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Abstract. We generalize the Calkin-Wilf sequence by applying its recursion formula to an
irrational initial value. We prove that if we start with quadratic surd, we will eventually reach
an integer plus our starting value, although we may have to consider the predecessor sequence.
We also find conditions for an integer minus the starting value to appear. In particular, if
we start with

√
n, then m −

√
n appears for some m if and only if there is a solution to the

negative Pell equation.

1. Introduction

The Calkin-Wilf sequence gives a way to enumerate the positive rational numbers. The
sequence can be defined recursively by

x0 = 0, xn+1 =
1

2⌊xn⌋+ 1− xn
n ≥ 0. (1.1)

This produces the sequence of rational numbers{
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The literature often begins the sequence with x1 = 1, in which case the sequence contains
every positive rational number once and only once [2]. The recursion formula (1.1) for the
sequence was actually discovered later by [4].

But the successor function in the recursion formula in (1.1),

f(x) =
1

2⌊x⌋+ 1− x

is defined for all real numbers. So what would happen if we begin the sequence with x0 being
irrational? For example, if we begin with x0 =

√
2, we get the sequence{

√
2,

3 +
√
2

7
,
4 +

√
2

2
,
6 +

√
2

17
,
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√
2

7
,
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√
2

14
, 4 +

√
2,
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√
2

47
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√
2
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√
2
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, . . .

}
.

A curious thing happens. We find that x6 = 4 +
√
2, which is an integer plus the starting x0

value. If we continue the sequence, we find that x102 = 8 +
√
2. Is there an explanation for

this?
The successor function f(x) is also one-to-one and onto R ∪ {∞}. We can compute the

predecessor function

f−1(x) = −2
⌊
−1

x

⌋
− 1− 1

x
.

The easiest way to demonstrate this is to let g(x) = −1/x, and observe that the graph of
g(f(x)) = x − 2⌊x⌋ − 1 is symmetric about the line y = x. Hence g(f(x)) is its own inverse,
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and so f−1(x) = g(f(g(x))). The predecessor function allows us to define xn for negative
subscripts. If x0 = 0, we find that x−1 = ∞, x−2 = −1, and we get the sequence{

. . . ,−5,−1
4
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2
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2
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}
.

It is easy to prove by induction that x−n−1 = −1/xn for all n ≥ 1, using the property that
f−1(x) = g(f(g(x))). This means that by extending the Calkin-Wilf sequence for negative
subscripts, we have an enumeration for Q ∪ {∞}.

On the other hand, if we let x0 =
√
2, we get the predecessor sequence{
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}
.

We find another curiosity, x−2 = 5 −
√
2, which is an integer minus our initial value. Also,

x−26 = 9−
√
2, so this is not an isolated incident.

The goal of this paper is to show that if we start the Calkin-Wilf sequence with a quadratic
surd, there will be an infinite number of times that an integer plus the starting value will appear
in either the successor sequence or the predecessor sequence. We will also give conditions for
which an integer minus the starting value appears in one of the two sequences.

2. The Position Function

There actually is a way of finding the position of a positive rational number q in the Calkin-
Wilf sequence, using the continued fraction representation of q. If

q = a0 +
1

a1 +
1

. . . +
1

an−1 +
1

an

for integers ai, we write q = [a0; a1, a2, . . . an]. We then define

Q(q) = −1 +
n∑

i=0

(−1)n2a0+a1+···+ai . (2.1)

However, for rational numbers, there are two possible continued fraction representations: if
an > 1, then [a0; a1, a2, . . . , an] = [a0; a1, a2, . . . , an − 1, 1]. If we use the form with odd length
(n even), then Q(q) will be a positive number, otherwise Q(q) will be a negative number. So
in (2.1), we use the form in which n is even.

For example, if q = 3/8, then the continued fraction of q is [0; 2, 1, 2]. But this has n = 3,
which is odd, so we use the equivalent form [0; 2, 1, 1, 1]. Then, Q(3/8) = −1 + 20 − 22 + 23 −
24 + 25 = 20. Looking back at the Calkin-Wilf sequence, we find that x20 = 3/8.

