoprime and a super Frobenius pseudoprime by
Remark 2.21. In Theorem 2.26 below, given an arbitrary integer C ≥ 3, we will find particular
Lucas sequences U(P,Q) for which there are infinitely many odd integers with exactly C
distinct odd prime divisors that are super strong Lucas pseudoprimes and super Frobenius
pseudoprimes.

Theorem 2.25. Consider the Lucas sequence U(P,Q), where Q = ±1. Let a and b be fixed
coprime positive integers. Then in the arithmetic progression ax+b, there exist infinitely many
integers N that are Frobenius pseudoprimes.

This is proved in Theorem 2 of [14].

Theorem 2.26. Let U(P,Q) be a Lucas sequence for which P > 0, P or Q is odd, gcd(P,Q) =
1, and D > 0. Let D = D2

0D1, where D1 is square free, and suppose that P is odd or P is even
and D1 ≡ 1 (mod 4). Let m be an odd prime or a Lucas pseudoprime of the second kind such
that gcd(m,PQD) = 1, m ̸= 3, and 3 ∤ m if P ≡ Q ≡ 1 (mod 2). Let N = Um. Then, N is
odd. If N is composite, then N is a strong Lucas pseudoprime. In particular, N is composite
if Q is a perfect square or m is a Lucas pseudoprime of the second kind. If N is composite
and m is an odd prime, then N is a super strong Lucas pseudoprime. Furthermore, if Q = 1
or Q = −1 and N is composite, then N is a Frobenius pseudoprime. Moreover, if m is prime
and Q = 1 or Q = −1 and N is composite, then N is a Frobenius pseudoprime.

This follows from the proofs of Theorems 2 and 3 of [17], Lemma 2.12, Theorem 2.22, and
Corollary 2.19.

Theorem 2.27. Consider the Lucas sequence U(P,Q), where gcd(P,Q) = 1. Suppose that
p ≥ 7 and gcd(p, PQD) = 1. Then, |U2p/P | is a super Lucas pseudoprime if it is not the case
that p = 13, P = ±1, and Q = 2.

Proof. Note that P = U2. Thus, by Theorem 2.13 (i), P | U2p. By Theorem 2 of [6], |U2p/P |
is a super Lucas pseudoprime if it is composite. By Theorem 2.10 and the proof of Theorem
3.1 of [9], |U2p/P | is composite if p ≥ 7 and it is not the case that p = 13, P = ±1, and Q = 2.
We observe that |U26(±1, 2)| = 181, which is prime. □

3. Main Results

We now present our main results.

Theorem 3.1. Let U(P,Q) be a Lucas sequence for which P > 0, P is odd, gcd(P,Q) = 1,
and D > 0. Let m be an odd prime or a Frobenius pseudoprime such that gcd(m,PQD) = 1,
m ̸= 3, and 3 ∤ m if Q is odd. Let N = U2m/P . Then, N is a Lucas pseudoprime.

Proof. We note that m is odd and m ≥ 5. By Lemma (i), U2m/P = UmVm/P . Because
V1 = P , we see by Theorem 2.13 (ii) and Lemma 2.15 that P | Vm, Um > 0, and Vm > 0. By
Theorem 2.9, Um and U2m both have a primitive prime divisor. Thus, N is composite. By
Lemma 2.12, Um and Vm are odd. Because gcd(P,Q) = 1, P is odd, and D = P 2 − 4Q, it
follows that gcd(2P,D) = 1.
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Noting that m is an odd prime or a Frobenius pseudoprime, we find that

Um ≡ (D/m) (mod m) and Vm ≡ P (mod m).

Thus,

U2m/P = Um(Vm/P ) ≡ (D/m)PP−1 ≡ (D/m) (mod m).

Then,

m | U2m/P − (D/m) and 2 | U2m/P − (D/m),

because U2m/P is odd. Consequently,

2m | U2m/P − (D/m).

Therefore, by Proposition 1.1 (iii),

N = U2m/P | U2m | UN−(D/m).

To complete the proof, we need to show that (D/m) = (D/N). We note thatD = P 2−4Q ≡
1 (mod 4). Using the binomial theorem to expand the expression for U2m given by the Binet
formula in (1.4), we obtain

U2m ≡ 2m(P/2)2m−1 ≡ m(2−1)2m−2P 2m−1 (mod D).

Hence,

N = U2m/P ≡ m(2−1P )2(m−1) (mod D). (3.1)

It now follows from (3.1) and the properties of the Jacobi symbol that

(D/N) = (N/D) = (m/D)((2−1P )2(m−1)/D) = (m/D) = (D/m).

The result now follows. □

Theorem 3.1 was proved in Theorem 3 of [11] for the case in which U(P,Q) is the Fibonacci
sequence and in Theorem 1 of [17] for the case in which P = 1.

