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Abstract. Using graph-theoretic techniques, we confirm four sums involving gibonacci poly-
nomials.

1. Introduction

Extended gibonacci polynomials zn(x) are defined by the recurrence zn+2(x) = a(x)zn+1(x)+
b(x)zn(x), where x is an arbitrary integer variable; a(x), b(x), z0(x), and z1(x) are arbitrary
integer polynomials; and n ≥ 0.

Suppose a(x) = x and b(x) = 1. When z0(x) = 0 and z1(x) = 1, zn(x) = fn(x), the
nth Fibonacci polynomial ; and when z0(x) = 2 and z1(x) = x, zn(x) = ln(x), the nth Lucas
polynomial. They can also be defined by the Binet-like formulas. Clearly, fn(1) = Fn, the nth
Fibonacci number; and ln(1) = Ln, the nth Lucas number [1, 2].

In the interest of brevity, clarity, and convenience, we omit the argument in the functional
notation, when there is no ambiguity; so zn will mean zn(x). In addition, we let gn = fn or

ln, and ∆ =
√
x2 + 4.

It follows by the Binet-like formulas that lim
m→∞

1

gm+r
= 0.

1.1. Fundamental Gibonacci Identities. Gibonacci polynomials satisfy the following prop-
erties [2, 5, 6]:

fn+k − fn−k =

{
fnlk, if k is odd;

fkln, otherwise;
(1)

ln+k − ln−k =

{
lkln, if k is odd;

∆2fkfn, otherwise;
(2)

gn+kgn−k − g2n =

{
(−1)n+k+1f2

k , if gn = fn;

(−1)n+k∆2f2
k , otherwise.

(3)

These properties can be established using the Binet-like formulas. They play a pivotal role in
our discourse.

2. Additional Gibonacci Polynomial Sums

With the above tools, we established the following infinite sums in [6], where k is a positive
integer:

∞∑
n=(k+1)/2
k≥1, odd

(
1

g2n−k
− 1

g2n+k

)
=

k∑
r=1

1

g2r−1
. (4)

∞∑
n=k/2+ 1
k≥2, even

(
1

g2n−k
− 1

g2n+k

)
=

k∑
r=1

1

g2r
. (5)
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∞∑
n=(k+1)/2
k≥1, odd

(
1

g2n+1−k
− 1

g2n+1+k

)
=

k∑
r=1

1

g2r
. (6)

∞∑
n=k/2

k≥2, even

(
1

g2n+1−k
− 1

g2n+1+k

)
=

k∑
r=1

1

g2r−1
; (7)

Our objective is to confirm these gibonacci sums using graph-theoretic techniques. To this
end, we now present the needed graph-theoretic tools.

3. Graph-theoretic Tools

Consider the Fibonacci digraph in Figure 1 with vertices v1 and v2, where a weight is assigned
to each edge [2, 3, 4].

Figure 1. Weighted Fibonacci Digraph

It follows from its weighted adjacency matrix M =

[
x 1
1 0

]
that

Mn =

[
fn+1 fn
fn fn−1

]
,

where n ≥ 1 [2, 3, 4]. We can extend the exponent n to 0, which is consistent with the
Cassini-like formula fn+1fn−1 − f2

n = (−1)n [2].
A walk from vertex vi to vertex vj is a sequence vi-ei-vi+1-· · · -vj−1-ej−1-vj of vertices vk

and edges ek, where edge ek is incident with vertices vk and vk+1. The walk is closed if vi = vj ;
and open, otherwise. The length of a walk is the number of edges in the walk. The weight of
a walk is the product of the weights of the edges along the walk.

Let T ∗
n denote the set of closed walks of length n originating at v1 and U∗

n the set of all
closed walks in the digraph. Correspondingly, we let Tn denote the sum of the weights of the
elements in T ∗

n and Un that of those in U∗
n. Then, Tn = fn+1 and Un = fn+1 + fn−1 = ln

[2, 3, 4].
Let A and B denote sets of walks of varying lengths originating at a vertex v. Then, the

sum of the weights of the elements (a, b) in the product set A × B is defined as the product
of the sums of weights from each component. This definition can be extended to any finite
number of such sets [2, 3, 4].

Let C∗ = {u}, where u denotes the walk v1-v1, and D∗ = {v}, where v denotes the walk
v1-v2-v1. Then, the weight of the element in the product set C∗×C∗ is x2 and that in D∗×D∗

is 4. Consequently, the sum w of the weights of the elements in (C∗×C∗)∪ (D∗×D∗) is given
by w = x2 + 4 = ∆2.
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4. Graph-theoretic Confirmations

With the brief background above, we now present the desired graph-theoretic confirmations,
beginning with the confirmation of sum (4). Throughout the discourse, k denotes a positive
integer.

