ADDITIONAL SUMS INVOLVING GIBONACCI POLYNOMIALS:
GRAPH-THEORETIC CONFIRMATIONS

THOMAS KOSHY

ABSTRACT. Using graph-theoretic techniques, we confirm four sums involving gibonacci poly-
nomials.

1. INTRODUCTION

Ezxtended gibonacci polynomials z,(x) are defined by the recurrence z,2(x) = a(z)znp4+1(x)+
b(x)zn(x), where z is an arbitrary integer variable; a(x), b(x), zo(z), and z;(z) are arbitrary
integer polynomials; and n > 0.

Suppose a(z) = x and b(z) = 1. When zy(z) = 0 and z1(x) = 1, z,(z) = fan(x), the
nth Fibonacci polynomial; and when zo(z) = 2 and z1(z) = z, z,(x) = l,(x), the nth Lucas
polynomial. They can also be defined by the Binet-like formulas. Clearly, f,(1) = F,, the nth
Fibonacci number; and 1,,(1) = Ly, the nth Lucas number [1, 2].

In the interest of brevity, clarity, and convenience, we omit the argument in the functional
notation, when there is no ambiguity; so z, will mean z,(x). In addition, we let g, = f,, or

I, and A = V22 + 4.

1
It follows by the Binet-like formulas that lim

m—=00 Jmtr

=0.

1.1. Fundamental Gibonacci Identities. Gibonacci polynomials satisfy the following prop-
erties [2, 5, 6]:

nle, 1f k is odd;
fn+k - fn—k f F

frln, otherwise;

l » lily, if £ is odd;
n+k — bn—k A2fkfm otherwise;

n+k+1 2 f — .
fk;7 I gn f'flv (3)

2
In+kn—k — 9 .
e " "*k’Azf,?, otherwise.

These properties can be established using the Binet-like formulas. They play a pivotal role in
our discourse.

2. ADDITIONAL GIBONACCI POLYNOMIAL SUMS

With the above tools, we established the following infinite sums in [6], where k is a positive

integer:

i ( S ) = Ek ! (4)
etttz \92n—k  9on+k - 9or—1
k>1, odd

> (k) - x ®
n—k/2+1 9on—k 9on+k r—1 927"
k>2, even
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S oL Ly oyt ®)
netirny2 \92n+1-k  G2nt1+k — gor

k>1, odd

> (i) = X @)
nory2 \92ntl-k  G2ntltk — gar—1’

k>2, even

Our objective is to confirm these gibonacci sums using graph-theoretic techniques. To this
end, we now present the needed graph-theoretic tools.

3. GRAPH-THEORETIC TOOLS

Consider the Fibonacci digraph in Figure 1 with vertices vy and vs, where a weight is assigned
to each edge [2, 3, 4].

FiGURE 1. Weighted Fibonacci Digraph

It follows from its weighted adjacency matriz M = ﬁ (ﬂ that
M" = fn+1 fn ’
[ fn fn—l

where n > 1 [2, 3, 4]. We can extend the exponent n to 0, which is consistent with the
Cassini-like formula fni1fn_1 — f2 = (-1)" [2].

A walk from vertex v; to vertex v; is a sequence v;-€;-v;41-- - - -vj_1-€;_1-v; of vertices vy,
and edges ey, where edge ey, is incident with vertices v;, and vj41. The walk is closed if v; = vj;
and open, otherwise. The length of a walk is the number of edges in the walk. The weight of
a walk is the product of the weights of the edges along the walk.

Let T)' denote the set of closed walks of length n originating at v; and U,; the set of all
closed walks in the digraph. Correspondingly, we let T, denote the sum of the weights of the
elements in 7,7 and U, that of those in U}. Then, T), = fp41 and U, = fry1 + fro1 = I
(2, 3, 4].

Let A and B denote sets of walks of varying lengths originating at a vertex v. Then, the
sum of the weights of the elements (a,b) in the product set A x B is defined as the product
of the sums of weights from each component. This definition can be extended to any finite
number of such sets [2, 3, 4].

Let C* = {u}, where u denotes the walk v;-v;, and D* = {v}, where v denotes the walk
v1-v9-v1. Then, the weight of the element in the product set C* x C* is 2 and that in D* x D*
is 4. Consequently, the sum w of the weights of the elements in (C* x C*) U (D* x D*) is given
by w= 22 +4 = A2

FEBRUARY 2023 43



THE FIBONACCI QUARTERLY

4. GRAPH-THEORETIC CONFIRMATIONS

With the brief background above, we now present the desired graph-theoretic confirmations,
beginning with the confirmation of sum (4). Throughout the discourse, k denotes a positive
integer.