Theorem 3.2. Consider the Lucas sequences U(P,Q) and V (P,Q), where Q = ±1. Let N
be a Lucas pseudoprime such that gcd(N,D) = 1 and N is not a strong Lucas pseudoprime.
Suppose that 2k ∥ ρ(N), where 2k ∥ m means that 2k | m but 2k+1 ∤ m.

(i) If Q = −1, then N is a Frobenius pseudoprime if and only if N ≡ (D/N) (mod 2k+1)
and (D/N) = 1.

(ii) If Q = 1, then N is a Frobenius pseudoprime if and only if N ≡ (D/N) (mod 2k+1).

Proof. We will treat cases (i) and (ii) together. By Theorems 2.2 and 2.6 and Remark 2.3, N
is a Frobenius pseudoprime if and only if N is an Euler-Lucas pseudoprime. Because N is a
Lucas pseudoprime that is not a strong Lucas pseudoprime, it follows from Corollary 2.19 that
k ≥ 1. Moreover, by Proposition 2.18 and Corollary 2.14 (ii), N ∤ Vn for any n ≥ 0. Thus, N
is an Euler-Lucas pseudoprime if and only if

(Q/N) = 1 and N | U(N−(D/N))/2. (3.2)

By Theorem 2.11 (i), (3.2) can occur if and only if (Q/N) = 1 and

ρ(N) | (N − (D/N))/2. (3.3)

Because N is a Lucas pseudoprime, we observe that

N | UN−(D/N). (3.4)
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Because 2k ∥ ρ(N) and ρ(N) | N − (D/N) by (3.4) and Theorem 2.11 (i), it follows from (3.3)
that N will be an Euler-Lucas pseudoprime if and only if

N ≡ (D/N) (mod 2k+1), (3.5)

which implies that

N ≡ (D/N) (mod 4). (3.6)

We note by the properties of the Jacobi symbol that if Q = −1, then (Q/N) = 1 if and only
if N ≡ 1 (mod 4). Because (1/N) = 1, we now see by (3.2), (3.5), and (3.6) that N is an
Euler-Lucas pseudoprime if and only if (Q/N) = 1. By Theorem 2.22, we see that N is a
super Lucas pseudoprime and

N ≡ (D/N) (mod 2k+1),

and N ≡ 1 (mod 2k+1) when Q = −1. The result now follows. □

Theorem 3.3. Consider the Lucas sequence U(P,Q), where P > 0, P is odd, and Q = ±1.
Suppose that m is an odd prime or a Frobenius pseudoprime such that gcd(m, 6PD) = 1. Let
N = U2m/P . Then, N is a Lucas pseudoprime. Moreover, the following hold:

(i) If Q = −1, then N is a Frobenius pseudoprime if and only if m ≡ (D/m) (mod 6) and
(D/m) = 1.

(ii) If Q = 1, then N is a Frobenius pseudoprime if and only if m ≡ (D/m) (mod 6).

Proof. We will prove parts (i) and (ii) together. Let N = U2m/P . By the proof of Theorem
3.1, N is an integer, N > 0, (D/N) = (D/m), and N is a Lucas pseudoprime. By Theorem
2.9, Um has an odd primitive prime divisor p and U2m has an odd primitive prime divisor
q. So, ρ(U2m) ≤ 2m. Noting that U2 = P and gcd(P,m) = 1, we see that pq | N , which
implies by Proposition 2.18 that ρ(N) = 2m and N is not a strong Lucas pseudoprime. Thus,
21 ∥ ρ(N).

We now show that if m ≡ δ(D/m) (mod 6), where δ ∈ {−1, 1}, then N ≡ δ(D/m) (mod 4).
Because (D/N) = (D/m), the result will now follow from Theorem 3.2. By inspection, one
finds that U(P,Q) is purely periodic modulo 4 with its least period equal to 3 or 6. In
particular, the initial terms of U(P, 1) modulo 4 are

0, 1, P, 0, −P, 3, 0, 1, P, . . . , (3.7)

while the initial terms of U(P,−1) modulo 4 are

0, 1, P, 2, −P, 1, 0, 1, P, . . . . (3.8)

Thus by (3.7) and (3.8), if m ≡ δ(D/m) (mod 6), where δ ∈ {−1, 1}, then

U2m(P,Q)/P ≡ δ(D/m)PP−1 ≡ δ(D/m) (mod 4)

and the theorem follows. □

Theorem 3.3 was proved in Theorem 4 of [11] for the case in which U(P,Q) is the Fibonacci
sequence and in Theorem 8 of [16] for the case in which U(P,Q) is the Fibonacci sequence
and m is an odd prime.

