ADDITIONAL SUMS INVOLVING GIBONACCI POLYNOMIALS REVISITED

THOMAS KOSHY

ABSTRACT. We explore three sums involving gibonacci polynomials and extract their Pell versions.

1. INTRODUCTION

Extended gibonacci polynomials $z_n(x)$ are defined by the recurrence $z_{n+2}(x) = a(x)z_{n+1}(x) + b(x)z_n(x)$, where x is an arbitrary integer variable; a(x), b(x), $z_0(x)$, and $z_1(x)$ are arbitrary integer polynomials; and $n \ge 0$.

Suppose a(x) = x and b(x) = 1. When $z_0(x) = 0$ and $z_1(x) = 1$, $z_n(x) = f_n(x)$, the *n*th *Fibonacci polynomial*; and when $z_0(x) = 2$ and $z_1(x) = x$, $z_n(x) = l_n(x)$, the *n*th *Lucas polynomial*. They can also be defined by the *Binet-like* formulas. Clearly, $f_n(1) = F_n$, the *n*th Fibonacci number; and $l_n(1) = L_n$, the *n*th Lucas number [1, 5].

Pell polynomials $p_n(x)$ and Pell-Lucas polynomials $q_n(x)$ are defined by $p_n(x) = f_n(2x)$ and $q_n(x) = l_n(2x)$, respectively [5].

In the interest of brevity, clarity, and convenience, we omit the argument in the functional notation, when there is no ambiguity; so z_n will mean $z_n(x)$. In addition, we let $g_n = f_n$ or l_n , $b_n = p_n$ or q_n , $\Delta = \sqrt{x^2 + 4}$, $2\alpha(x) = x + \Delta$, $2\beta(x) = x - \Delta$, $E = \sqrt{x^2 + 1}$, $\gamma(x) = x + E$, $\delta(x) = x - E$, $\gamma = \gamma(1)$, and $\delta = \delta(1)$.

It follows by the Binet-like formulas that $\lim_{m \to \infty} \frac{1}{g_m} = 0$ and $\lim_{m \to \infty} \frac{g_{m+k}}{g_m} = \alpha^k(x)$.

1.1. Fundamental Gibonacci Identities. Gibonacci polynomials satisfy the following properties [5, 7]:

$$f_{n+k} - f_{n-k} = \begin{cases} f_n l_k, & \text{if } k \text{ is odd;} \\ f_k l_n, & \text{otherwise;} \end{cases}$$
(1)

$$l_{n+k} - l_{n-k} = \begin{cases} l_k l_n, & \text{if } k \text{ is odd;} \\ \Delta^2 f_k f_n, & \text{otherwise;} \end{cases}$$
(2)

$$l_n^2 - \Delta^2 f_n^2 = 4(-1)^n; (3)$$

$$g_{n+k}g_{n-k} - g_n^2 = \begin{cases} (-1)^{n+k+1}f_k^2, & \text{if } g_n = f_n; \\ (-1)^{n+k}\Delta^2 f_k^2, & \text{otherwise;} \end{cases}$$
(4)

$$g_{n+k+1}g_{n-k} - g_{n+k}g_{n-k+1} = \begin{cases} (-1)^{n+k+1}f_{2k}, & \text{if } g_n = f_n; \\ (-1)^{n+k}\Delta^2 f_{2k}, & \text{otherwise.} \end{cases}$$
(5)

These properties can be confirmed using the Binet-like formulas.

VOLUME 61, NUMBER 1

ADDITIONAL SUMS INVOLVING GIBONACCI POLYNOMIALS REVISITED

1.2. Telescoping Sums. We studied the following telescoping sums in [7]:

$$\sum_{\substack{n=(k+1)/2\\k\ge 1, \, odd}}^{\infty} \left(\frac{1}{g_{2n-k}} - \frac{1}{g_{2n+k}}\right) = \sum_{r=1}^{k} \frac{1}{g_{2r-1}};$$
(6)

$$\sum_{\substack{n=k/2+1\\k\geq 2, \, even}}^{\infty} \left(\frac{1}{g_{2n-k}} - \frac{1}{g_{2n+k}}\right) = \sum_{r=1}^{k} \frac{1}{g_{2r}};$$
(7)

$$\sum_{\substack{n=(k+1)/2\\k\ge 1,\,odd}}^{\infty} \left(\frac{1}{g_{2n+1-k}} - \frac{1}{g_{2n+1+k}}\right) = \sum_{r=1}^{k} \frac{1}{g_{2r}};$$
(8)

$$\sum_{\substack{n=k/2\\k\geq 2, \, even}}^{\infty} \left(\frac{1}{g_{2n+1-k}} - \frac{1}{g_{2n+1+k}} \right) = \sum_{r=1}^{k} \frac{1}{g_{2r-1}}.$$
(9)

The next lemma presents an additional telescoping sum.

