
SUMS INVOLVING GIBONACCI POLYNOMIAL SQUARES:

GRAPH-THEORETIC CONFIRMATIONS

THOMAS KOSHY

Abstract. We confirm eight sums involving gibonacci polynomial squares using graph-
theoretic techniques.

1. Introduction

Extended gibonacci polynomials zn(x) are defined by the recurrence zn+2(x) = a(x)zn+1(x)+
b(x)zn(x), where x is an arbitrary integer variable; a(x), b(x), z0(x), and z1(x) are arbitrary
integer polynomials; and n ≥ 0.

Suppose a(x) = x and b(x) = 1. When z0(x) = 0 and z1(x) = 1, zn(x) = fn(x), the
nth Fibonacci polynomial ; and when z0(x) = 2 and z1(x) = x, zn(x) = ln(x), the nth Lucas
polynomial. They can also be defined by the Binet-like formulas. Clearly, fn(1) = Fn, the nth
Fibonacci number; and ln(1) = Ln, the nth Lucas number [1, 2].

Pell polynomials pn(x) and Pell-Lucas polynomials qn(x) are defined by pn(x) = fn(2x) and
qn(x) = ln(2x), respectively [2].

In the interest of brevity, clarity, and convenience, we omit the argument in the functional
notation, when there is no ambiguity; so zn will mean zn(x). In addition, we let gn = fn or

ln, bn = pn or qn, and ∆ =
√
x2 + 4.

It follows by the Binet-like formulas that lim
m→∞

1

gm+r
= 0 [2, 5, 6].

1.1. Fundamental Gibonacci Identities. Using Binet-like formulas, we can establish the
following gibonacci properties [2, 5]:

g2n+k − g2n−k =

{
f2kf2n, if gn = fn;

∆2f2kf2n, otherwise;
(1)

gn+kgn−k − g2n =

{
(−1)n+k+1f2

k , if gn = fn;

(−1)n+k∆2f2
k , otherwise.

(2)

1.2. Telescoping Gibonacci Sums. In [6], we investigated the following four telescoping
sums:

∞∑
n=(k+1)/2
k≥1, odd

(
1

g2n−k
− 1

g2n+k

)
=

k∑
r=1

1

g2r−1
;

∞∑
n=k/2+ 1
k≥2, even

(
1

g2n−k
− 1

g2n+k

)
=

k∑
r=1

1

g2r
;

∞∑
n=(k+1)/2
k≥1, odd

(
1

g2n+1−k
− 1

g2n+1+k

)
=

k∑
r=1

1

g2r
;

∞∑
n=k/2

k≥2, even

(
1

g2n+1−k
− 1

g2n+1+k

)
=

k∑
r=1

1

g2r−1
.

Their proofs depend only on the subscripts of the polynomials gn, and not on the power of
gn. Consequently, we can extend them to any positive integer power λ of gn. The next four
lemmas feature their proofs for the case λ = 2. Coupled with the above identities, they play
a pivotal role in our investigations.
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Lemma 1. Let k be an odd positive integer. Then,

∞∑
n=(k+1)/2
k≥1, odd

(
1

g22n−k

− 1

g22n+k

)
=

k∑
r=1

1

g22r−1

. (3)

Proof. With recursion [2], we will first confirm that

m∑
n=(k+1)/2
k≥1, odd

(
1

g22n−k

− 1

g22n+k

)
=

k∑
r=1

1

g22r−1

−
k−1∑
r=0

1

g22m−2r+k

.

To this end, we let Am denote the left-hand side (LHS) of this equation and Bm its right-hand
side (RHS). Then,

Bm −Bm−1 =

k−1∑
r=0

[
1

g22m−2(r+1)+k

− 1

g22m−2r+k

]

=
1

g22m−k

− 1

g22m+k

= Am −Am−1.

By recursion, it then follows that

Am −Bm = Am−1 −Bm−1 = · · · = A(k+1)/2 −B(k+1)/2

=

(
1

g21
− 1

g22k+1

)
−

[
k∑

r=1

1

g22r−1

−
k−1∑
r=0

1

g22k−(2r−1)

]
= 0.

Thus, Am = Bm.

Because lim
m→∞

1

gm+r
= 0, this yields the desired result. □

Lemma 2. Let k be an even positive integer. Then,

∞∑
n=k/2+ 1
k≥2, even

(
1

g22n−k

− 1

g22n+k

)
=

k∑
r=1

1

g22r
. (4)

Proof. Invoking recursion [2], we will first establish that

m∑
n=k/2+ 1
k≥2, even

(
1

g22n−k

− 1

g22n+k

)
=

k∑
r=1

1

g22r
−

k−1∑
r=0

1

g22m−2r+k

.

Letting Am = LHS of this equation and Bm its RHS, we then get

Bm −Bm−1 =

k−1∑
r=0

[
1

g22m−2(r+1)+k

− 1

g22m−2r+k

]

=
1

g22m−k

− 1

g22m+k

= Am −Am−1.
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Recursively, we then have

Am −Bm = Am−1 −Bm−1 = · · · = Ak/2+1 −Bk/2+1

=

(
1

g22
− 1

g22k+2

)
−

[
k∑

r=1

1

g22r
−

k−1∑
r=0

1

g22k−2(r−1)

]
= 0.