By Theorem 2.24, there exist infinitely many Frobenius pseudoprimes with respect to a
given Lucas sequence U(P,Q), where Q = ±1. As a counterpoint, we have the following
theorem, which follows from Theorems 3.1, 3.3, and 2.25, and from Dirichlet’s theorem on
primes in arithmetic progressions.
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Theorem 3.4. Consider the Lucas sequence U(P,Q), where P > 0, P is odd, and Q = ±1.
Then, there exist infinitely many Lucas pseudoprimes of the form U2p/P that are not Frobenius
pseudoprimes, and there exist infinitely many Lucas pseudoprimes of the form U2m/P , where
m is a Frobenius pseudoprime, which are not Frobenius pseudoprimes.

Theorem 3.4 was proved by Rotkiewicz in Theorem 8 of [16] for the case in which U(P,Q)
is the Fibonacci sequence.

We have the following examples for Theorem 3.3.

Example 3.5. Consider the Lucas sequence U(3,−1) with discriminant 13. By Theorem 3.3 (i)
and inspection, there are 36 odd primes p < 1000 for which 1

3U2p is a Frobenius pseudoprime,
namely,

p =43, 61, 79, 103, 127, 139, 157, 181, 199, 211, 277, 283, 313, 337, 367, 373, 433, 439,

523, 547, 571, 601, 607, 673, 727, 751, 757, 823, 829, 859, 883, 907, 919, 937, 991, 997.

Example 3.6. Consider the Lucas sequence U(7, 1) with discriminant 45 = 32 ·5. By Theorem
3.3 (ii) and inspection, there are 79 odd primes p < 1000 for which 1

7U2p is a Frobenius
pseudoprime, namely,

p =17, 19, 23, 31, 47, 53, 61, 79, 83, 107, 109, 113, 137, 139, 151, 167, 173, 181, 197, 199,

211, 227, 229, 233, 241, 257, 263, 271, 293, 317, 331, 347, 349, 353, 379, 383, 409, 421, 439,

443, 467, 499, 503, 541, 557, 563, 571, 587, 593, 601, 617, 619, 631, 647, 653, 661, 677, 683, 691,

709, 739, 743, 751, 769, 773, 797, 811, 827, 829, 857, 859, 863, 887, 919, 947, 953, 977, 983, 991.

Example 3.7. Consider the Fibonacci sequence U(1,−1) with discriminant 5. By Theorem
3.3 and Table 5 of [16], there are 31 Frobenius pseudoprimes m < 106 for which U2m is a
Frobenius pseudoprime. These are:

m =6721, 13201, 34561, 51841, 64681, 67861, 90061, 96049, 97921,

118441, 146611, 163081, 186961, 197209, 219781, 252601, 257761,

268801, 272611, 302101, 399001, 433621, 438751, 489601, 512461,

520801, 530611, 655201, 741751, 852841, 925681.

Theorem 3.8. Consider the Lucas sequence U(P,Q), where Q = ±1. Let N be an odd prime
or a Lucas pseudoprime such that gcd(N,D) = 1. Then, N2 is a Dickson pseudoprime of the
second kind.

Proof. Because N is odd, N2 ≡ 1 (mod 4). Note that (D/N2) = 1. By the Binet formulas
(1.4),

VN2−(D/N2)−2Q(N2−(D/N2))/2 = VN2−1−2 = V2(N−1)(N+1)/2−2 = D(U(N−1)(N+1)/2)
2. (3.9)

Because N is a Lucas pseudoprime,

N | UN−(D/N) | U(N−1)(N+1)/2,

which implies that

N2 | (U(N−1)(N+1)/2)
2. (3.10)

It now follows from (3.9) and (3.10) that N2 is a Dickson pseudoprime of the second kind. □
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We note that Theorem 3.8 was proved by Rotkiewicz in the case of the Fibonacci sequence
in Theorem 4 of [16].

In Theorems 3.9 and the examples, we show how to generate many Frobenius pseudoprimes
and Dickson pseudoprimes of the second kind from a given positive integer that is a super
Lucas pseudoprime and a strong Lucas pseudoprime.