Lemma 1. Let k be an odd positive integer. Then,

$$\sum_{\substack{n=(k+1)/2\\k\ge 1,\,\text{odd}}}^{\infty} \left(\frac{g_{2n+1-k}}{g_{2n-k}} - \frac{g_{2n+1+k}}{g_{2n+k}}\right) = \sum_{r=1}^{k} \frac{g_{2r}}{g_{2r-1}} - k\alpha(x).$$
(10)

Proof. Using recursion [5], we will first establish that

$$\sum_{\substack{n=(k+1)/2\\k\geq 1, \, odd}}^{m} \left(\frac{g_{2n+1-k}}{g_{2n-k}} - \frac{g_{2n+1+k}}{g_{2n+k}}\right) = \sum_{r=1}^{k} \frac{g_{2r}}{g_{2r-1}} - \sum_{r=1}^{k} \frac{g_{2m+1+2r-k}}{g_{2m+2r-k}}.$$

To this end, we let A_m denote the left-hand side of this equation and B_m its right-hand side. Then,

$$B_m - B_{m-1} = \sum_{r=1}^k \frac{g_{2m-1+2r-k}}{g_{2m-2+2r-k}} - \sum_{r=1}^k \frac{g_{2m+1+2r-k}}{g_{2m+2r-k}}$$
$$= \frac{g_{2m+1-k}}{g_{2m-k}} - \frac{g_{2m+1+k}}{g_{2m+k}}$$
$$= A_m - A_{m-1}.$$

Recursively, this implies

$$A_m - B_m = A_{m-1} - B_{m-1} = \dots = A_{(k+1)/2} - B_{(k+1)/2}$$
$$= \left(\frac{g_2}{g_1} - \frac{g_{2k+2}}{g_{2k+1}}\right) - \left(\frac{g_2}{g_1} - \frac{g_{2k+2}}{g_{2k+1}}\right)$$
$$= 0.$$

Thus, $A_m = B_m$. Because $\lim_{m \to \infty} \frac{g_{m+k}}{g_m} = \alpha^k(x)$, the given result now follows, as desired.

FEBRUARY 2023

61

THE FIBONACCI QUARTERLY

This lemma has an interesting consequence:

$$\sum_{\substack{n=(k+1)/2\\k\ge 1, \, odd}}^{\infty} \left(\frac{g_{2n-k}}{g_{2n+1-k}} - \frac{g_{2n+k}}{g_{2n+1+k}} \right) = \sum_{r=1}^{k} \frac{g_{2r-1}}{g_{2r}} + k\beta(x).$$
(11)

Coupled with the above identities, the telescoping sums play a major role in our explorations.

2. Additional Gibonacci Polynomial Sums

With the above tools at our disposal, we are now ready for further explorations.

Theorem 1. Let k be an odd positive integer and $i = \sqrt{-1}$. Then,

$$\sum_{\substack{n=(k+1)/2\\k\ge 1, \, odd}}^{\infty} \frac{l_k}{f_{2n}+if_k} = \sum_{r=1}^k \frac{1}{f_{2r-1}} + i\sum_{r=1}^k \frac{f_{2r}}{f_{2r-1}} - ik\alpha(x).$$
(12)