4.1. Confirmation of Equation (4).
Proof. Let k be odd and m,n > (k+1)/2.

Case 1. Suppose ¢gn, = fn. Then, To, 11 = fon—ky Tonsk—1 = fonik, and Tor_o = for_1,
where r > 1.
Consequently, we have
- 1 1 s 1 1
Y o mas)” 2 o wn) )
n=(k+1)/2 2n—k—1 2n+k—1 ne(ht1)/2 2n—k 2n+k
k>1, odd k>1, odd

Case 2. Suppose g, = l,. With Usy,_ = lop— and Usy1k = lop1k, we have

> (o) X (o as) )
n=(k+1)/2 Uan—t Uzni n=(k+1)/2 lon—k  lontk
k>1, 0dd k>1. odd

Using the gibonacci pattern exhibited by the right-hand sides of equations (8) and (9), we
conjecture that

m k
1 1
S ()b ey (10
n=(k+1)/2 92n—k 9on+k g2r—1 92m 2r+k

k>1, odd

Using recursion [2, 5, 6], we will now establish this. To accomplish this, we let A,, denote
the left-hand side (LHS) of this equation and B,, its right-hand side (RHS). Then,

k—1 1 1
Bm - Bmfl = Z |: - :|
r=0

9om—2(r+1)+k  92m—2r+k

B 1 1
92m—k 92m+k
= A, —An_1.
With recursion, this implies that
Am = Bm = Am-1—Bm-1="=A@s1)2 — B(k+1)/2
1 k k—1
B <91 92k+1> [Z:: 92r—1 TZ(:) 92k—(2r— 1)]

= 0.
Consequently, A,, = B,,, as conjectured.

= 0, it then follows that

> k
1 1 1
i (I .
n=(k+1)/2 92n—k 92n+k —1 gor—1

k>1, odd

as desired. 0

Because lim
m—00 gm+7.
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Thus, we have

S () -
Ton—k—1  Tontk—1 = T’

n=(k+1)/2
k>1, odd
k
i ( 1 1 ) 1
n=(kt1)/2 Uon—k U2n+k’ 1 Uzr—1
k>1, 0dd

Interesting Consequences. It follows from equation (11) that

o k
Z 9ontk — Jon—k Z 1
n=(kt1)/2 92n+k92n—k —1 g2r—1
k>1, 0dd

With identities (1), (2), and (3), this yields [6]

k
EOO: _fnle 3 L
2 2 )
n=(k+1)/2 fon + fk —1 far—1

E>1, 0dd
Consequently, we have [6]
oo

— _ Lon
Z R ZL§RE5 = 1

2
n=1 FQ" +1 n=1

k
i Irlon 1
N Z :
n=(k+1)/2 l2n A f r—1 l27"—1
k>1, odd

respectively.

4.2. Confirmation of Equation (5).
k
Proof. Let k be even and m,n > 5 + 1. With T,, and U,, as before, we have

i ( 1 1 ) B i < 1 1 )
Ton+k—1 o Nk fonan )

T Top—k—1

k>2, even k>2, even
m m
> (nma) = 2 (o 5o
nek/2+1 U2n—k U2n+k neh/2 41 l2n—k l2n+k
k>2, even k>2, even

By invoking recursion [2, 6], we will now confirm that
k—1

m k
1 1
E ( > g — = (12)
9on—k 92n+k —1 92r —0 g2m 2r+k

n=k/2+1
k>2, even

Letting A,, denote the LHS of this equation and B,, its RHS, we then get
k—1
1 1
By — Bpn1 = Z |: - :|
=0 L2m—=2(r+1)+k  92m—2r+k
1 1

9o2m—k 9om+k
= A, —Ap—1.
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Recursively, this implies

Am —Bn = Apm1—Bm-1=- =441 _Bk/2+1

< () B 5
92 92k+2 L — 92k 2(r—1)

r=

= 0.

Consequently, A, = By, as expected.

Because lim = 0, it then follows from equation (12) that

m—00 gm+7“

= 1
n—;+ 1 <92n—k 9on+k > Z 927“
k>2, even

confirming equation (5).

Consequently, we have

o0

n=k/2+1
k>2, even

YR
n=k/2+1 Uank U2n+l<: UQT‘ .
k>2, even

Interesting Implications. It follows from equation (13) that

Z 9on+k — ank_zk:l

nek/24+1 92n+k92n—k —1 92r

k>2, even

Using identities (1), (2), and (3), this yields

i filon Jeln Z i A fy. fon
A BT For' A B AR
k>2, cven k>2, cven
It then follows that [6]
i lQn I3 i fon _
<3, - fuf2’ LB+ A%
respectively.
In particular, we then get [6]
i Lo, 4 i By, 2
~F5 -1 3 ~ L5, +5 21

again respectively.

S (plonl) = Nt
Ton—k—1  Tontk—1 = Tyt
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4.3. Confirmation of Equation (6).

Proof. Let k be odd and m,n > (k4 1)/2. With T, and U,, as before, we have

m

Z < 11 )
ne=(kt1)/2 T2nfk T2n+k

k>1, odd

i": < 1 1 >
wetiye \U2nii—k - Usni14k
k>1, odd

m

Z ( 1 1 )
= - ;
ne=(kt1)/2 f2n+17k f2n+1+k
k>1, odd
i < 1 1 )
wetohyye \onti-k lont1ek
k>, oddl

Using the same gibonacci pattern displayed by the right-hand sides of these two equations,

we conjecture that

m

> (e
netiryz \92ntl—k  92n+1+k
k>1, odd

Letting A,, denote the LHS of this equation and B,, its RHS, we can show that B,, — A, =

Ay, — Am—1 [6]. Recursively, this yields

Am —

>:i1_ S S

. (14)
—i —0 J2m—(2r—1)+k

By = Am—1— Bm—1="= A@gs1),2 — Bay1))2 = 0.