4.1. Confirmation of Equation (4).
Proof. Let k be odd and m,n ≥ (k + 1)/2.

Case 1. Suppose gn = fn. Then, T2n−k−1 = f2n−k, T2n+k−1 = f2n+k, and T2r−2 = f2r−1,
where r ≥ 1.

Consequently, we have
m∑

n=(k+1)/2
k≥1, odd

(
1

T2n−k−1
− 1

T2n+k−1

)
=

m∑
n=(k+1)/2
k≥1, odd

(
1

f2n−k
− 1

f2n+k

)
. (8)

Case 2. Suppose gn = ln. With U2n−k = l2n−k and U2n+k = l2n+k, we have
m∑

n=(k+1)/2
k≥1, odd

(
1

U2n−k
− 1

U2n+k

)
=

m∑
n=(k+1)/2
k≥1, odd

(
1

l2n−k
− 1

l2n+k

)
. (9)

Using the gibonacci pattern exhibited by the right-hand sides of equations (8) and (9), we
conjecture that

m∑
n=(k+1)/2
k≥1, odd

(
1

g2n−k
− 1

g2n+k

)
=

k∑
r=1

1

g2r−1
−

k−1∑
r=0

1

g2m−2r+k
. (10)

Using recursion [2, 5, 6], we will now establish this. To accomplish this, we let Am denote
the left-hand side (LHS) of this equation and Bm its right-hand side (RHS). Then,

Bm −Bm−1 =

k−1∑
r=0

[
1

g2m−2(r+1)+k
− 1

g2m−2r+k

]
=

1

g2m−k
− 1

g2m+k

= Am −Am−1.

With recursion, this implies that

Am −Bm = Am−1 −Bm−1 = · · · = A(k+1)/2 −B(k+1)/2

=

(
1

g1
− 1

g2k+1

)
−

[
k∑

r=1

1

g2r−1
−

k−1∑
r=0

1

g2k−(2r−1)

]
= 0.

Consequently, Am = Bm, as conjectured.

Because lim
m→∞

1

gm+r
= 0, it then follows that

∞∑
n=(k+1)/2
k≥1, odd

(
1

g2n−k
− 1

g2n+k

)
=

k∑
r=1

1

g2r−1
, (11)

as desired. □
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Thus, we have

∞∑
n=(k+1)/2
k≥1, odd

(
1

T2n−k−1
− 1

T2n+k−1

)
=

k∑
r=1

1

T2r−2
;

∞∑
n=(k+1)/2
k≥1, odd

(
1

U2n−k
− 1

U2n+k

)
=

k∑
r=1

1

U2r−1
.

Interesting Consequences. It follows from equation (11) that

∞∑
n=(k+1)/2
k≥1, odd

g2n+k − g2n−k

g2n+kg2n−k
=

k∑
r=1

1

g2r−1
.

With identities (1), (2), and (3), this yields [6]

∞∑
n=(k+1)/2
k≥1, odd

f2nlk
f2
2n + f2

k

=

k∑
r=1

1

f2r−1
;

∞∑
n=(k+1)/2
k≥1, odd

lkl2n
l22n −∆2f2

k

=

k∑
r=1

1

l2r−1
.

Consequently, we have [6]
∞∑
n=1

F2n

F 2
2n + 1

= 1;
∞∑
n=1

L2n

L2
2n − 5

= 1,

respectively.

4.2. Confirmation of Equation (5).

Proof. Let k be even and m,n ≥ k

2
+ 1. With Tn and Un as before, we have

m∑
n=k/2+ 1
k≥2, even

(
1

T2n−k−1
− 1

T2n+k−1

)
=

m∑
n=k/2+ 1
k≥2, even

(
1

f2n−k
− 1

f2n+k

)
.

m∑
n=k/2+ 1
k≥2, even

(
1

U2n−k
− 1

U2n+k

)
=

m∑
n=k/2+ 1
k≥2, even

(
1

l2n−k
− 1

l2n+k

)
.

By invoking recursion [2, 6], we will now confirm that

m∑
n=k/2+ 1
k≥2, even

(
1

g2n−k
− 1

g2n+k

)
=

k∑
r=1

1

g2r
−

k−1∑
r=0

1

g2m−2r+k
. (12)

Letting Am denote the LHS of this equation and Bm its RHS, we then get

Bm −Bm−1 =

k−1∑
r=0

[
1

g2m−2(r+1)+k
− 1

g2m−2r+k

]
=

1

g2m−k
− 1

g2m+k

= Am −Am−1.
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Recursively, this implies

Am −Bm = Am−1 −Bm−1 = · · · = Ak/2+1 −Bk/2+1

=

(
1

g2
− 1

g2k+2

)
−

[
k∑

r=1

1

g2r
−

k−1∑
r=0

1

g2k−2(r−1)

]
= 0.