Consequently, Am = Bm.
The given result follows from this formula, as desired. □

Lemma 3. Let k be an odd positive integer. Then,

∞∑
n=(k+1)/2
k≥1, odd

(
1

g22n+1−k

− 1

g22n+1+k

)
=

k∑
r=1

1

g22r
. (5)

Proof. Using recursion [2], we will first establish the formula

m∑
n=(k+1)/2
k≥1, odd

(
1

g22n+1−k

− 1

g22n+1+k

)
=

k∑
r=1

1

g22r
−

k−1∑
r=0

1

g22m−(2r−1)+k

.

Letting Am = LHS of this equation and Bm its RHS, we get

Bm −Bm−1 =
k−1∑
r=0

[
1

g22m−(2r+1)+k

− 1

g22m−(2r−1)+k

]

=
1

g22m+1−k

− 1

g22m+1+k

= Am −Am−1.

This yields,

Am −Bm = Am−1 −Bm−1 = · · · = A(k+1)/2 −B(k+1)/2

=

(
1

g22
− 1

g22k+2

)
−

[
k∑

r=1

1

g22r
−

k−1∑
r=0

1

g22k−2(r−1)

]
= 0.

Consequently, Am = Bm.
The given result now follows from this formula. □

Lemma 4. Let k be an even positive integer. Then,

∞∑
n=k/2

k≥2, even

(
1

g22n+1−k

− 1

g22n+1+k

)
=

k∑
r=1

1

g22r−1

. (6)

Proof. To establish this formula, using recursion [2] we will first confirm that

m∑
n=k/2

k≥2, even

(
1

g22n+1−k

− 1

g22n+1+k

)
=

k∑
r=1

1

g22r−1

−
k−1∑
r=0

1

g22m−(2r−1)+k

.
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With Am = LHS and Bm = RHS of this equation, we then get

Bm −Bm−1 =
k−1∑
r=0

[
1

g22m−(2r+1)+k

− 1

g22m−(2r−1)+k

]

=
1

g22m+1−k

− 1

g22m+1+k

= Am −Am−1.

With recursion, this implies

Am −Bm = Am−1 −Bm−1 = · · · = Ak/2 −Bk/2

=

(
1

g21
− 1

g22k+1

)
−

[
k∑

r=1

1

g22r−1

−
k−1∑
r=0

1

g22k−(2r−1)

]
= 0.

Thus, Am = Bm, yielding in the validity of the given formula. □

1.3. Sums Involving Gibonacci Polynomial Squares. In [7], we investigated the follow-
ing sums involving gibonacci polynomial squares:

∞∑
n=(k+1)/2
k≥1, odd

f2kf4n(
f2
2n + f2

k

)2 =
k∑

r=1

1

f2
2r−1

; (7)

∞∑
n=k/2+1
k≥2, even

f2kf4n(
f2
2n − f2

k

)2 =
k∑

r=1

1

f2
2r

; (8)

∞∑
n=(k+1)/2
k≥1, odd

∆2f2kf4n(
l22n −∆2f2

k

)2 =
k∑

r=1

1

l22r−1

; (9)

∞∑
n=k/2+1
k≥2, even

∆2f2kf4n(
l22n +∆2f2

k

)2 =
k∑

r=1

1

l22r
; (10)

∞∑
n=(k+1)/2
k≥1, odd

f2kf4n+2(
f2
2n+1 − f2

k

)2 =
k∑

r=1

1

f2
2r

; (11)

∞∑
n=k/2

k≥2, even

f2kf4n+2(
f2
2n+1 + f2

k

)2 =

k∑
r=1

1

f2
2r−1

; (12)

∞∑
n=(k+1)/2
k≥1, odd

∆2f2kf4n+2(
l22n+1 +∆2f2

k

)2 =
k∑

r=1

1

l22r
; (13)

∞∑
n=k/2

k≥2, even

∆2f2kf4n+2(
l22n+1 −∆2f2

k

)2 =

k∑
r=1

1

l22r−1

. (14)
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Our objective is to confirm these gibonacci sums using graph-theoretic techniques. To
achieve this goal, we now present the essential graph-theoretic tools.

2. Graph-theoretic Tools

Consider the Fibonacci digraph in Figure 1 with vertices v1 and v2, where a weight is assigned
to each edge [2, 3, 4].

Figure 1. Weighted Fibonacci Digraph

It follows from its weighted adjacency matrix Q =

[
x 1
1 0

]
that

Qn =

[
fn+1 fn
fn fn−1

]
,

where n ≥ 1 [2, 3, 4]. We extend the exponent n to 0, which is consistent with the Cassini-like
formula fn+1fn−1 − f2

n = (−1)n [2].
A walk from vertex vi to vertex vj is a sequence vi-ei-vi+1-· · · -vj−1-ej−1-vj of vertices vk

and edges ek, where edge ek is incident with vertices vk and vk+1. The walk is closed if vi = vj ;
and open, otherwise. The length of a walk is the number of edges in the walk. The weight of
a walk is the product of the weights of the edges along the walk.

