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Abstract. We determine all pairs of positive integers (a, b) such that a + b and a × b have
the same decimal digits in reverse order:

(2, 2), (9, 9), (3, 24), (2, 47), (2, 497), (2, 4997), (2, 49997), . . .

Our recursive procedure for constructing such pairs naturally extends to all numerical bases.
We also investigate several phenomena related to the structure of the set of pairs that arise for
a given base, and we give a visual interpretation of our construction in terms of deterministic
finite automata.

1. Introduction

During a homeschool math lesson, the first author’s children made the curious observation
that 9 + 9 = 18 and 9× 9 = 81 — that is, the sum and product are the reverse of each other.
A short computer search revealed the more interesting examples

2 + 47 = 49 and 2× 47 = 94

3 + 24 = 27 and 3× 24 = 72.

Are there other examples of integer pairs (a, b) for which the digits of a+ b are the reverse of
the digits of ab?

To formalize the problem, we say that a base-β representation of a positive integer is in
canonical form if it has no leading zero. A pair of positive integers a ≤ b will be called a
reversed sum-product pair for the base β if the canonical representations of a+ b and ab
in base β are the reverse of each other. We insist that all numbers be written in canonical form
to avoid examples like a = 15 and b = 624 in base 10, for which ab = 9360 and a+ b = 0639.
(Allowing noncanonical representations is also interesting, but we do not address that problem
in this paper.)

We will systematically develop an algorithm for determining all reversed sum-product pairs
(a, b) for a given base β in Section 2–5. For example, in base 10 the complete list is

(2, 2), (9, 9), (3, 24), (2, 47), (2, 497), (2, 4997), (2, 49997), . . .

For another example, consider the base 18, where we use the digits 0, 1, 2, . . . , 9, A,B,C, . . . ,H.
The complete list of reversed sum-product pairs for the base 18 is

(2, 2), (H,H), (3, 37), (4, 25),

(7, 2483D8), (7, 2483D9E483D8), (7, 2483D9E483D9E483D8), . . .

(B, 1961DC5), (B, 1961DBG461DC5), (B, 1961DBG461DBG461DC5), . . .

We will break our discussion of the algorithm for constructing reversed sum-product pairs
into three parts, corresponding to the relative sizes of a, b, and the base β:

• (small b) a ≤ b < β

• (large a) β < a ≤ b

• (small a, large b) a < β < b.

28 VOLUME 61, NUMBER 1



REVERSED SUM-PRODUCT PAIRS

In Section 2, we show that there are only two reversed sum-product pairs when b is small:
(2, 2) and (β − 1, β − 1). In Section 3, we will prove there is no reversed sum-product pair
with large a. For the final case, it will be useful to know that we do not need to “carry” when
computing the sum of a and b; this is proved in Section 4. When a < β < b, we proceed with
a recursive construction. For a fixed choice of a, the technique builds two digits of b at a time.
We describe this algorithm in Section 5, including a careful explanation for the base 10.

A convenient tool for visualizing our recursive construction of reversed sum-product pairs
is the deterministic finite automaton (DFA). In Section 6, we explain how to produce a DFA
for each base β and each positive integer a < β. The accepted strings for this DFA are in
one-to-one correspondence with integers b such that (a, b) is a reversed sum-product pair.
Python code for automating our recursive algorithm and for visualizing this DFA construction
is available at

https://github.com/RationalPoint/reverse.

Next, we turn to a kind of opposite problem. Instead of fixing the numerical base, we fix
a positive integer a and ask for which bases β > a there exists a reversed sum-product pair
containing a. Remarkably, this set has an enormous amount of structure. Let us say that
(2, 2) and (β − 1, β − 1) are the uninteresting reversed sum-product pairs because they are
present for all but the smallest bases β; any other pair is interesting. We prove the following
structure result in Section 7:

Theorem 1.1. Fix a ≥ 2. The set of bases β for which there exists an interesting base-β
reversed sum-product pair (a, b) is the union of a nonzero finite number of arithmetic progres-
sions modulo a2 − 1.

In particular, for a fixed a, the set of bases β for which there exists an interesting base-β
reversed sum-product pair containing a has positive density. We give more precise statements
in Theorem 7.5 and Corollary 7.6, and we calculate this density for a ≤ 10 at the end of
Section 7.

Our investigation led to an intriguing phenomenon that we were unable to fully explain:

Conjecture 1.2. The only bases for which there is no interesting reversed sum-product pair
(a, b) are

2, 3, 4, 5, 6, 7, 8, 9, 12, 15, 21.

Using computer calculation and the tools in Section 7, we have verified that our conjecture
holds for β < 1, 441, 440. We also prove that at least 99.3% of all bases admit an interesting
reversed sum-product pair. This computation is explained in Section 8.