Consequently, Am = Bm, as expected.

Because lim
m→∞

1

gm+r
= 0, it then follows from equation (12) that

∞∑
n=k/2+ 1
k≥2, even

(
1

g2n−k
− 1

g2n+k

)
=

k∑
r=1

1

g2r
, (13)

confirming equation (5). □

Consequently, we have

∞∑
n=k/2+ 1
k≥2, even

(
1

T2n−k−1
− 1

T2n+k−1

)
=

k∑
r=1

1

T2r−1
;

∞∑
n=k/2+ 1
k≥2, even

(
1

U2n−k
− 1

U2n+k

)
=

k∑
r=1

1

U2r
.

Interesting Implications. It follows from equation (13) that

∞∑
n=k/2+ 1
k≥2, even

g2n+k − g2n−k

g2n+kg2n−k
=

k∑
r=1

1

g2r
.

Using identities (1), (2), and (3), this yields

∞∑
n=k/2+ 1
k≥2, even

fkl2n
f2
2n − f2

k

=

k∑
r=1

1

f2r
;

∞∑
n=k/2+ 1
k≥2, even

∆2fkf2n
l22n +∆2f2

k

=

k∑
r=1

1

l2r
.

It then follows that [6]
∞∑
n=2

l2n
f2
2n − x2

=
l3

f4f2
2

;

∞∑
n=2

f2n
l22n +∆2x2

=
f3
f8

,

respectively.
In particular, we then get [6]

∞∑
n=2

L2n

F 2
2n − 1

=
4

3
;

∞∑
n=2

F2n

L2
2n + 5

=
2

21
,

again respectively.
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4.3. Confirmation of Equation (6).
Proof. Let k be odd and m,n ≥ (k + 1)/2. With Tn and Un as before, we have

m∑
n=(k+1)/2
k≥1, odd

(
1

T2n−k
− 1

T2n+k

)
=

m∑
n=(k+1)/2
k≥1, odd

(
1

f2n+1−k
− 1

f2n+1+k

)
;

m∑
n=(k+1)/2
k≥1, odd

(
1

U2n+1−k
− 1

U2n+1+k

)
=

m∑
n=(k+1)/2
k≥, odd1

(
1

l2n+1−k
− 1

l2n+1+k

)
.

Using the same gibonacci pattern displayed by the right-hand sides of these two equations,
we conjecture that

m∑
n=(k+1)/2
k≥1, odd

(
1

g2n+1−k
− 1

g2n+1+k

)
=

k∑
r=1

1

g2r
−

k−1∑
r=0

1

g2m−(2r−1)+k
. (14)

Letting Am denote the LHS of this equation and Bm its RHS, we can show that Bm−Am =
Am −Am−1 [6]. Recursively, this yields

Am −Bm = Am−1 −Bm−1 = · · · = A(k+1)/2 −B(k+1)/2 = 0.

Thus, Am = Bm, establishing the validity of the conjecture.

Because lim
m→∞

1

gm+r
= 0, equation (14) yields

∞∑
n=(k+1)/2
k≥1, odd

(
1

g2n+1−k
− 1

g2n+1+k

)
=

k∑
r=1

1

g2r
, (15)

as desired. □

This implies

∞∑
n=(k+1)/2
k≥1, odd

(
1

T2n−k
− 1

T2n+k

)
=

k∑
r=1

1

T2r−1
;

∞∑
n=(k+1)/2
k≥1, odd

(
1

U2n+1−k
− 1

U2n+1+k

)
=

k∑
r=1

1

U2r
.

Interesting Consequences. It follows from equation (15) that

∞∑
n=(k+1)/2
k≥1, odd

g2n+1+k − g2n+1−k

g2n+1+kg2n+1−k
=

k∑
r=1

1

g2r
,

where k is odd.
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With equations (1), (2), and (4), this yields [6]

∞∑
n=(k+1)/2
k≥1, odd

f2n+1lk
f2
2n+1 − f2

k

=

k∑
r=1

1

f2r
; (16)

∞∑
n=(k+1)/2
k≥1, odd

l2n+1lk
l22n+1 +∆2f2

k

=

k∑
r=1

1

l2r
. (17)

In particular, we get [6]
∞∑
n=1

f2n+1

f2
2n+1 − 1

=
1

f2
2

;
∞∑
n=1

l2n+1

l22n+1 +∆2
=

1

l2l1
,

respectively.
Consequently, we have [6]