Proof. Using the identity $f_{2n} = f_n l_n$ [5], equations (4), (5), (6), and (10), and k with odd parity, we get

$$\begin{aligned} \frac{l_k}{f_{2n} + if_k} &= \frac{l_k(f_{2n} - if_k)}{f_{2n}^2 + f_k^2} \\ &= \frac{l_k f_{2n} - if_{2k}}{f_{2n+k} f_{2n-k}} \\ &= \frac{f_{2n+k} - f_{2n-k}}{f_{2n+k} f_{2n-k}} - i\left(\frac{f_{2n+k+1} f_{2n-k} - f_{2n+k} f_{2n-k+1}}{f_{2n+k} f_{2n-k}}\right), \\ \sum_{\substack{n=(k+1)/2\\k\ge 1, \, odd}}^{\infty} \frac{l_k}{f_{2n} + if_k} &= \sum_{\substack{n=(k+1)/2\\k\ge 1, \, odd}}^{\infty} \left(\frac{1}{f_{2n-k}} - \frac{1}{f_{2n+k}}\right) + i\sum_{\substack{n=(k+1)/2\\k\ge 1, \, odd}}^{\infty} \left(\frac{f_{2n+1-k}}{f_{2n-k}} - \frac{f_{2n+1+k}}{f_{2n+k}}\right) \\ &= \sum_{r=1}^k \frac{1}{f_{2r-1}} + i\sum_{r=1}^k \frac{f_{2r}}{f_{2r-1}} - ik\alpha(x), \end{aligned}$$

as desired.

In particular, we have

$$\sum_{n=1}^{\infty} \frac{x}{f_{2n} + i} = 1 + i\beta(x);$$

$$\sum_{n=2}^{\infty} \frac{l_3}{f_{2n} + i(x^2 + 1)} = \left(\frac{1}{f_1} + \frac{1}{f_3} + \frac{1}{f_5}\right) + i\left(\frac{f_2}{f_1} + \frac{f_4}{f_3} + \frac{f_6}{f_5}\right) - i3\alpha(x)$$

It then follows that [2]

$$\sum_{n=1}^{\infty} \frac{1}{F_{2n}+i} = 1+i\beta; \qquad \sum_{n=2}^{\infty} \frac{1}{F_{2n}+2i} = \frac{17}{40} + \frac{26-15\sqrt{5}}{40}i.$$

Consequently, we have

VOLUME 61, NUMBER 1

$$\sum_{n=1}^{\infty} \frac{1}{F_{2n} - i} = 1 - i\beta; \qquad \sum_{n=1}^{\infty} \frac{F_{2n}}{F_{2n}^2 + 1} = 1; [7]$$

$$\sum_{n=1}^{\infty} \frac{1}{F_{2n}^2 + 1} = -\beta; [6, 7] \qquad \sum_{n=2}^{\infty} \frac{1}{F_{2n} - 2i} = \frac{17}{40} - \frac{26 - 15\sqrt{5}}{40}i;$$

$$\sum_{n=2}^{\infty} \frac{F_{2n}}{F_{2n}^2 + 4} = \frac{17}{20}; \qquad \sum_{n=2}^{\infty} \frac{1}{F_{2n}^2 + 4} = -\frac{13}{40} + \frac{3\sqrt{5}}{16}.$$

This theorem has an interesting byproduct, as the following corollary shows.

Corollary 1.

$$\sum_{\substack{n=(k+1)/2\\k\ge 1,\,odd}}^{\infty} \frac{l_k}{f_{2n} - if_k} = \sum_{r=1}^k \frac{1}{f_{2r-1}} - i\sum_{r=1}^k \frac{f_{2r}}{f_{2r-1}} + ik\alpha(x).$$
(13)

Adding equations (12) and (13), we get [7]

$$\sum_{\substack{n=(k+1)/2\\k\ge 1,\,odd}}^{\infty} \frac{f_{2n}}{f_{2n}^2 + f_k^2} = \frac{1}{l_k} \sum_{r=1}^k \frac{1}{f_{2r-1}}.$$
(14)

Its validity can be established independently [7] by using the relationship

$$\frac{f_{2n}l_k}{f_{2n}^2 + f_k^2} = \frac{f_{2n+k} - f_{2n-k}}{f_{2n+k}f_{2n-k}},$$

where k is odd.

It follows from equation (14) that [7]

$$\sum_{n=1}^{\infty} \frac{f_{2n}}{f_{2n}^2 + 1} = \frac{1}{l_1}; \qquad \sum_{n=2}^{\infty} \frac{f_{2n}}{f_{2n}^2 + (x^2 + 1)^2} = \frac{1}{l_3} \left(\frac{1}{f_1} + \frac{1}{f_3} + \frac{1}{f_5} \right).$$

Consequently, we have [7]

$$\sum_{n=1}^{\infty} \frac{F_{2n}}{F_{2n}^2 + 1} = 1; [7] \qquad \sum_{n=2}^{\infty} \frac{F_{2n}}{F_{2n}^2 + 4} = \frac{17}{40},$$

respectively.