We can also find Q(q) by considering the continued fraction representation as the run-length
encoding of a binary number. Working from right to left, we form the binary number with a0
1s, followed by a1 0s, a2 1s, and so on until we get an 1s, with n even. So for [0; 2, 1, 1, 1], we
get 101002 = 20.

For positive q, the proof that Q(q) gives the position of q in the Calkin-Wilf sequence is
well documented [1, 3]. However, the proofs usually use the Calkin-Wilf tree, from which the
sequence is usually derived. Instead, we are using the recursion formula in (1.1) to define
the sequence, bypassing the tree, so that we can generalize the sequence by choosing different
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starting values. So, we must eventually reprove this result using only (1.1), but do so in a
more generalized setting.

Had we used the continued fraction representation [0; 2, 1, 2] for 3/8, we would have gotten
Q(3/8) = −1+20−22+23−25 = −28. Note that x−28 = −3/8 in the predecessor sequence. So
there is a use for the continued fraction representation with odd n. We can extend the definition
of Q(q) for negative rational numbers using (2.1) on the continued fraction representation of
|q| which uses odd n. Thus,

If |q| = [a0; a1, a2, . . . , an] with (−1)n = sgn(q),

Q(q) = −1 +
n∑

i=0

(−1)n2a0+a1+···+ai . (2.2)

Finally, we define Q(0) = 0 and Q(∞) = −1.
We have yet to show that Q(q) gives the position of the integer q for negative rational

numbers. To do so, we will need the following lemma.

Lemma 2.1.

Q(x) +Q(−1/x) = −1. (2.3)

Proof. It is easy to check that (2.3) is true for x = 0, ∞, and ±1. Suppose that |x| > 1, and
has the continued fraction representation of [a0; a1, a2, . . . , an], with (−1)n = sgn(x). Then
because a0 > 0, the continued fraction of |1/x| is [0; a0, a1, a2, . . . , an], which increases the
length by 1. Thus,

Q(x) = −1 +
n∑

i=0

(−1)n2a0+a1+···+ai , and

Q(−1/x) = −1 + 20 −
n∑

i=0

(−1)n2a0+a1+···+ai .

Adding these together gives us −1. For 0 < |x| < 1, we let y = −1/x, so that |y| > 1, and
apply the above argument to y. □

We can now show that for negative rational numbers, Q(q) gives the position of q in the
predecessor sequence. We already proved that x−n−1 = −1/xn. If q < 0, then we can let
n = Q(−1/q), and because −1/q > 0, xn = −1/q. Lemma 2.1 indicates that Q(q) = −n − 1,
and also x−n−1 = q, so that Q(q) gives the position in the predecessor sequence.

The goal is to extend the function Q so that it is defined for all real numbers. To do so, we
must introduce the 2-adic integers.

3. The 2-adic Integers

We can extend the ring of integers into a much larger ring by changing what it means for
two numbers to be close. Specifically, two 2-adic integers are close if their difference is divisible
by a large power of 2. The larger the power of 2, the closer the numbers are. So with this
topology, limn→∞ 2n = 0. We then define the 2-adic integers, Z2, as the set of formal power
series of the form

∞∑
i=0

si2
i, where each si = 0 or 1.

We can represent a 2-adic number with an infinite string of binary digits going to the left:

. . . sn . . . s5 s4 s3 s2 s1 s0.