Theorem 3.9. Consider the Lucas sequence U(P,Q), where Q = ±1. Let

N =

s∏
i=1

pkii

be an odd prime or an integer that is a super Lucas pseudoprime and a strong Lucas pseudo-
prime, where gcd(N,PD) = 1 and ρ(pkii ) = ρ(pi) < ρ(pki+1

i ) for i ∈ {1, 2, . . . , s}. Then, the
following hold:

(i) Each positive composite divisor of N is a super Frobenius pseudoprime that is also a
super strong Lucas pseudoprime. The number of such divisors is equal to

s∏
i=1

(ki + 1)− (s+ 1). (3.11)

(ii) Each positive divisor of N2, which is not a divisor of N , is a super Dickson pseudoprime
of the second kind, but not a Frobenius pseudoprime. The number of such divisors of
N2 is equal to

s∏
i=1

(2ki + 1)−
s∏

i=1

(ki + 1). (3.12)

Proof. (i) If N is a strong Lucas pseudoprime, then by Theorem 2.1, N is an Euler-Lucas
pseudoprime, and hence by Theorem 2.2 and Remark 2.3, N is also a Frobenius pseudoprime.
Let d be any positive composite divisor of N . Then, d is also a super Lucas pseudoprime.
It now follows from Proposition 2.18 and our argument above that d is also a strong Lucas
pseudoprime and a Frobenius pseudoprime. The rest of assertion (i) follows by a simple
counting argument.

(ii) Suppose that d | N2, but d ∤ N . Then by Theorem 2.11 (vii), d is composite and ρ(pm) ̸=
ρ(p) for some prime p such that pm ∥ d, where m ≥ 2. Then, p | ρ(pm) by Theorem 2.11 (vii),
which implies by Proposition 2.17 that d is not a Lucas pseudoprime, and consequently not a
Frobenius pseudoprime.

We show that d is a Dickson pseudoprime of the second kind. Let q be a prime that divides
d. Because N is a super Lucas pseudoprime, we see by Theorem 2.22 that

q ≡ (D/q) (mod ρ(N)). (3.13)

Let d = q1q2 · · · qt, where the qis are primes, possibly repeated. Then,

d− (D/d) = q1 · · · qt − (D/d) ≡ (D/q1) · · · (D/qt)− (D/d)

≡ (D/d)− (D/d) ≡ 0 (mod ρ(N)). (3.14)

Thus, N | Ud−(D/d) by Theorem 2.11 (i). Let

ν2(ρ(N)) = k. (3.15)

Then, 2k | d− (D/d) by (3.14).
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By the Binet formulas (1.4) and because N is an Euler pseudoprime to the base Q, it follows
that

Vd−(D/d) − 2Q(d−(D/d))/2 = DU2
(d−(D/d))/2 = Vd−(D/d) − 2Q(d−1)/2Q(1−(D/d))/2

≡ Vd−(D/d) − 2(Q/d)Q(1−(D/d))/2 (mod d) (3.16)

and

Vd−(D/d) + 2Q(d−(D/d))/2 = V 2
(d−(D/d))/2 = Vd−(D/d) + 2Q(d−1)/2Q(1−(D/d))/2

≡ Vd−(D/d) + 2(Q/d)Q(1−(D/d))/2 (mod d). (3.17)

We will show that if (Q/d) = 1, then N | Ud−(D/d))/2, whereas if (Q/d) = −1, then N |
Vd−(D/d))/2. Recall that d | N2 and gcd(N,D) = 1. Applying (3.16) when (Q/d) = 1 and
applying (3.17) when (Q/d) = −1, it will then follow that d is a Dickson pseudoprime of the
second kind. Suppose that p and q are primes such that pa ∥ N and qb ∥ N . Because N is a
strong Lucas pseudoprime, it follows from Proposition 2.18 and Theorem 2.11 (viii) that

ν2(ρ(p
a)) = ν2(ρ(q

b)) = ν2(ρ(N)) = k. (3.18)

By Proposition 1.1 (i),

Ud−(D/d) = U(d−(D/d))/2V(d−(D/d))/2.

Because N | Ud−(D/d) and ν2(ρ(p
a) = ν2(ρ(q

b) = k, we see by Theorem 2.11 (i) that paqb |
Ud−(D/d))/2 if ν2(d− (D/d)) > k, whereas paqb | Vd−(D/d))/2 if ν2(d− (D/d)) = k.

Let d1 = gcd(Ud−(D/d))/2, Vd−(D/d))/2). Because gcd(N, 2QD) = 1, we observe by Theorem
2.13 (iii) that gcd(d1, N) = 1. It now follows that

N | U(d−(D/d))/2 if and only if 2k+1 | d− (D/d) (3.19)

and

N | V(d−(D/d))/2 if and only if 2k ∥ d− (D/d). (3.20)

By (3.13) and (3.15), we can order the primes q1, . . . , qt, not necessarily distinct, dividing d
so that

qi ≡ (D/qi) + 2k (mod 2k+1)

for i = 1, 2, . . . , ℓ and

qi ≡ (D/qi) (mod 2k+1)

i = ℓ+ 1, . . . , t. Set ℓ = 0 if qi ≡ (D/qi) (mod 2k+1) for i = 1, . . . , t. Then,

d− (D/d) ≡
ℓ∏

i=1

((D/qi) + 2k) ·
t∏

i=ℓ+1

(D/qi)− (D/d)