∞∑
n=1

F2n+1

F 2
2n+1 − 1

= 1;
∞∑
n=1

L2n+1

L2
2n+1 + 5

=
1

3
,

again respectively.
Clearly, we can express equations (16) and (17) in terms of Tn and Un:

∞∑
n=(k+1)/2
k≥1, odd

T2nUk

T 2
2n − T 2

k−1

=
k∑

r=1

1

T2r−1
;

∞∑
n=(k+1)/2
k≥1, odd

U2n+1Uk

U2
2n+1 + wT 2

k−1

=
k∑

r=1

1

U2r
,

respectively.
Using identity l2n − ∆2f2

n = 4(−1)n [2], we can rewrite equations (16) and (17) slightly
differently:

∞∑
n=(k+1)/2
k≥1, odd

f2n+1lk
l22n+1 −∆2f2

k + 4
=

1

∆2

k∑
r=1

1

f2r
;

∞∑
n=(k+1)/2
k≥1, odd

l2n+1lk
∆2f2

2n+1 +∆2f2
k − 4

=

k∑
r=1

1

l2r
,

respectively.
In particular, they yield [6]

∞∑
n=1

f2n+1

l22n+1 − x2
=

1

∆2f2
2

;

∞∑
n=1

l2n+1

∆2f2
2n+1 + x2

=
1

l2l1
;

∞∑
n=1

F2n+1

L2
2n+1 − 1

=
1

5
;

∞∑
n=1

L2n+1

5F 2
2n+1 + 1

=
1

3
.

Finally, we confirm equation (7) using graph-theoretic techniques.
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4.4. Confirmation of Equation (7).

Proof. With k even, m,n ≥ k

2
, and Tn and Un as before, we have

m∑
n=k/2

k≥2, even

(
1

T2n−k
− 1

T2n+k

)
=

m∑
n=k/2

k≥2, even

(
1

f2n+1−k
− 1

f2n+1+k

)
;

m∑
n=k/2

k≥2, even

(
1

U2n+1−k
− 1

U2n+1+k

)
=

m∑
n=k/2

k≥2, even

(
1

l2n+1−k
− 1

l2n+1+k

)
.

As before, using the same gibonacci pattern on the right-hand sides of these two equations,
we conjecture that

m∑
n=k/2

k≥2, even

(
1

g2n+1−k
− 1

g2n+1+k

)
=

k∑
r=1

1

g2r−1
−

k−1∑
r=0

1

g2m−(2r−1)+k
. (18)

We can establish its validity using recursion [2, 6]. In the interest of brevity, we omit the proof
[6].

Because lim
m→∞

1

gm+r
= 0, equation (18) yields

∞∑
n=k/2

k≥2, even

(
1

g2n+1−k
− 1

g2n+1+k

)
=

k∑
r=1

1

g2r−1
, (19)

as desired. □

This implies

∞∑
n=k/2

k≥2, even

(
1

T2n−k
− 1

T2n+k

)
=

k∑
r=1

1

T2r−2
;

∞∑
n=k/2

k≥2, even

(
1

U2n+1−k
− 1

U2n+1+k

)
=

k∑
r=1

1

U2r−1
.

Interesting Implications. It follows from equation (19) that

∞∑
n=k/2

k≥2, even

g2n+1+k − g2n+1−k

g2n+1+kg2n+1−k
=

k∑
r=1

1

g2r−1
,

where k is even.
Using equations (1), (2), (4), and (7), this yields [6]

∞∑
n=k/2

k≥2, even

fkl2n+1

f2
2n+1 + f2

k

=

k∑
r=1

1

f2r−1
;

∞∑
n=k/2

k≥2, even

∆2fkf2n+1

l22n+1 −∆2f2
k

=

k∑
r=1

1

l2r−1
.

In particular, using the identity fn+1 + fn−1 = ln [2], we then get [6]
∞∑
n=1

l2n+1

f2
2n+1 + x2

=
l2

f2f3
;

∞∑
n=1

f2n+1

l22n+1 −∆2x2
=

1

l1l3
.
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Consequently, we have [6]
∞∑
n=1

L2n+1

F 2
2n+1 + 1

=
3

2
;

∞∑
n=1

F2n+1

L2
2n+1 − 5

=
1

4
,

respectively.
Finally, using the identity l2n−∆2f2

n = 4(−1)n [2], we can rewrite the four infinite sums above
involving gibonacci polynomials slightly differently. In the interest of brevity, we omit them;
but we encourage gibonacci enthusiasts to pursue them as well as the numeric counterparts of
the resulting sums.
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