FEBRUARY 2023 53



THE FIBONACCI QUARTERLY

Here, the underscore represents the concatenation of digits. Addition is performed as standard
binary arithmetic, starting with the rightmost digit and carrying to the next digit as necessary.
Likewise, multiplication can be performed as standard binary multiplication. Negatives can
be accomplished by taking the “two’s complement,” that is, switching all 0s to 1s and all 1s
to 0s, and finally adding 1. Thus, −7 can be represented by . . . 11111111001. Using these
operations, Z2 forms a ring, and is an integral domain containing a copy of Z as a subring.
For those elements of Z2 that are in Z, we will use the standard integer notation instead of
the binary representation, so . . . 11111111001 will just be −7. The only prime in Z2 is 2, so
every odd integer (one with s0 = 1) has a multiplicative inverse, which can be found using
long division.

We now have a way to extend the position function Q(x) to allow for real number values. If x
is a positive irrational number, it has a unique continued fraction expansion [a0; a1, a2, a3, . . . ].
We then define

Q(x) = −1 +
∞∑
i=0

(−1)n2a0+a1+···+ai , (3.1)

where the sum converges in Z2. For example, because
√
2 has a continued fraction represen-

tation of [1; 2, 2, 2, . . . ], Q(
√
2) = . . . 001100110011001. Unlike the case for rational numbers,

the continued fraction representation for irrational numbers is unique. Thus, if we define for
x irrational, Q(−x) = Q(x), then the proof of Lemma 2.1 will hold for irrational x as well
(replacing the finite sums with infinite sums).

Whenever the digits of an element x ∈ Z2 are periodic, then x can be represented by a
rational number. If the digit pattern repeats every m digits, then (2m−1)x will be an integer.
For example, because

Q(
√
2) = . . . 001100110011001

24 Q(
√
2) = . . . 001100110010000

−15 Q(
√
2) = . . . 000000000001001 = 9,

we see that Q(
√
2) = −3/5.

A mixed quadratic surd is a number of the form (a+ b
√
n)/c, where a, b, and c are integers

and n is a positive square-free integer. In 1770, Lagrange proved that the continued fraction
of a positive mixed quadratic surd will be periodic at some point [5, p. 75]. Thus, Q(x) will
send quadratic surds to rational numbers in Z2. This is similar to Minkowski’s question mark
function ?(x) [9], which is defined on the interval [0, 1]:

If x = [0; a1, a2, a3, . . . ], ?(x) = 2

∞∑
n=1

(−1)n+12−(a1+a2+a3+···+an).

The Q(x) function has a similar definition, but it “goes the other way.” The function ?(x)
is actually continuous on the interval [0, 1], because the two possible continued fraction rep-
resentations of a rational number produce the same output. We lose continuity by using the
ring Z2, but we still have one sided continuity.

Lemma 3.1. The function Q(x) is continuous at every irrational number, and if a ∈ Q,

lim
x→a+

Q(x) = Q(a).

Proof. Because of the topology of Z2, we need to show that for every large M , there is a
sufficiently small interval around a such that Q(x) agrees with Q(a) for the rightmost M
digits. If a ∈ Q+ with continued fraction representation [a0; a1, a2, . . . , an] (n even), we let
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N = a0 + a1 + a2 + · · · an. For M > N , we let b = [a0; a1, a2, . . . , an,M − N ]. Because n is
even, b > a, and for every x in the half open interval [a, b), Q(x) agrees with Q(a) for the
rightmost M digits. Thus, we have continuity from the right. If a is a negative rational, the
argument is similar except we use n odd, so b < |a|. But then, −b > a, so we use the half open
interval [a,−b).

For irrational a, the proof is easier because the continued fraction expansion for |a| is
infinite. We pick n such that a0 + a1 + a2 + · · · an > M , and consider the open interval
between [a0; a1, a2, . . . , an] and [a0; a1, a2, . . . , an + 1]. For all x in this interval, the rightmost
M digits of Q(x) will agree with Q(a). □

4. Relating Q(x) to the Successor Function

The goal of this section is to prove that Q(f(x)) = Q(x)+1 for all real x, where f(x) is the
successor function

f(x) =
1

2⌊x⌋+ 1− x
.

This is well known to be true for positive rational x, but we want to generalize this, using the
continued fraction representation of x. We begin with the following proposition.