≡ (D/d)(1 +
ℓ∑

i=1

2k)− (D/d) ≡
ℓ∑

i=1

2k (mod 2k+1). (3.21)

Empty products in (3.21) are interpreted as being equal to 1 and empty sums in (3.21) are
considered to be equal to 0. Thus, 2k ∥ d− (D/d) if and only if ℓ is odd. It now follows from
(3.19) and (3.20) that

N | U(d−(D/d))/2 if and only if ℓ is even, (3.22)

whereas

N | V(d−(D/d))/2 if and only if ℓ is odd. (3.23)
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Noting that if N is an odd prime, then N satisfies congruence (1.9) or congruence (1.10),
it follows that for i = 1, . . . , t we have

(Q/qi) = 1 if and only if U(d−(D/d))/2 ≡ 0 (mod qi), (3.24)

whereas
(Q/qi) = −1 if and only if V(d−(D/d))/2 ≡ 0 (mod qi). (3.25)

Notice that (3.19) and (3.20) both hold if d > 1 is any prime divisor of N2, not just a divisor
of N2 not dividing N . It now follows from (3.19), (3.20), (3.24), and (3.25) that

(Q/qi) = 1 if and only if 2k+1 | d− (D/d), (3.26)

whereas
(Q/qi) = −1 if and only if 2k ∥ d− (D/d) (3.27)

for i = 1, . . . , t. Then,

(Q/d) =
t∏

i=1

(Q/qi) =
ℓ∏

i=1

(−1) ·
t∏

i=ℓ+1

1 = (−1)ℓ. (3.28)

It now follows from (3.28), (3.22), and (3.23) that

(Q/d) = 1 if and only if N | U(d−(D/d))/2, (3.29)

whereas
(Q/d) = −1 if and only if N | V(d−(D/d))/2 (3.30)

for i = 1, . . . , t, as desired. The remainder of part (ii) now follows from a straightforward
counting argument. □

Theorem 3.10. Consider the Lucas sequence U(P,Q), where Q = ±1. Then, there are
infinitely many Dickson pseudoprimes of the second kind that are not Frobenius pseudoprimes.

Proof. Let p be any prime such that p ∤ QD. Suppose that ρ(pk) = ρ(p), but ρ(pk+1) ̸= ρ(p).
Then by Theorem 3.9 (ii) and Proposition 2.17, pi is a Dickson pseudoprime of the second
kind for k + 1 ≤ i ≤ 2k, but pi is not a Lucas pseudoprime. The result now follows. □

Theorem 3.10 was proved by Rotkiewicz in Theorem 9 of [16] for the case in which U(P,Q)
is the Fibonacci sequence.

In the examples below, we illustrate Theorems 3.9 and 3.10 by finding integers N that are
super Frobenius pseudoprimes and super strong Lucas pseudoprimes with a large number of
composite divisors. In Example 3.11, for any two prime divisors p and q of N , ρ(p) = ρ(q),
whereas in Example 3.12, there exist prime divisors p and q of N for which ρ(p) ̸= ρ(q). In
these examples, we make use of factorizations of large Fibonacci numbers given in the website
mersennus.net/fibonacci/f1000.txt .

Example 3.11. Consider the Fibonacci sequence U(1,−1). Let N = p1 · · · p8, where the
primes pi are given by

p1 = 13421, p2 = 93941, p3 = 197273, p4 = 575717, p5 = 844117, p6 = 12239041,

p7 = 17218960634655314412985745259631698569,

p8 = 13396668724917759936969822396834064307947197060095457257.

Then, ρ(pi) = 671 for i = 1, . . . , 8, and by Proposition 2.18 and Theorem 3.9 (i), each of the
28−9 = 247 composite divisors of N is a super Frobenius pseudoprime and super strong Lucas
pseudoprime. Moreover, by Theorem 3.9 (ii), each of the 38 − 28 = 6305 divisors of N2 that
are not divisors of N is a super Dickson pseudoprime of the second kind.
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Example 3.12. Consider the Fibonacci sequence U(1,−1). Let N = p1 · · · p7, where the
primes pi are given by

p1 = 3821263937, p2 = 2089, p3 = 20357, p4 = 36017, p5 = 40193,

p6 = 322073, p7 = 6857029027549.

Then, ρ(p1) = 87 and ρ(pi) = 261 = 3 · 87 for i = 2, 3, . . . , 7. Thus, ρ(N) = 261 by Theorem
2.11 (viii). Furthermore,

pi ≡ (D/pi) ≡ (5/pi) ≡ (pi/5) ≡ 1 (mod 261) for i = 1, . . . , 7.