It also follows by equations (12) and (13) that

$$\sum_{\substack{n=(k+1)/2\\k\ge 1, \text{ odd}}}^{\infty} \frac{1}{f_{2n}^2 + f_k^2} = \frac{1}{f_{2k}} \left[k\alpha(x) - \sum_{r=1}^k \frac{f_{2r}}{f_{2r-1}} \right].$$

This implies

$$\sum_{n=1}^{\infty} \frac{1}{f_{2n}^2 + 1} = -\frac{\beta(x)}{x}; \qquad \sum_{n=1}^{\infty} \frac{1}{F_{2n}^2 + 1} = -\beta,$$

as found earlier.

Using identity (3), we can rewrite equation (14) as

$$\sum_{n=1}^{\infty} \frac{f_{2n}}{l_{2n}^2 + \Delta^2 f_k^2 - 4} = \frac{1}{\Delta^2 l_k} \sum_{r=1}^k \frac{1}{f_{2r-1}},$$

where k is odd. This implies

FEBRUARY 2023

THE FIBONACCI QUARTERLY

$$\sum_{n=1}^{\infty} \frac{F_{2n}}{L_{2n}^2 + 1} = \frac{1}{5}; \qquad \sum_{n=1}^{\infty} \frac{F_{2n}}{L_{2n}^2 + 16} = \frac{17}{200}$$

The next result is an application of identities (2), (4), and (5).

Theorem 2. Let k be an odd positive integer. Then,

$$\sum_{\substack{n=(k+1)/2\\k\ge 1,\,odd}}^{\infty} \frac{l_k}{l_{2n} - \Delta f_k} = \sum_{r=1}^k \frac{1}{l_{2r-1}} + \frac{1}{\Delta} \sum_{r=1}^k \frac{l_{2r}}{l_{2r-1}} - \frac{k\alpha(x)}{\Delta}.$$
(15)

Proof. Using the identity $f_{2n} = f_n l_n$ [5], and equations (2), (4), (5), (6), and (10), we get

$$\begin{aligned} \frac{l_k}{l_{2n} - \Delta f_k} &= \frac{l_k (l_{2n} + \Delta f_k)}{l_{2n}^2 - \Delta^2 f_k^2} \\ &= \frac{l_k l_{2n}}{l_{2n+k} l_{2n-k}} + \frac{\Delta f_{2k}}{l_{2n+k} l_{2n-k}} \\ &= \frac{l_{2n+k} - l_{2n-k}}{l_{2n+k} l_{2n-k}} - \frac{1}{\Delta} \left(\frac{l_{2n+1+k} l_{2n-k} - l_{2n+k} l_{2n+1-k}}{l_{2n+k} l_{2n-k}} \right), \\ \sum_{\substack{n=(k+1)/2\\k\geq 1, \, odd}}^{\infty} \frac{l_k}{l_{2n} - \Delta f_k} &= \sum_{\substack{n=(k+1)/2\\k\geq 1, \, odd}}^{\infty} \left(\frac{1}{l_{2n-k}} - \frac{1}{l_{2n+k}} \right) + \frac{1}{\Delta} \sum_{\substack{n=(k+1)/2\\k\geq 1, \, odd}}^{\infty} \left(\frac{l_{2n+1-k}}{l_{2n-k}} - \frac{l_{2n+1+k}}{l_{2n+k}} \right) \\ &= \sum_{r=1}^k \frac{1}{l_{2r-1}} + \frac{1}{\Delta} \sum_{r=1}^k \frac{l_{2r}}{l_{2r-1}} - \frac{k\alpha(x)}{\Delta}, \end{aligned}$$

as expected.

This theorem also has an interesting implication, as the next corollary shows.