Lemma 4.1. If 0 ≤ x < 1, then Q(x− 1) +Q(x) = −2.

Proof. The proposition is clearly true for x = 0. If x is irrational and 1/2 < x < 1, the
continued fraction representation of x is [0; 1, a2, a3, . . . ]. If y = [0; a3, a4, . . . ], then

x =
1

1 +
1

a2 + y

=
a2 + y

1 + a2 + y
.

Thus, 1 − x = 1/(1 + a2 + y) has the continued fraction representation [0; 1 + a2, a3, a4, . . . ].
(This identity is used to prove ?(x)+?(1− x) = 1.) Then,

Q(x) +Q(1− x) = −1 + 20 − 21 +
∞∑
n=2

(−1)n21+a2+a2+···an

+ −1 + 20 − 21+a2 −
∞∑
n=3

(−1)n21+a2+a2+···an = −2.

For x irrational and 0 < x < 1/2, we let z = 1 − x, and apply the result to z. Because x is
irrational, Q(x− 1) = Q(1− x), so

Q(x) +Q(x− 1) = −2.

For q ∈ Q and 0 < q < 1, we have from Lemma 3.1 that

lim
x→q+

Q(x) +Q(x− 1) = Q(q) +Q(q − 1).

Because Q(x)+Q(x− 1) = −2 for irrational x, we have that Q(q)+Q(q− 1) = −2 as well. □

Lemma 4.2. If n is a nonnegative integer, then

if x ≥ 0, Q(x+ n) = 2nQ(x) + 2n − 1,

if x < 0, Q(x− n) = 2nQ(x) + 2n − 1.
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Proof. The result is trivial for n = 0. If x = 0, then the continued fraction representation
of the positive integer n is simply [n; ], so Q(n) = −1 + 2n. If x > 0, and has the continued
fraction representation [a0; a1, a2, a3, . . . ], then x+n has the continued fraction representation
[n+ a0; a1, a2, a3, . . . ], which has the same parity. So

Q(x+ n) = −1 +
∞∑
n=0

(−1)n2n+a0+a1+···+an = −1 + 2n
∞∑
n=0

(−1)n2a0+a1+···+an

= −1 + 2n(1 +Q(x)) = −1 + 2n + 2nQ(x).

If x < 0, then |x− n| = |x|+ n, so we can apply the same argument to show that Q(x− n) =
−1 + 2n + 2nQ(x). □

Proposition 4.3. If

f(x) =
1

2⌊x⌋+ 1− x
,

then Q(f(x)) = Q(x) + 1.

Proof. First, we consider the case where x ≥ 0. Let n = ⌊x⌋. Then 0 ≤ x − n < 1, so by
Lemma 4.1, Q(x− n) +Q(x− n− 1) = −2. Multiplying by 2n, we get

2nQ(x− n) + 2nQ(x− n− 1) = −2 · 2n. (4.1)

Because x− n ≥ 0, we can use Lemma 4.2 to show that Q(x) = 2nQ(x− n) + 2n − 1, so

2nQ(x− n) = Q(x) + 1− 2n. (4.2)

Because x−n− 1 < 0, we can also use Lemma 4.2 to show that Q(x− 2n− 1) = 2nQ(x−n−
1) + 2n − 1, so

2nQ(x− n− 1) = Q(x− 2n− 1) + 1− 2n. (4.3)

Replacing the left hand terms in (4.1) with the values in (4.2) and (4.3), we get

(Q(x) + 1− 2n) + (Q(x− 2n− 1) + 1− 2n) = −2 · 2n,

or

Q(x) +Q(x− 2n− 1) = −2. (4.4)

Finally, we can use Lemma 2.1 to show that

Q(1/(1 + 2n− x)) +Q(x− 2n− 1) = −1,

so Q(x− 2n− 1) = −1−Q(f(x)). Thus, Q(x)− 1−Q(f(x)) = −2, so Q(f(x)) = Q(x) + 1.
For the case x = −1, f(−1) = ∞, but we defined Q(∞) = −1, and we can check that the

proposition is true for this case. If x < 0 and x ̸= −1, then −1/f(x) > 0, so we can apply the
result to −1/f(x):