Therefore, N is a super Lucas pseudoprime by Theorem 2.22. Because N is a Lucas pseudo-
prime, it follows by Proposition 2.18 that N is a strong Lucas pseudoprime. It now follows
from Theorem 3.9 (i) that each of the 27−8 = 120 composite divisors of N is a super Frobenius
pseudoprime and super strong Lucas pseudoprime. Moreover, by Theorem 3.9 (ii), each of the
37 − 27 = 2059 divisors of N2 that are not divisors of N is also a super Dickson pseudoprime
of the second kind.

Example 3.13. Let U(P,Q) be a Lucas sequence, where Q = ±1. Let p be any prime such
that gcd(p, PD) = 1 and ρ(p2) ̸= ρ(p). Then by Theorem 3.9 (ii) and the proof of Theorem
3.10, p2 is a super Dickson pseudoprime of the second kind but not a Frobenius pseudoprime. It
is known that for the Fibonacci sequence U(1,−1), there are no primes p such that ρ(p2) = ρ(p)
for p < 9.7 · 1014 (see [4]).

Now, consider the Lucas sequence U(5639,−1). By inspection, one sees that ρ(194) =
ρ(19) = 6, while ρ(195) = 6 · 19 = 114 ̸= ρ(19). Then by Corollary 2.4, Proposition 2.18,
Theorem 3.9, and the proof of Theorem 3.10, 19i is a super strong Lucas pseudoprime and a
super Frobenius pseudoprime for i = 2, 3, 4, whereas 19i is a super Dickson pseudoprime of
the second kind but not a Frobenius pseudoprime for i = 5, 6, 7, 8.

Let U(P,Q) be a given Lucas sequence, where Q = ±1. Theorem 3.9 states that if N is
a super Lucas pseudoprime and a strong Lucas pseudoprime, then N is a super Frobenius
pseudoprime and N2 is a Dickson pseudoprime of the second kind. By way of contrast,
Example 3.14 gives instances in which N is a Frobenius pseudoprime or N2 is a Dickson
pseudoprime of the second kind, but it is not the case thatN is both a super Lucas pseudoprime
and a strong Lucas pseudoprime.

Example 3.14. Consider the Fibonacci sequence U(1,−1).
(i) By Table 5 of [16], 6721 = 11 · 13 · 47 is a Frobenius pseudoprime. We observe that

ρ(11) = 10, ρ(13) = 7, and ρ(47) = 16. It follows however from Theorem 2.22 and
Proposition 2.18 that 6721 is not a super Lucas pseudoprime and N is not a strong
Lucas pseudoprime.

(ii) By Table 5 of [16], 925681 = 23 · 167 · 241 is a Frobenius pseudoprime. By inspection,
ρ(23) = 24, ρ(167) = 168, and ρ(241) = 120. It now follows that 925681 is not a super
Lucas pseudoprime, but N is a strong Lucas pseudoprime.

(iii) Let N = 377 = 13 · 29. By Table 1 of [16] and by Theorem 3.8, N is a Lucas
pseudoprime and N2 is a Dickson pseudoprime of the second kind. By Table 4 of [16],
4901 = 132 · 29 is also a Dickson pseudoprime of the second kind, but 10933 = 13 · 292
is not a Dickson pseudoprime of the second kind. Thus, N2 is not a super Dickson
pseudoprime of the second kind.

(iv) Let N = p1 · · · p6, where the primes pi are given by

p1 = 541, p2 = 1114769954367361, p3 = 271, p4 = 811, p5 = 42391, p6 = 119611.
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Then, ρ(p1) = 90, ρ(p2) = 135, and ρ(pi) = 270 for i = 3, 4, 5, 6. Thus, by Theorem
2.11 (viii), ρ(N) = 270. By inspection, one sees that

(D/pi) = (5/pi) = (pi/5) = (1/5) = 1

and
pi ≡ (D/pi) ≡ 1 (mod 270)

for i = 1, . . . , 6. Thus, N is a super Lucas pseudoprime by Theorem 2.22. Further,
by Proposition 2.18, N is not a strong Lucas pseudoprime. Moreover, we see that
(D/N) = (5/N) = 1 and N ≡ (D/N) ≡ 1 (mod 4). Noting that 2 ∥ ρ(N) = 270, it
now follows from Theorem 3.2 that N is a Frobenius pseudoprime.

By inspection, one sees that 41 of the composite divisors of N are Frobenius pseudoprimes,
whereas the remaining 16 composite divisors of N are not Frobenius pseudoprimes.

In Theorem 3.9, it was shown that the integer N being a super Lucas pseudoprime and a
strong Lucas pseudoprime guarantees that N is also a super Frobenius pseudoprime and N2

is a super Dickson pseudoprime of the second kind. A necessary condition for N to be a super
Frobenius pseudoprime is for N to be a super Lucas pseudoprime. The following theorem
shows that it is possible for N to be a super Frobenius pseudoprime and N2 to be a super
Dickson pseudoprime of the second kind if N is a super Lucas pseudoprime but not a strong
Lucas pseudoprime.