Finally, we note that a phenomenon closely related to reversed sum-product pairs can
be found in “reverse multiples”: integers whose digit reversals are multiples of themselves.
For example, in base 10, the only four-digit reverse multiples are 9 × 1089 = 9801 and
4× 2178 = 8712. Young found a construction of these numbers using special rooted trees
in [6, 7], and Sloane reworked these trees into a DFA construction similar to ours [5], although
the author refers to them as “Young graphs”. See [2] for yet another variation on this theme:
integers n for which some nontrivial multiple permutes the digits of n.
Conventions. Throughout this article, we assume that a ≤ b. If an integer n has base-β
expansion

n = nrβ
r + nr−1β

r−1 + · · ·+ n1β + n0,

we will say that nr is the “first digit” of n and n0 is the “last digit”. If a ≤ b is a reversed
sum-product pair for the base β, then neither one is divisible by β; indeed, the product would
have trailing zeros.
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2. Small b

Suppose that a ≤ b < β is a reversed sum-product pair for the base β. Then, we will show
that exactly one of the following is true:

• (a, b) = (2, 2) and β ≥ 5; or

• (a, b) = (β − 1, β − 1) and β ≥ 3.

Suppose first that a+ b < β. Then, ab and a+ b have a single digit in base β, so ab = a+ b.
Rearranging shows

(a− 1)(b− 1) = 1 =⇒ a = b = 2.

Our hypothesis that a+ b < β now becomes β ≥ 5.
Now suppose that a+ b > β. Since a+ b < 2β, we can write

a+ b = β + x, 1 ≤ x < β. (1)

Since ab is the reverse of a+ b, we have

ab = xβ + 1. (2)

Solving (1) for x and inserting into (2) gives

ab = 1 + aβ + bβ − β2.

Rearranging yields
(β − a)(β − b) = 1.

Since 1 ≤ (β − a), (β − b) < β, we must have a = b = β − 1. Note that this means x = β − 2,
which is a valid first digit only when β ≥ 3.

3. Large a

If a is large, then we expect ab to have more digits than a + b. The next lemma uses this
idea to produce a coarse upper bound for a.

Lemma 3.1. Suppose that a ≤ b is a reversed sum-product pair with a > β. Then, a < 2β
and b < β(β + 1).

Proof. Note that β(a+ b) has one more digit than a+ b in base β. That a+ b and ab have the
same number of digits implies that ab < β(a+ b). Solving for b gives

b <
aβ

a− β
.

The right side is a decreasing function of a, so it is maximized when a = β + 1, which gives
the inequality b < β(β + 1). Since a ≤ b < aβ

a−β , we can solve for a to get a < 2β. □

We now refine the bound in the lemma and conclude there is no reversed sum-product pair
with large a.

Proposition 3.2. Suppose that a ≤ b is a reversed sum-product pair for the base β. Then,
a < β.

Proof. Suppose for the sake of a contradiction that a > β. By Lemma 3.1, we have a < 2β
and b < β(β + 1). For β ≤ 5, we can examine all a ∈ (β, 2β) and b ∈ [a, β(β + 1)) and find
there is no reversed sum-product pair with these constraints.

For the remainder of the proof, we may assume that

β < a < 2β, a ≤ b < β(β + 1), β ≥ 6.
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With these assumptions, we find that a + b < 3β + β2, so that a + b has two or three digits.
We write

a = β + a0 and b = b2β
2 + b1β + b0, (3)

where 0 ≤ ai, bi < β and a0b0 ̸= 0. Note that if b2 ̸= 0, then ab has four digits. So, we may
further assume that b2 = 0. Because a ≤ b, it follows that b1 ≥ 1.

Case a + b has two digits. From (3), we have

a+ b = (1 + b1)β + (a0 + b0),

so the first digit of a+ b is at least 2. Thus,

β

2
(a+ b) ≥ β2 > ab,

since ab must also have two digits. Solving for a gives

a <
bβ

2b− β
.

For b > β, the right side is a decreasing function, so it is maximized by taking b = β + 1. We
then have

a <
bβ

2b− β
≤ β

β + 1

β + 2
< β,

a contradiction.

Case a + b has three digits. From (3), we have

a+ b = (1 + b1)β + (a0 + b0).

As we are assuming a+ b has three digits, we have two subcases to consider:

(I) 1 + b1 ≥ β, or

(II) 1 + b1 = β − 1 and a0 + b0 ≥ β.