Q(f(−1/f(x))) = Q(−1/f(x)) + 1. (4.5)

Now, f(−1/f(x)) = −1/x, and by Lemma 2.1, Q(−1/x) = −Q(x)− 1. Likewise, Q(−1/f(x)) =
−Q(f(x))− 1. Thus, (4.5) becomes

−Q(x)− 1 = −Q(f(x))− 1 + 1,

which becomes Q(f(x)) = Q(x) + 1. □
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5. Finding an Integer Plus the Starting Value in the Sequence

It is clear by Proposition 4.3 that if we begin the sequence with an irrational x0, then
Q(xn) = Q(x0) + n. For the remainder of the paper, we can assume that x0 > 0, because
starting the sequence with a negative irrational number merely produces the negative of the
sequence starting with the absolute value of x0. The plan is to use the Q(x) function to
determine whether xn is ever equal to x0+m withm ∈ Z+ for either positive or negative n. The
first thing to establish is that this could only happen if the continued fraction representation
of x0 is periodic, which means x0 is a quadratic surd. If Q(x0 + m) = Q(x0) + n, then by
Lemma 4.2,

2mQ(x0) + 2m − 1 = Q(x0) + n.

But 2m − 1 is odd, and hence invertible in the ring Z2. Thus, we can solve for Q(x0):

Q(x0) =
n+ 1− 2m

2m − 1
,

so the sequence of digits for Q(x0) eventually repeat, forcing x0 to be a quadratic surd.
The ring Z2 is not an ordered ring. (There is an element

√
−7 ≈ . . . 11010001001001110001100011011001110011111101001011

whose square is −7.) However, when x0 is a quadratic surd, then Q(x0) ∈ Z2 ∩Q, which is an
ordered ring. Thus, we can consider whether Q(x0) > −1.

Proposition 5.1. If x0 is a quadratic surd, and Q(x0) > −1, then there is an m ∈ Z+ such
that x0+m is in the successor sequence x1, x2, x3, . . . . On the other hand, if Q(x0) < −1, then
there is an m ∈ Z+ such that x0 +m is in the predecessor sequence x−1, x−2, x−3, . . . .

Proof. Suppose that x0 has a continued fraction representation

x0 = [a0; a1, a2, . . . aj , b1, b2, . . . , bk],

where the overline indicates the repeating portion of the continued fraction. (If the repeating
portion starts immediately, as in the case for

√
2, we let j = 0.) If the period of the continued

fraction k is even, we let m = b1 + b2 + · · · + bk. However, if the period k is odd, we let
m = 2(b1 + b2 + · · ·+ bk). Then the period of the repeating digits in Q(x0) will be m, so that
(2m − 1)Q(x0) will be an integer.

We claim that xn = x0+m for some n, and we can compute the number n. By Lemma 4.2,
Q(x0 +m) = 2mQ(x0) + 2m − 1. Thus,

Q(x0) + n = 2mQ(x0) + 2m − 1.

Solving for n, we get
n = (2m − 1)(Q(x0) + 1).

Because (2m − 1)Q(x0) is an integer, n will be an integer. Furthermore, if Q(x0) > −1, then
n > 0 so x0 +m appears in the successor sequence. On the other hand, if Q(x0) < −1, then n
will be negative, and x0 +m appears in the predecessor sequence. □

The next question is whether an integer minus the starting value will appear as xn for some
n. We will find conditions for which this is possible.

Proposition 5.2. If x0 has a continued fraction representation

x0 = [a0; a1, a2, . . . aj , b1, b2, . . . , bk],

with period k being odd, then if Q(x0) > −1, there is an m ∈ Z+ such that m − x0 is in the
predecessor sequence x−1, x−2, x−3, . . . . On the other hand, if Q(x0) < −1, there is an m ∈ Z+
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such that m−x0 is in the successor sequence x1, x2, x3, . . . . If the period k is even, then xn is
never equal to m− x0 for any integer m.