Corollary 2.

$$\sum_{\substack{n=(k+1)/2\\k\ge 1,\,odd}}^{\infty} \frac{l_k}{l_{2n} + \Delta f_k} = \sum_{r=1}^k \frac{1}{l_{2r-1}} - \frac{1}{\Delta} \sum_{r=1}^k \frac{l_{2r}}{l_{2r-1}} + \frac{k\alpha(x)}{\Delta}.$$
 (16)

It follows from equations (15) and (16) that

$$\sum_{n=1}^{\infty} \frac{1}{l_{2n} - \Delta} = \frac{\Delta + l_2 - l_1 \alpha(x)}{\Delta l_1^2}; \qquad \sum_{n=1}^{\infty} \frac{1}{l_{2n} + \Delta} = \frac{\Delta - l_2 + l_1 \alpha(x)}{\Delta l_1^2},$$

respectively. They yield

$$\sum_{n=1}^{\infty} \frac{1}{L_{2n} - \sqrt{5}} = \frac{1 + \sqrt{5}}{2}; \qquad \sum_{n=1}^{\infty} \frac{1}{L_{2n} + \sqrt{5}} = \frac{3 - \sqrt{5}}{2},$$

again respectively.

VOLUME 61, NUMBER 1

It also follows by equations (15) and (16) that [7]

$$\sum_{\substack{n=(k+1)/2\\k\geq 1, \, odd}}^{\infty} \frac{l_{2n}}{l_{2n}^2 - \Delta^2 f_k^2} = \frac{1}{l_k} \sum_{r=1}^k \frac{1}{l_{2r-1}};$$

$$\sum_{\substack{n=(k+1)/2\\k\geq 1, \, odd}}^{\infty} \frac{1}{l_{2n}^2 - \Delta^2 f_k^2} = \frac{1}{\Delta^2 f_{2k}} \left[\sum_{r=1}^k \frac{l_{2r}}{l_{2r-1}} - k\alpha(x) \right].$$
(17)

Consequently, we have

$$\sum_{n=1}^{\infty} \frac{L_{2n}}{L_{2n}^2 - 5} = 1; \qquad \sum_{n=1}^{\infty} \frac{1}{L_{2n}^2 - 5} = \frac{5 - \sqrt{5}}{10}.$$

With identity (3), we can rewrite equation (17) as

$$\sum_{\substack{n=(k+1)/2\\k\geq 1, \, odd}}^{\infty} \frac{l_{2n}}{\Delta^2 \left(f_{2n}^2 - f_k^2\right) + 4} = \frac{1}{l_k} \sum_{r=1}^k \frac{1}{l_{2r-1}}.$$

This implies

$$\sum_{n=1}^{\infty} \frac{l_{2n}}{\Delta^2 f_{2n}^2 - x^2} = \frac{1}{l_1^2}; \qquad \sum_{n=1}^{\infty} \frac{L_{2n}}{5F_{2n}^2 - 1} = 1.$$

The next result invokes the telescoping sums (8) and (11).

Theorem 3. Let k be an odd positive integer and $i = \sqrt{-1}$. Then,

$$\sum_{\substack{i=(k+1)/2\\k\ge 1, \, odd}}^{\infty} \frac{l_k}{l_{2n+1}+i\Delta f_k} = \sum_{r=1}^k \frac{1}{l_{2r}} - \frac{i}{\Delta} \left[\sum_{r=1}^k \frac{l_{2r-1}}{l_{2r}} + k\beta(x) \right].$$
(18)

Proof. Using the identity $f_{2n} = f_n l_n$, and equations (2), (4), (5), (8), and (11), we have

$$\frac{l_k}{l_{2n+1} + i\Delta f_k} = \frac{l_k(l_{2n+1} - i\Delta f_k)}{l_{2n+1}^2 + \Delta^2 f_k^2} \\
= \frac{l_{2n+1+k} - l_{2n+1-k}}{l_{2n+1+k}l_{2n+1-k}} - \frac{i}{\Delta} \left(\frac{l_{2n+1+k}l_{2n-k} - l_{2n+k}l_{2n+1-k}}{l_{2n+1+k}l_{2n+1-k}} \right), \\
\sum_{\substack{n=(k+1)/2\\k\geq 1, \text{ odd}}}^{\infty} \frac{l_k}{l_{2n+1} + i\Delta f_k} = \sum_{\substack{n=(k+1)/2\\k\geq 1, \text{ odd}}}^{\infty} \left(\frac{1}{l_{2n+1-k}} - \frac{1}{l_{2n+1+k}} \right) - \frac{i}{\Delta} \sum_{\substack{n=(k+1)/2\\k\geq 1, \text{ odd}}}^{\infty} \left(\frac{l_{2n-k}}{l_{2n+1-k}} - \frac{l_{2n+k}}{l_{2n+1+k}} \right) \\
= \sum_{r=1}^k \frac{1}{l_{2r}} - \frac{i}{\Delta} \left[\sum_{r=1}^k \frac{l_{2r-1}}{l_{2r}} + k\beta(x) \right],$$
as desired.

as desired.