In (I) and (II), (3) shows that the product ab satisfies

ab = b1β
2 + (a0b1 + b0)β + a0b0. (4)

In case (I), we must have b1 = β − 1. Using a0, b0 ≥ 1, we obtain the following estimate
from (4):

ab ≥ β3 + 1.

But then ab has at least four digits, a contradiction.
In case (II), we look at the coefficient on β in (4):

a0b1 + b0 = a0(β − 2) + b0 ≥ a0(β − 2) + β − a0 = a0(β − 3) + β.

This is an increasing function of a0. If a0 ≥ 2, then this quantity is at least 2β since β ≥ 6. As
in case (I), we obtain the absurd conclusion that ab has four digits. So, a0 = 1 and b0 = β−1.
This completely determines a and b:

a = β + 1 and b = (β − 2)β + (β − 1).

As a+ b = β2, we do not obtain a reversed sum-product pair. This completes the proof. □
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4. Carries

From grade school arithmetic, we know about “carrying” when computing multidigit sums
and products. Our primary goal for this section is to show that there is no carry when
computing the sum a + b for a reversed sum-product pair (a, b). (Typically there are carries
in the product.) We begin with a careful definition of carry digits and a bound on how big
they can be.

Suppose that a, d are two single-digit numbers, which means 0 ≤ a, d < β. Their sum or
product is at most two digits. If it is two digits, we call the leading digit the carry digit.
Upon adding single-digit numbers, the resulting carry digit is at most 1: a+ d < 2β. If a ≥ 1,
then multiplying these two numbers produces a carry digit that is strictly less than a:

ad ≤ a(β − 1) = (a− 1)β + (β − a).

Now imagine that we are multiplying a single-digit number a by a multidigit number b. A
particular digit of the product ab comes from multiplying a by a single digit of b and adding
the previous carry digit. The new carry digit is still at most a− 1:

ad+ previous carry ≤ a(β − 1) + (a− 1) = (a− 1)β + (β − 1).

Next, we show that the first digit of a+ b does not arise from a carry.

Lemma 4.1. If (a, b) is a reversed sum-product pair for the base β with a < β < b, then b
and a+ b have the same number of digits.

Proof. Assume the number of digits differs. Then, a + b has one more digit than b, and
b = βℓ − c for some ℓ ≥ 2 and c with a > c ≥ 1. Then,

a+ b = βℓ + (a− c) and ab = aβℓ − ac.

The above expression for a + b has first digit 1, last digit a − c, and all other digits 0.
Therefore, the reverse is true for ab:

ab = (a− c)βℓ + 1.

Combining these two expressions for ab and rearranging, we get c(βℓ − a) = 1. Since
βℓ ≥ β2 > a+ 1, this is a contradiction. □

Now, we improve the preceding lemma to show that the computation of a + b involves no
carry at all.

Proposition 4.2. If (a, b) is a reversed sum-product pair for the base β with a < β < b, the
last digit of b is strictly smaller than β − a.

Proof. Write br for the first digit of b, and let d be the first digit of ab. Since ab has the same
number of digits as a+ b, which has the same number of digits as b (Lemma 4.1), we see that
d = abr + λ < β, where λ ≤ a − 1 is the carry from the (r − 1)st place of the product ab. It
follows that d ≥ abr ≥ a.

Write b0 for the last digit of b. Since a ≤ b is a reversed sum-product pair, the last digit of
a + b must be d ≡ a + b0 (mod β). That is, b0 ≡ d − a (mod β). Since d ≥ a, we conclude
that b0 = d− a < β − a. □

In particular, the above proposition shows that a+ b and b have the same first digit, which
we will capitalize on in the next section.

32 VOLUME 61, NUMBER 1



REVERSED SUM-PRODUCT PAIRS

5. Small a, Large b

Suppose that (a, b) is a reversed sum-product pair for the base β, and that a < β < b. Write
the base-β expansion of b as

b = brβ
r + · · ·+ b0.

We begin by determining necessary—although not sufficient—conditions on b0, br. From there,
we will inductively determine two more digits (which may be the same digit if b has an odd
number of digits), and so on. With careful bookkeeping, this procedure will result in only
finitely many states, and we will be able to develop an algorithm for finding all valid reversed
sum-product pairs.

5.1. The Recursion. To recap, we have now determined that if (a, b) is a reversed sum-
product pair for the base β with a < β < b, then

• b and a+ b and ab have the same number of digits;

• b and a+ b have the same first digit; and

• the last digit of b is strictly smaller than β − a.