Theorem 3.15. Consider the Lucas sequence U(P,Q), where Q = ±1. Let

N =

s∏
i=1

pkii

be a super Lucas pseudoprime that is not a strong Lucas pseudoprime, where gcd(N,PD) = 1.

Suppose that ρ(pkii ) = ρ(pi) < ρ(pki+1
i ) for i ∈ {1, 2, . . . , s}. Suppose further that pi ≡

(D/pi) (mod 2ρ(N)) for i ∈ {1, 2, . . . , s}. Then, (Q/pi) = 1. Moreover, if Q = −1, then
pi ≡ 1 (mod 4) and (D/pi) = 1 for i ∈ {1, . . . , s}. Further, the following hold:

(i) Each positive composite divisor of N is a super Frobenius pseudoprime. The number
of such divisors is equal to

s∏
i=1

(ki + 1)− (s+ 1). (3.31)

(ii) Each positive divisor of N2, which is not a divisor of N , is a super Dickson pseudoprime
of the second kind, but not a Frobenius pseudoprime. The number of such divisors of
N2 is equal to

s∏
i=1

(2ki + 1)−
s∏

i=1

(ki + 1). (3.32)

Proof. Because N is a Lucas pseudoprime that is not a strong Lucas pseudoprime, it follows
by Corollary 2.19 that 2 | ρ(N). Suppose that p | N . Then,

p ≡ (D/p) (mod 2ρ(N)) (3.33)

by hypothesis. Hence,
(p− (D/p))/2 ≡ 0 (mod ρ(N)). (3.34)

Because ρ(p) | ρ(N) by Theorem 2.11 (vi), we see from (3.34) that

(p− (D/p))/2 ≡ 0 (mod ρ(p)). (3.35)
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It now follows from Theorem 2.11 (i) that

p | U(p−(D/p))/2,

which implies by Theorem 2.11 (iv) that (Q/p) = 1. If Q = −1, we now see by Euler’s criterion
that p ≡ 1 (mod 4). Because 4 | 2ρ(N), we find by (3.33) that (D/p) = 1 when Q = −1. Let
d > 1 be an integer such that if p | d, then p | N . Let d = q1q2 · · · qt, where the qis are primes,
possibly repeated. In the proof of part (i), we will let d be a composite divisor of N . In the
proof of part (ii), we will let d be a divisor of N2, which is not a divisor of N . By (3.33), our
earlier discussion, and the properties of the Jacobi symbol, we see that

(Q/d) = (Q/q1 · · · qt) = (Q/q1) · · · (Q/qt) = 1t = 1 (3.36)

and

d− (D/d) = q1 · · · qt − (D/d) ≡ (D/q1) · · · (D/qt)− (D/d) ≡ (D/q1 · · · qt)− (D/d)

≡ (D/d)− (D/d) ≡ 0 (mod 2ρ(N)). (3.37)

Thus,
ρ(N) | (d− (D/d))/2, (3.38)

which implies by Theorem 2.11 (i) that

N | U(d−(D/d))/2. (3.39)

We also note that if Q = −1, it follows by a similar argument as that used for the evaluation
of (Q/d) in (3.36) that (D/d) = 1.

(i) Let d be a composite divisor of N . Because d | N , we see by (3.36) and (3.39) that d is
an Euler-Lucas pseudoprime. Hence, by Theorem 2.2 and Remark 2.3, d is a Frobenius
pseudoprime, which yields that N is a super Frobenius pseudoprime. The remainder
of part (i) now follows by a simple counting argument.

(ii) Let d be a divisor of N2, which is not a divisor of N . By the proof of part (ii) of
Theorem 3.9, d is not a Frobenius pseudoprime. By (3.16) in the proof of Theorem
3.9 (ii) and Remark 2.3, we see that

Vd−(D/d) − 2Q(d−(D/d))/2 = DU2
(d−(D/d))/2 = Vd−(D/d) − 2Q(d−1)/2Q(1−(D/d))/2

= Vd−(D/d) − 2(Q/d)Q(1−(D/d))/2 (3.40)

By (3.39), N2 | U2
(d−(D/d))/2. Because d | N2 and (Q/d) = 1 by (3.36), it follows from

(3.40) that d is a super Dickson pseudoprime of the second kind. The rest of part (ii)
follows by a straightforward counting argument.

□

Example 3.16. Consider the Fibonacci sequence U(1,−1). Let N = p1 · · · p4, where the
primes pi are given by

p1 = 3001, p2 = 570601, p3 = 601, p4 = 87129547172401.