The next result follows from equation (18).

Corollary 3. Let k be an odd positive integer and $i = \sqrt{-1}$. Then,

$$\sum_{\substack{n=(k+1)/2\\k\ge 1, \, odd}}^{\infty} \frac{l_k}{l_{2n+1} - i\Delta f_k} = \sum_{r=1}^k \frac{1}{l_{2r}} + \frac{i}{\Delta} \left[\sum_{r=1}^k \frac{l_{2r-1}}{l_{2r}} + k\beta(x) \right].$$

FEBRUARY 2023

THE FIBONACCI QUARTERLY

Theorem 3, coupled with Corollary 3, yields [7]

$$\sum_{\substack{n=(k+1)/2\\k\ge 1, \, odd}}^{\infty} \frac{l_{2n+1}}{l_{2n+1}^2 + \Delta^2 f_k^2} = \frac{1}{l_k} \sum_{r=1}^k \frac{1}{l_{2r}}.$$
(19)

This can be confirmed independently [7] using the equation

$$\frac{l_k l_{2n+1}}{l_{2n+1}^2 - (-1)^k \Delta^2 f_k^2} = \frac{l_{2n+1+k} - l_{2n+1-k}}{l_{2n+1+k} l_{2n+1-k}},$$

where k is odd.

It also follows by Theorem 3 and Corollary 3 that

$$\sum_{\substack{n=(k+1)/2\\k\geq 1, \, odd}}^{\infty} \frac{1}{l_{2n+1}^2 + \Delta^2 f_k^2} = \frac{1}{\Delta^2 f_k} \left[\sum_{r=1}^k \frac{l_{2r-1}}{l_{2r}} + k\beta(x) \right].$$

Thus, we have

$$\sum_{n=1}^{\infty} \frac{l_{2n+1}}{l_{2n+1}^2 + \Delta^2} = \frac{1}{l_1 l_2}; \qquad \qquad \sum_{n=1}^{\infty} \frac{L_{2n+1}}{L_{2n+1}^2 + 5} = \frac{1}{3}; \\ \sum_{n=1}^{\infty} \frac{1}{l_{2n+1}^2 + \Delta^2} = \frac{1}{\Delta^2} \left[\frac{l_1}{l_2} + \beta(x) \right]; \qquad \qquad \sum_{n=1}^{\infty} \frac{1}{L_{2n+1}^2 + 5} = \frac{1}{6} - \frac{\sqrt{5}}{10}$$

Using identity (3), we can rewrite equation (19) in a different way:

$$\sum_{\substack{n=(k+1)/2\\k\geq 1, \, odd}}^{\infty} \frac{l_{2n+1}}{\Delta^2 f_{2n+1}^2 + \Delta^2 f_k^2 - 4} = \frac{1}{l_k} \sum_{r=1}^k \frac{1}{l_{2r}}.$$

Consequently, we have

$$\sum_{n=1}^{\infty} \frac{l_{2n+1}}{\Delta^2 f_{2n+1}^2 + \Delta^2 - 4} = \frac{1}{l_1 l_2}; \qquad \sum_{n=1}^{\infty} \frac{L_{2n+1}}{5F_{2n+1}^2 + 1} = \frac{1}{3}$$