Recall that we write br, b0 for the first and last digits of b, respectively. Then, we have
0 < b0 < β − a, and the last digit of a+ b is a+ b0. So, the first digit of ab is abr + λ = a+ b0
for some 0 ≤ λ < a corresponding to the carry from the (r− 1)st place of the product. (Here,
λ stands for “left” carry.) The first digit of a + b agrees with br. But, this is also equal to
the last digit of ab, so we have br ≡ ab0 (mod β). Writing ρ for the carry from the units
place—the “right” carry—we obtain the following constraints on the first and last digits of b:

a+ b0 = abr + λ for some 0 ≤ λ < a, (5)

ab0 = br + ρβ for some 0 ≤ ρ < a.

Now, suppose that we have determined the first and last n digits of b for some n > 0. Write
b = · · ·xx′ · · · y′y · · · , where x, y have already been determined and we would like to find x′

and y′. Assume further that we already know the carry into the x-column of the product ab;
let us call it λ. (This will be part of our inductive information.) The product of a with the
rightmost n digits of b determines a carry out of the y-column of ab; call it ρ, so that the
product will have ay′ + ρ (mod β) in the next place to the left. See Figure 1(i).

· · · x · · · y · · ·
λ↶

ρ
↶

(i)

· · · x x′ · · · y′ y · · ·
λ↶ λ′
↶

ρ
↶ρ′

↶

(ii)

Figure 1. An illustration of the carries involved in the beginning and end of
the recursion step of Section 5.1.

Since (a, b) is a reversed sum-product pair, and since the corresponding digit of a+ b is x′, we
find that

ay′ + ρ = x′ + ρ′β for some 0 ≤ ρ′ < a.

To determine the digit of the product ab arising from multiplication by x′, we need to consider
the unknown carry from the middle digits; call it λ′. See Figure 1(ii). The result is ax′ + λ′,
which must agree modulo β with the corresponding digit of a+ b, namely y′. That is,

ax′ + λ′ = y′ + λβ for some 0 ≤ λ′ < a.
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We combine the recursion equations for future reference:

ax′ + λ′ = y′ + λβ for some 0 ≤ λ′ < a, (6)

ay′ + ρ = x′ + ρ′β for some 0 ≤ ρ′ < a.

There are two ways for this construction to terminate: when the left and right sides may be
concatenated, or when the left and right sides overlap in a digit. Suppose we know the first
and last n digits of b for some n ≥ 1. Write b = · · ·x · · · y · · · , where x, y have already been
determined, and suppose that we know the carry λ into the x-column of the product ab and
the carry ρ out of the y-column in the product. The left and right sides may be concatenated
if the carries are compatible (i.e., if λ = ρ). In that case, a and b = · · ·xy · · · are a reversed
sum-product pair.

To understand when the left and right sides may overlap in a digit, we must run the recursion
one more step. With the setup of the previous paragraph, we solve the recursion equations (6)
to obtain x′, y′, λ′, ρ′. If x′ = y′, then we claim that λ′ = ρ and λ = ρ′. To see it, set y′ = x′

in (6) and subtract the two equations. We obtain

λ′ − ρ = (λ− ρ′)β.

Since |λ′ − ρ| < a < β, we must have λ′ = ρ and λ = ρ′, as desired. It follows that the carries
match up so that a and b = · · ·xx′y · · · are a reversed sum-product pair.

To summarize, we have shown that the above procedure can terminate in two ways:

• if λ = ρ at any step, or

• if x′ = y′ in the recursion step.

The recursive procedure begins by fixing a base β and an element a < β. We now give a
useful criterion for detecting some values of a that will never participate in a reversed sum-
product pair for the base β.

Proposition 5.1. Fix β ≥ 2. If (a, b) is a reversed sum-product pair for the base β, then

gcd(β − 1, a− 1) = gcd(β − 1, b− 1) = 1.

Proof. Suppose the expansion of a+ b in base β is

a+ b = nrβ
r + nr−1β

r−1 + · · ·+ n1β + n0.

If (a, b) is a reversed sum-product pair, then the expansion of ab must be

ab = n0β
r + n1β

r−1 + · · ·+ nr−1β + nr.

Reducing modulo β − 1 gives

a+ b ≡ nr + nr−1 + · · ·+ n1 + n0 ≡ ab (mod β − 1).

Massaging this congruence, we find that

(a− 1)(b− 1) ≡ 1 (mod β − 1). □

We close this section by completing the promised description of all reversed sum-product
pairs for the base 10:

Theorem 5.2. If a ≤ b is a reversed sum-product pair for the base 10, then (a, b) is among

(2, 2), (9, 9), (3, 24), (2, 47), (2, 497), (2, 4997), (2, 49997), . . .
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Proof. Section 2 shows that (2, 2) and (9, 9) are the only instances with b < 10. Section 3
shows that any remaining pair must have a < 10 < b.