Then ρ(p1) = 25, ρ(p2) = 100, and ρ(pi) = 300 for i = 3, 4. Thus, ρ(N) = 300 by Theorem
2.11 (viii). Moreover,

pi ≡ (D/pi) ≡ (5/pi) ≡ (pi/5) ≡ 1 (mod 600) for i = 1, . . . , 4.

Therefore, N is a super Lucas pseudoprime by Theorem 2.22. We observe by Proposition 2.18
that N is not a strong Lucas pseudoprime. It now follows from Theorem 3.15 (i) that each
of the 24 − 5 = 11 composite divisors of N is also a Frobenius pseudoprime. Moreover, by
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Theorem 3.15 (ii), each of the 34 − 24 = 65 divisors of N2 that are not divisors of N is also a
Dickson pseudoprime of the second kind.

The following theorem shows that for special values of P and Q, there exist infinitely many
odd positive odd integers N , each having any prescribed number of distinct prime divisors,
such that for the Lucas sequence U(P,Q), we have that N is a super Frobenius pseudoprime
and a super strong pseudoprime and that N2 is a super Dickson pseudoprime of the second
kind. We let τ(n) denote the number of distinct positive divisors of the positive integer n.
Note that if A is any positive integer greater than 1, then τ(pA−1) = A when p is a prime.
Because τ is a multiplicative function, it follows that if m is any positive integer, then there
exists a positive integer n such that τ(n) = m. Moreover, it is easily seen that if M is any
positive integer, we can choose this positive integer n so that gcd(n,M) = 1.

Theorem 3.17. Let C > 1 be a fixed integer. Let U(P1, Q1) be a nondegenerate Lucas
sequence for which Q1 = ±1. Let D1 be the discriminant of U(P1, Q1). Let k be a positive
integer such that τ(k) = C and gcd(k,D1) = 1. Let P = Vk(P1, Q1) and Q = Qk

1. Then,
U(P,Q) = U(P,±1) is also a nondegenerate Lucas sequence with discriminant

D = D1U
2
k (P1, Q1). (3.41)

Let p > 3 be any prime such that p ∤ kD1. Let di, i = 1, 2, . . . , C, be the distinct positive
divisors of k. Then, Updi(P1, Q1) has an odd primitive prime divisor pi that is also a primitive
prime divisor of Up(P,Q) and which is relatively prime to D. Let N = p1p2 · · · pC . Then,
gcd(N,D) = 1 and N is a super Frobenius pseudoprime and a super strong Lucas pseudoprime
with respect to U(P,Q). Further, N2 is a super Dickson pseudoprime of the second kind with
respect to U(P,Q).

Proof. By Theorem 2.16, U(P,Q) = U(P,±1) is a nondegenerate Lucas sequence with discrim-
inant D = D1U

2
k (P1, Q1). By Theorem 2.9, Updi(P1, Q1) has an odd primitive prime divisor

pi for i = 1, 2, . . . , C. Because p ∤ k, we have that pdi ∤ k. It now follows from Theorem 2.11
(i) that pi ∤ Uk(P1, Q1). Hence,

gcd(N,Uk(P1, Q1)) = 1. (3.42)

We further note that if i ∈ {1, . . . , C}, then by Proposition 1.1 (iii), pi | Upk(P1, Q1), because
pdi | pk. Thus,

N | Upk(P1, Q1). (3.43)

It follows from Theorem 2.11 (i), (iii), and (viii) that if n ≥ 1, then gcd(D1, Un(P1, Q1)) > 1
only if gcd(D1, n) > 1. We note by hypothesis that gcd(D1, pk) = 1. Therefore,

gcd(D1, Upk(P1, Q1)) = 1.

It now follows from (3.43) that gcd(N,D1) = 1. Because D = D1U
2
k (P1, Q1), it then follows

from (3.42) that gcd(N,D) = 1.
We observe by Proposition 1.1 (iii) that

Updi(P1, Q1) | Upk(P1, Q1)

for i = 1, . . . , C. Notice by Theorem 2.16 that

Up(P,Q) =
Upk(P1, Q1)

Uk(P1, Q1)
. (3.44)

Because U1 = 1 and pdi ∤ k for 1 ≤ i ≤ C, it follows from (3.44) and Theorem 2.11 (i) that pi is
a primitive prime divisor of Up(P,Q) for i = 1, . . . , C. Thus, by Corollary 2.4 and Proposition
2.18, N is a super Frobenius pseudoprime and a super strong Lucas pseudoprime with respect
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to U(P,Q). Moreover, by Theorem 3.9 (ii), N2 is a super Dickson pseudoprime of the second
kind with respect to U(P,Q). □
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