3. Pell Implications

Using the relationship $b_n(x) = g_n(2x)$, we can find the Pell versions of gibonacci formulas. For example, those of equations (12), (15), and (18) are:

$$\sum_{\substack{n=(k+1)/2\\k\geq 1, \, odd}}^{\infty} \frac{q_k}{p_{2n}+ip_k} = \sum_{r=1}^k \frac{1}{p_{2r-1}} + i \sum_{r=0}^{k-1} \frac{p_{2r}}{p_{2r-1}} - ik\gamma(x);$$

$$\sum_{\substack{n=(k+1)/2\\k\geq 1, \, odd}}^{\infty} \frac{q_k}{q_{2n}-2Ep_k} = \sum_{r=1}^k \frac{1}{q_{2r-1}} + \frac{1}{2E} \sum_{r=1}^k \frac{q_{2r}}{q_{2r-1}} - \frac{k\gamma(x)}{2E};$$

$$\sum_{\substack{n=(k+1)/2\\k\geq 1, \, odd}}^{\infty} \frac{q_k}{q_{2n+1}+i2Ep_k} = \sum_{r=1}^k \frac{1}{q_{2r}} - \frac{i}{2E} \sum_{r=1}^k \frac{q_{2r-1}}{q_{2r}} - \frac{ik\delta(x)}{2E},$$

respectively.

VOLUME 61, NUMBER 1

They yield

$$\sum_{\substack{n=(k+1)/2\\k\geq 1, \, odd}}^{\infty} \frac{Q_k}{P_{2n}+iP_k} = \frac{1}{2} \sum_{r=1}^k \frac{1}{P_{2r-1}} + \frac{i}{2} \sum_{r=0}^{k-1} \frac{P_{2r}}{P_{2r-1}} - \frac{ik\gamma}{2};$$

$$\sum_{\substack{n=(k+1)/2\\k\geq 1, \, odd}}^{\infty} \frac{Q_k}{Q_{2n}-\sqrt{2}P_k} = \frac{1}{2} \sum_{r=1}^k \frac{1}{Q_{2r-1}} + \frac{\sqrt{2}}{4} \sum_{r=1}^k \frac{Q_{2r}}{Q_{2r-1}} - \frac{\sqrt{2}k\gamma}{4};$$

$$\sum_{\substack{n=(k+1)/2\\k\geq 1, \, odd}}^{\infty} \frac{Q_k}{Q_{2n+1}+i\sqrt{2}P_k} = \frac{1}{2} \sum_{r=1}^k \frac{1}{Q_{2r}} - \frac{i\sqrt{2}}{4} \sum_{r=1}^k \frac{Q_{2r-1}}{Q_{2r}} - \frac{i\sqrt{2}k\delta}{4},$$

again respectively.

4. Chebyshev and Vieta Implications

Finally, we add that Chebyshev polynomials T_n and U_n , Vieta polynomials V_n and v_n , and gibonacci polynomials g_n are linked by the relationships $V_n(x) = i^{n-1}f_n(-ix)$, $v_n(x) = i^n l_n(-ix)$, $V_n(x) = U_{n-1}(x/2)$, and $v_n(x) = 2T_n(x/2)$ [3, 4, 5], where $i = \sqrt{-1}$. They can be employed to find the Chebyshev and Vieta versions of Theorems 1–3. In the interest of brevity, we omit them and encourage gibonacci enthusiasts to explore them.

5. Acknowledgment

The author thanks the reviewer for a careful reading of the article, and for encouraging and supporting words.

References

[1] M. Bicknell, A primer for the Fibonacci numbers: Part VII, The Fibonacci Quarterly, 8.4 (1970), 407–420.

[2] S. Edwards, Solution to Problem B-1180, The Fibonacci Quarterly, 54.4 (2016), 371–372.

[3] A. F. Horadam, Vieta polynomials, The Fibonacci Quarterly, 40.3 (2002), 223–232.

[4] T. Koshy, Vieta polynomials and their close relatives, The Fibonacci Quarterly, 54.2 (2016), 141–148.

- [5] T. Koshy, Fibonacci and Lucas Numbers with Applications, Volume II, Wiley, Hoboken, New Jersey, 2019.
- [6] T. Koshy, Infinite sums involving gibonacci polynomial products, The Fibonacci Quarterly, 59.3 (2021), 237–245.

[7] T. Koshy, Additional sums involving gibonacci polynomials, The Fibonacci Quarterly, 61.1 (2023), 12–20.
 MSC2020: Primary 11B37, 11B39, 11C08.

DEPARTMENT OF MATHEMATICS, FRAMINGHAM STATE UNIVERSITY, FRAMINGHAM, MA 01701 Email address: tkoshy@emeriti.framingham.edu