For each a < 10, we begin by looking for all four-tuples (br, b0, λ, ρ) satisfying (5) with
0 < b0 < 10− a and 0 < br < 10. As each of the variables b0, br, ρ, λ is bounded, there are
only finitely many solutions; we can obtain them by hand or computer calculation. Note that
we do not have to try a = 1, 4, or 7, by Proposition 5.1. The result is given in Table 1.

a br b0 λ ρ

2 4 7 1 1
3 2 4 1 1

Table 1. The solutions to (5) for β = 10 with 0 < br < 10 and 0 < b0 < 10− a.

Let us look at a = 3 first. Any reversed sum-product pair (a, b) must have b = 2 · · · 4 for
some unknown (and possibly nonexistent) digits between the 2 and the 4. The equations (6)
defining the recursion step have no solution, as one can check with a short calculation. Since
λ = ρ = 1 in the first step, we obtain b = 24 as the only solution with a = 3.

Next, we look at a = 2. Any reversed sum-product pair (a, b) must have b = 4 · · · 7. Since
λ = ρ = 1, we obtain a first solution b = 47. The recursion equations (6) have a single solution:
(x′, y′, λ′, ρ′) = (9, 9, 1, 1). Since x′ = y′ = 9, we obtain the value b = 497. Since λ′ = ρ′, we
also obtain the value b = 4997. Finally, note that the recursion equations depend only on λ, ρ;
it follows that (9, 9, 1, 1) is the unique solution obtained by running the recursion again. We
obtain the solutions 49997 and 499997 from the next step of the recursion, and so on. □

6. Deterministic Finite Automata

For a given base β and value a < β, the recursive procedure in Section 5.1 for constructing
digits of the second member of a reversed sum-product pair (a, b) is best visualized using a
DFA. Informally, a DFA is a directed graph with one vertex designated as the “initial state”,
one or more vertices that are “accepting states”, and edge labels from some “alphabet”.
Starting at the initial state of a DFA, we can walk through the graph while writing down the
edge labels we pass. If we stop at an accepting state, then the string of labels we have written
is an “accepted string” for the DFA. See [3, Section 2.2] for the formal definition of a DFA
and many more details. For additional connections between automata and number theory, we
recommend [1] and [4].

Fix integers 1 ≤ a < β. We now describe a method for associating a DFA to this data. The
allowable edge labels (i.e., the “alphabet” in DFA theory) are pairs (x, y) with 0 ≤ x, y < β
as well as singletons (x) for 0 ≤ x < β. We construct three types of states:

• An initial state si;

• An “odd state” so; and

• A “carry state” sλ,ρ for each pair of integers 0 ≤ λ, ρ < a.

The accepting states are {so} ∪ {sλ,λ : 0 ≤ λ < a}. The transitions for our DFA are as
follows:

• For each solution (br, b0, λ, ρ) to (5), we have a transition from the initial state si to
the state sλ,ρ with label (br, b0).

• For each carry state sλ,ρ and each solution (x′, y′, λ′, ρ′) to the recursion equations (6),
we have a transition from sλ,ρ to sλ′,ρ′ with label (x′, y′). If x′ = y′, we also include a
transition from sλ,ρ to the odd state so with label (x′).
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• If β ≥ 5 and a = 2, include a transition from si to so with label (2).

• If β ≥ 3 and a = β − 1, include a transition from si to so with label (β − 1).

Write Aβ,a for the DFA thus constructed.
The definition of our DFA captures the digit-construction process involved in the recursion

in Section 5. We formalize this in the following statement:

Theorem 6.1. For β ≥ 2 and a < β, let A = Aβ,a be the DFA constructed above.

• Suppose that the string (x1, y1)(x2, y2) · · · (xn, yn) is accepted by A for some n ≥ 1.
Then, a and b = x1x2 · · ·xnyn · · · y2y1 are a reversed sum-product pair for the base β.

• Suppose that the string (x1, y1)(x2, y2) · · · (xn, yn)(z) is accepted by A for some n ≥ 0.
Then, a and b = x1x2 · · ·xnzyn · · · y2y1 are a reversed sum-product pair for the base β.

If a ≤ b is a reversed sum-product pair for the base β, then b can be constructed from a string
accepted by A in one of these two ways.

A priori, the number of states in Aβ,a is a2 + 2. In practice, many of these states are
unreachable by a path beginning at the initial state. To avoid these superfluous states, we
will always “lazy construct” the DFA: beginning with solutions to (5), only construct states
as needed to satisfy the recursion. Taking this approach does not affect the set of strings
accepted by the DFA. For example, if (5) has no solution, then only the initial state needs to
be constructed. See Figure 2 for the result of this construction in base 10.

a = 2

si s1,1

so

(4, 7)

(9)

(9, 9)

(2)

a = 3

si s1,1
(2, 4)

a = 9

si so
(9)

a = 1, 4, 5, 6, 7, 8

si

Figure 2. “Lazy constructed” DFAs A10,a for the base 10. It is customary to
draw the initial state with a sourceless inward edge, and the accepting states
are drawn with double circles.