Thus, A,, = B, establishing the validity of the conjecture.

Because lim
m—0o0 gm+7“

(e 9]

= 0, equation (14) yields

1 >:i1’

r=1 gar

1
- Z Tor—1’

r=1

> (.
ne(hrnyy2 \92n+1-k  Gon+i+k
k>1, odd
as desired.
This implies
i ( 1 1 )
n=(ht1)/2 T2nfk T2n+k
k>1, odd
i ( 1 1 )
wetitye \U2nt1-k - Uzptitk
k>1, odd

P
- ;UQT‘.

Interesting Consequences. It follows from equation (15) that

o

D

n=(k+1)/2
k>1, odd

where k is odd.
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With equations (1), (2), and (4), this yields [6]

k
OIS (16)
wetiriye P = IR = for
k>1, odd
x o1l AN
2n+1k
— = — (17)
n=(k+1)/2 l%n+1 + A2fl§ ; l
k>1, 0dd
In particular, we get [6]
—  font _ 1 ~ lont _ b
=1 f22n+1 -1 f22’ n—1 l%nﬂ + A2 loly’
respectively.
Consequently, we have [6]
[es) F2n+1 - 1 i L2n+1 _ 1
n=1 F22n+1 -1 n=1 L%n—l—l +5 3

again respectively.
Clearly, we can express equations (16) and (17) in terms of T}, and U,,:

k

R L B L

2 - )
wternye Ten = Ty = Lo
k>l odd

o0 k
Z Uzn+1Uy _ Z 1

2 2 - ’
n=(k+1)/2 U2n+1 + wTk—l r=1 Uar
k>1, odd

respectively.
Using identity 12 — A2f2 = 4(-1)" [2], we can rewrite equations (16) and (17) slightly

differently:

k
- f2n+1lk _ Z i
n=(k+1)/2 l2n+1 Aka +4 —1 for
k>1, odd
0 k
Z lont1ly _ Z 1
=(k+1)/2 f2n+1 + Aka o lor
k>1 odd
respectively.
In particular, they yield [6]
00 f2n+1 _ 1 . Z l2n+1 _ L
n=1 l%n'f‘l — a? A2f22’ A f 2n+1 + 2 l2117
P L Lo 1
= L%nH—l 5 = 5F2n+1+1 3

Finally, we confirm equation (7) using graph-theoretic techniques.
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4.4. Confirmation of Equation (7).
Proof. With k even, m,n > 5 and T, and U, as before, we have
i": < 1 1 > B i < 1 1 ) _
S \Tonk Tonyk S \fmrik fongran/
k>2, even k>2, even

> (o me) © 2 (i)
= Usnyi-k  Uspnyiyk = lons1-k  lons1ik /)

k>2, even k>2, even

As before, using the same gibonacci pattern on the right-hand sides of these two equations,
we conjecture that
m k
1 1
> ( - ) = Z - Z - (18)
notyz  N\Intl-k o Gntltk 1 92r—1 I Gam—(2r—1)+k
k>2,even

We can establish its validity using recursion [2, 6]. In the interest of brevity, we omit the proof
[6].

Because lim
m—0o0 gm+7“

= 0, equation (18) yields

0 k

1 1 1

> (o ) "X 19
nehya  \92n+l-k  Gon+tl+k — -

k>2, even

as desired. O

This implies

S (hn) - S
neh/2 Ton—k T2n+k _ T2r72,
k>2,even

k
> (i) = S
S, \Uani—k Uzngrsk — Uz
k>2, even

Interesting Implications. It follows from equation (19) that

Z 9on+1+k — 92n+1-k Zk: 1

)
neryz  J2nt1+k92n+1—k —1 92r-1
k>2, even

where k is even.
Using equations (1), (2), (4), and (7), this yields [6]

k k
i frlont1 Z I i A? fi, font1 _ Z 1
Sy, f22n+1 + f]? —1 f27'71 ’ S l%n+1 —_ AQf]? — l2r—1
k>2, even k>2, even
In particular, using the identity fn11 + fn—1 = ln [2], we then get [6]
o oo
l2n41 _ b Jont1 _
ot fon i1 + 22 fafs’ — 13,1 — A2 lil3
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Consequently, we have [6]
— Loy 3 Fopyr 1

o0

Fip+1 2 (L35 4

n=1 n=
respectively.

Finally, using the identity [2 — A2 f2 = 4(~1)" [2], we can rewrite the four infinite sums above
involving gibonacci polynomials slightly differently. In the interest of brevity, we omit them:;
but we encourage gibonacci enthusiasts to pursue them as well as the numeric counterparts of

the resulting sums.
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