Proof. Let h = b1+ b2+ · · ·+ bk be the half period of the repeating digits in Q(x0). Because k
is odd, the second half period will be the binary complement of the first half (every 0 becomes
a 1, and every 1 becomes a 0). Thus, 2hQ(x0) will eventually have the complementary digits
as Q(x0), so (2h + 1)Q(x0) will be an integer.

We now let m = 2⌊x0⌋+ 1 + h. From (4.4), Q(x0) +Q(x0 − 2⌊x0⌋ − 1) = −2. But because
x0 is irrational, Q(x0 − 2⌊x0⌋ − 1) = Q(2⌊x0⌋+ 1− x0). Thus,

Q(2⌊x0⌋+ 1− x0) = −2−Q(x0).

Using Lemma 4.2, we have

Q(2⌊x0⌋+ 1 + h− x0) = 2hQ(2⌊x0⌋+ 1− x0) + 2h − 1

= 2h(−2−Q(x0)) + 2h − 1

= −2hQ(x0)− 2h − 1.

If Q(2⌊x0⌋+ 1 + h− x0) = Q(xn) = Q(x0) + n, we can solve for n to obtain

n = −(2h + 1)(Q(x0) + 1).

Because (2h + 1)Q(x0) is an integer, n will be an integer. Furthermore, if Q(x0) > −1, n will
be negative, so m − x0 appears in the predecessor sequence. If Q(x0) < −1, then n will be
positive, so m− x0 will be in the successor sequence.

This argument is reversible, so if xn = m − x0 for some integer m, then letting h =
m− 2⌊x0⌋− 1, we find that (2h+1)Q(x0) will be an integer. This shows, among other things,
that h > 0. Because (22h − 1)Q(x0) = (2h − 1)(2h + 1)Q(x0) is also an integer, the digits of
Q(x0) will be periodic with period 2h. But because (2h + 1)Q(x0) is an integer, half of the
period is the binary complement of the other half. This can only happen if the period of the
continued fraction representation of x0 is odd. Thus, if k is even, then xn is never equal to
m− x0 for any integer m. □

In the case where x0 =
√
N for a non-square integer N , we can say even more. In [8], it

was proved that the continued fraction of
√
N had an odd period if and only if the negative

Pell equation

x2 −Ny2 = −1
has a solution. Furthermore, the periodic portion of the continued fraction begins immediately,

√
N = [a0; b1, b2, . . . , bk].

This will cause Q(
√
N) − 22kQ(

√
N) to be a positive number, less than 22k − 1. This means

that −1 < Q(
√
N) < 0. Thus, m−

√
N will appear in the predecessor sequence if and only if

there is a solution to the negative Pell equation.

6. Conclusion

We discovered that if we start with a quadratic surd of the form x0 = a + b
√
N , where a

and b are rational, for the initial value for the Calkin-Wilf recursion formula, then m + x0
will appear in the generalized Calkin-Wilf sequence for an infinite number of m (although one
must occasionally consider the predecessor sequence). Also, we proved that m − x0 appears
in either the successor sequence or predecessor sequence if and only if the continued fraction
of x0 has an odd period. In particular, if x0 =

√
N , then m−

√
N appears in the predecessor
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sequence if and only if there is a solution to the negative Pell equation. The integer sequence
of those N for which m −

√
N appears in the predecessor sequence is given in [7]. If we are

only interested in the square-free N , we use sequence [6].
This paper also introduced the Q(x) function Q : R ∪ ∞ → Z2, which has many of the

properties of Minkowski’s question mark function ?(x). In particular, every rational number
is mapped to an integer, and every quadratic surd is mapped to a rational number. Perhaps
this function can be explored further in a future paper.
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