Example 6.2. We look more carefully at the DFA A10,2 in Figure 2 to see how it gives rise to
reversed sum-product pairs. Integers b that make a base-10 reversed sum-product pair with
a = 2 correspond to accepted strings in the DFA. The initial state is si. The accepting states
are s1,1 and so, drawn with double circles. As we walk through the DFA along directed edges,
the edge labels describe how to build b; not from left-to-right, but from out-to-in. Consider the
sequence of states si → s1,1 → s1,1. The state s1,1 is accepting, so we are allowed to stop there.
The associated sequence of edge labels is (4, 7), (9, 9). The first term tells us that b = 4 · · · 7;
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the second term gives b = 4997. Similarly, the sequence of states si → s1,1 → s1,1 → so gives
rise to b = 49997.

Example 6.3. In the introduction, we indicated that the complete list of reversed sum-product
pairs for the base 18 is

(2, 2), (H,H), (3, 37), (4, 25),

(7, 2483D8), (7, 2483D9E483D8), (7, 2483D9E483D9E483D8), . . .

(B, 1961DC5), (B, 1961DBG461DC5), (B, 1961DBG461DBG461DC5), . . .

One can prove this mechanically using the recursive procedure in Section 5.1. But, the patterns
in the two infinite families become less mysterious when we examine the associated DFAs. For
example, Figure 3 illustrates the DFA for a = 7.

si s1,3

s3,5 s1,1

s5,3

s3,1s5,5

(2, 8)

(4, D)

(8, 3)

(3, 8)

(D, 4)

(9, E)

(E, 9)

Figure 3. A deterministic finite automaton for the base 18 with a = 7.

Going around the cycle in the DFA gives an infinite family of values b such that (7, b) is a
reversed sum-product pair for the base 18, as detailed in the list above.

Remark 6.4. Now fix a base β and a positive integer a < β. After constructing the DFA
Aβ,a, we may find that there are states s that do not participate in any accepted string. We
can “trim” all such s from the DFA. As an extreme example, the DFA A150,31 has 13 states
accessible from the initial state, but it has no accepting state. Consequently, we can trim all
states but the initial one. Said another way, there is no base-150 reversed sum-product pair
of the form (31, b).

7. An Opposite Problem

Suppose that (a, b) is a base-β reversed sum-product pair with b > β; this hypothesis rules
out the uninteresting pairs (2, 2) and (β − 1, β − 1). We will say that a participates in a
reversed sum-product pair for the base β, or, for brevity, that a participates for β. So,
a = 2 and a = 3 participate for the base 10, but a = 4 and a = 9 do not.

Example 7.1. For a given a ≥ 2, we claim there are infinitely many bases β for which a
participates. To see it, let T be a variable. Define

b = (T + 1)β + (aT + 1) and β = (a2 − 1)T + a− 1.

Then, (a, b) is a formal reversed sum-product pair for the base β in the sense that

a+ b = (T + 1)β + (aT + a+ 1) and ab = (aT + a+ 1)β + (T + 1).

By setting T equal to a positive integer, we get a reversed sum-product pair in the usual sense
unless a = 2 and T = 1 or 2.
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In the above example, we produced a set of bases β for which a participates; note that
they all lie in the same congruence class modulo a2 − 1. This is a general phenomenon: if a
participates for one base in a congruence class, then it participates for all larger bases in the
same class.

Lemma 7.2. Let a ≥ 2 be an integer, and suppose that a participates for the base β > a.
Then, a also participates for the base β̂ = β + a2 − 1.

Proof. Let b = brβ
r+ · · ·+ b0 be such that (a, b) is a reversed sum-product pair for the base β.

We will take the corresponding solutions to the recursion equations (5) and (6) and construct

new solutions for the base β̂.
The quadruple (br, b0, λ, ρ) satisfies the equations (5). Define

b̂r = br + ρ, b̂0 = b0 + aρ.

Since ρ < a, we see that b̂r < β̂ and b̂0 < β̂ − a. One verifies immediately that the quadruple
(b̂r, b̂0, λ, ρ) satisfies the equations (5) with β̂ in place of β. The carries λ, ρ did not change.

Now suppose that the quadruple (x′, y′, λ′, ρ′) satisfies (6). Define

x̂′ = x′ + λa+ ρ′, ŷ′ = y′ + ρ′a+ λ.

Again, we see that x̂′, ŷ′ < β̂ and the quadruple (x̂′, ŷ′, λ′, ρ′) satisfies (6) with β̂ in place of β.
To complete the proof, we will show that the termination conditions agree; that is, we get

an integer b̂ with the same number of digits as b, and such that (a, b̂) is a reversed sum-product

pair for the base β̂. If the recursion for b terminates because λ = ρ, then clearly the same is
true for b̂ because we used all of the same carries. If instead the recursion terminates because
x′ = y′ at some stage, then we claim that x̂′ = ŷ′. Indeed, we saw in Section 5.1 that x′ = y′

implies that λ = ρ′ and λ′ = ρ. It follows that

x̂′ = x′ + λa+ ρ′ = y′ + ρ′a+ λ = ŷ′.

It follows that the recursion terminates for b̂, as desired. □

Example 7.3. The proof of Lemma 7.2 is constructive. For example, the pair (3, 24) is a
reversed sum-product pair for the base β = 10. Looking back at the proof of Theorem 5.2, we
see that this pair arose from the four-tuple (br, b0, λ, ρ) = (2, 4, 1, 1). Set β̂ = β + a2 − 1 = 18.

The proof of the lemma gives the new four-tuple (b̂r, b̂0, λ̂, ρ̂) = (3, 7, 1, 1), from which we
obtain the new reversed sum-product pair (3, 37) for the base 18.

There is at least one congruence class that contains no base for which a participates.

Lemma 7.4. Suppose there exists a reversed sum-product pair (a, b) for the base β with b > β.
Then β ̸≡ 0 (mod a2 − 1).

Proof. We can write b = brβ
r + · · ·+ b0, with r ≥ 1. Consequently, br and b0 must satisfy the

equations (5) for some choice of λ, ρ. Eliminating b0 from (5) shows that

(a2 − 1)br = a2 − aλ+ ρβ.

If β ≡ 0 (mod a2−1), then reducing this equation modulo a2−1 yields a2 ≡ aλ (mod a2−1).
As a is coprime to a2 − 1, we conclude that λ ≡ a (mod a2 − 1). Since a < a2 − 1, we must
have λ = a, a contradiction. □
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For a positive integer q and an integer 0 ≤ r < q, let us agree to write qN + r for the
arithmetic progression {qn+ r : n = 0, 1, 2, . . .}.

Theorem 7.5. For a ≥ 2, there exists a nonempty set of arithmetic progressions

(a2 − 1)N+ v1, (a2 − 1)N+ v2, . . . , (a2 − 1)N+ vℓ

such that

• 0 < vi < a2 − 1 for all i;

• If a participates for β, then β ∈ (a2 − 1)N+ vi for some i; and

• For each i and each sufficiently large β ∈ (a2 − 1)N+ vi, a participates for β.

Proof. Fix a ≥ 2 and let B be the set of all β ≥ 2 for which a participates. Define v1, . . . , vℓ
to be the set of integers in the interval [0, a2 − 1) that are congruent to some element of B.
Example 7.1 shows that the set {v1, . . . , vℓ} is nonempty. Lemma 7.4 shows that no vi = 0.
The final statement is immediate from Lemma 7.2. □

We can now address the question, “How big is the set of bases for which a given a participates
in a reversed sum-product pair?” To that end, define the limit

Ω(a) = lim
N→∞

1

N
|{2 ≤ β ≤ N : a participates for β}| .

Corollary 7.6. For each a ≥ 2, the limit defining Ω(a) exists and is of the form ℓ/(a2 − 1)
for some integer 1 ≤ ℓ < a2 − 1 that depends on a. In particular, 0 < Ω(a) < 1.

Proof. Let v1, . . . , vℓ be as in the theorem. Then, 1 ≤ ℓ < a2 − 1. For N sufficiently large, we
have

|{2 ≤ β ≤ N : a participates for β}|

=

∣∣∣∣∣
ℓ⋃

i=1

{
(a2 − 1)n+ vi : 1 ≤ n ≤ N

a2 − 1

}∣∣∣∣∣+O(1)

=
ℓ∑

i=1

N

a2 − 1
+O(1) =

ℓN

a2 − 1
+O(1).

Dividing by N and passing to the limit gives the result. □

Example 7.7. We claim that Ω(2) = 1
3 . The theorem shows that all bases β for which a = 2

participates lie in the arithmetic progressions 3Z + 1 or 3Z + 2. We will now argue that
if β ∈ 3Z + 2, then there is no reversed sum-product pair for the base β other than the
uninteresting pair (2, 2). Write β = 3n + 2. Solving the recursion equations (5) for br shows
that 3br = 4 − 2λ + ρβ. Reducing modulo 3 and simplifying gives ρ ≡ λ + 1 (mod 3). The
only solution to this congruence with 0 ≤ λ, ρ < 2 is λ = 0 and ρ = 1. As λ ̸= ρ, we must
continue the recursion. A similar analysis applied to (6) shows that ρ′ = 0 and λ′ = 1. But,
then the equations (6) become

2x′ + 1 = y′,

2y′ + 1 = x′,

which has x′ = y′ = −1 as their unique solution. These are not valid digits in any base. This
contradiction shows that the only reversed sum-product pair for a base β ∈ 3Z+ 2 is (2, 2).
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A similar strategy to the one in Example 7.7 allows us to compute the ratio Ω(a) for any a.
Table 2 gives the first few values. (Given a, the procedure for determining which arithmetic
progressions actually contain bases β for which a participates is implemented in the function
construct generic automata in our Python module.)

a Ω(a) a Ω(a)

2 1/3 ≈ 0.333 7 4/48 ≈ 0.083
3 1/8 = 0.125 8 22/63 ≈ 0.349
4 4/15 ≈ 0.267 9 12/80 = 0.15
5 3/24 = 0.125 10 26/99 ≈ 0.263
6 13/35 ≈ 0.371

Table 2. The value of the ratio Ω(a) for a ≤ 10.

8. Existence of Interesting Pairs

Recall that a reversed sum-product pair (a, b) for the base β is deemed to be interesting
if it is not one of the pairs (2, 2) or (β − 1, β − 1). For a given base β, do we expect to find
any interesting reversed sum-product pair at all? The following propositions provide support
for Conjecture 1.2 in the introduction.

Proposition 8.1. Among all bases β ≥ 2, at least 99.3% of them admit an interesting reversed
sum product-pair.

Proposition 8.2. The only bases β < 1, 441, 440 for which there is no interesting reversed
sum-product pair are

2, 3, 4, 5, 6, 7, 8, 9, 12, 15, 21.

We describe a sieving procedure that will allow us to prove both propositions simultaneously:

(1) Set B = 1, 441, 440, and consider an array of integers from 0 to B − 1.
(2) For each a < 100 such that a2 − 1 divides B, do the following:

(a) Compute v1, . . . , vℓ as described by Theorem 7.5.
(b) For each arithmetic progression (a2 − 1)N + vi, let Ti ≥ 0 be minimal such that

β = (a2 − 1)Ti + vi admits an interesting reversed sum-product pair.
(c) For each t ≥ Ti such that β = (a2 − 1)t+ vi lies in the interval [0, B), cross β off

of our array.
(3) For each β ∈ [0, B) that we have not crossed off yet, run the recursion from Section 5

for each value 2 ≤ a < β. If we find an interesting reversed sum-product pair, cross β
off of our array.

Step (2a) can be accomplished by a “generic” version of the construction in Section 5. Set
β = (a2 − 1)T + v for some fixed 0 < v < a2 − 1. We solve the recursion equations (5) for
integers 0 ≤ λ, ρ < a and with b0, br being linear polynomials in T . Then, we solve (6) for
0 ≤ λ′, ρ′ < a and with x′, y′ being linear polynomials in T . This is implemented in our Python
module in the function construct generic automata (using the language of DFAs).

To determine Ti as in Step (2b), we run the recursion from Section 5 with β = (a2−1)t+vi
for each t = 0, 1, 2, . . . until we find a base for which a participates. By Theorem 7.5, we
eventually find such a t; in practice, some t ≤ 3 always worked. At the end of Step (2), we
find that 1, 431, 542 of the elements of our array have been crossed off. Since a2 − 1 divides
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B for each a used in the computation, Lemma 7.2 tells us that all integers β in each of these
residue classes modulo B admit an interesting reversed sum-product pair. Thus, at least
1,431,542
1,441,440 ≈ 99.31% of all bases admit an interesting pair, which proves Proposition 8.1. This

part of the computation took approximately 5.5 minutes on a Xeon(R) E5-2699 processor
(2.30GHz with 500GB memory).

The construction in Step (3) is implemented in the function construct automata in our
Python module. Applying it, we cross off all remaining entries in the array except for

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 12, 15, 21.

Since β = 0, 1 are not valid numerical bases, we drop these from consideration, thus proving
Proposition 8.2. This step required an additional 1.5 hours of compute time.

Remark 8.3. Trying Step (2) again with the larger parameter B = 53, 542, 288, 800 took 42
hours and gives the improved lower bound of 53497192379

53542288800 ≈ 99.92% in Proposition 8.1. We did
not extend the computation in Step (3) to this larger value of B.
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