The ijth entry of Qn gives the sum of the weights of all walks of length n from vi to vj in
the weighted digraph, where 1 ≤ i, j ≤ n [2, 3, 4]. Consequently, the sum of the weights of
closed walks of length n originating at v1 in the digraph is fn+1 and that of those originating
at v2 is fn−1. So, the sum of the weights of all closed walks of length n in the digraph is
fn+1 + fn−1 = ln.

Let A and B denote sets of walks of varying lengths originating at a vertex v. Then, the
sum of the weights of the elements (a, b) in the product set A × B is defined as the product
of the sums of weights from each component [3, 4]. This definition can be extended to any
finite number of component sets. In particular, let A, B, C, and D denote the sets of walks
of varying lengths originating at a vertex v, respectively. Then, the sum of the weights of the
elements (a, b, c, d) in the product set A × B × C ×D is the product of the sums of weights
from each component [3, 4].

We now make an interesting observation. Let A = {u} and B = {v}, where u denotes
the closed walk v1-v1 and v denotes the closed walk v1-v2-v1. The weight of the element
in A × A is x2 and that in B × B is 1. So, the sum w of the weights of the elements in
C∗ = (A×A) ∪ (B ×B) ∪ (B ×B) ∪ (B ×B) ∪ (B ×B) is given by w = x2 + 4 = ∆2.

These tools play a pivotal role in the graph-theoretic proofs. With them at our finger tips,
we are now ready for the proofs.
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3. Graph-theoretic Confirmations

Let T ∗
n denote the set of closed walks of length n in the digraph originating at v1, and U∗

n

the set of all closed walks of length n in the digraph. Correspondingly, let Tn denote the
sum of the weights of elements in T ∗

n and Un that of those in U∗
n. Clearly, Tn = fn+1 and

Un = fn+1 + fn−1 = ln [2]. With this brief background, we now begin our discourse with the
gibonacci sums (7) and (8). Throughout, k denotes a positive integer.

3.1. Confirmations of Equations (7) and (8).
Proof. The sum of the weights of the elements in the product set T ∗

2k−1×T ∗
4n−1 is T2k−1T4n−1 =

f2kf4n; the sum of those in (T ∗
2n−1 × T ∗

2n−1) ∪ (T ∗
k−1 × T ∗

k−1) is T
2
2n−1 + T 2

k−1 = f2
2n + f2

k ; and

the sum of those in (T ∗
2n−1 × T ∗

2n−1)− (T ∗
k−1 × T ∗

k−1) is T
2
2n−1 − T 2

k−1 = f2
2n − f2

k .
Combining the two cases, we let

Sn =
T2k−1T4n−1[

T 2
2n−1 − (−1)kT 2

k−1

]2 , (15)

where k is odd or even.
Suppose k is odd. Using identities (1) and (2), and Lemma 1, this yields

Sn =
f2kf4n

(f2
2n + f2

k )
2

=
f2
2n+k − f2

2n+k

f2
2n+kf

2
2n−k

,

∞∑
n=(k+1)/2
k≥1, odd

f2kf4n
(f2

2n + f2
k )

2
=

∞∑
n=(k+1)/2
k≥1, odd

(
1

f2
2n−k

− 1

f2
2n+k

)

=

k∑
r=1

1

f2
2r−1

, (16)

confirming equation (7), as desired.
On the other hand, let k be even. With identities (1) and (2), and Lemma 2, we get

Sn =
f2kf4n

(f2
2n − f2

k )
2

=
f2
2n+k − f2

2n+k

f2
2n+kf

2
2n−k

,

∞∑
n=k/2+ 1
k≥2, even

f2kf4n
(f2

2n − f2
k )

2
=

∞∑
n=k/2+ 1
k≥1, even

(
1

f2
2n−k

− 1

f2
2n+k

)

=

k∑
r=1

1

f2
2r

. (17)

This gives the desired sum in equation (8). □

It follows from equations (16) and (17) that [7]
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∞∑
n=1

F4n(
F 2
2n + 1

)2 = 1;
∞∑
n=2

F4n(
F 2
2n − 1

)2 =
10

27
;

∞∑
n=2

F4n(
F 2
2n + 4

)2 =
129

800
;

∞∑
n=3

F4n(
F 2
2n − 9

)2 =
31, 865

592, 704
.

Next, we focus on the graph-theoretic proofs of sums (9) and (10).

3.2. Confirmations of Equations (9) and (10).
Proof. Let T ∗

n , U
∗
n, Tn, and Un be as before. U∗

2n denotes the set of all closed walks of length
2n in the digraph and U2n = l2n; so U2

2n gives the sum of the weights of the elements in the
product set U∗

2n × U∗
2n. With the set C∗ as in Section 2, the sum of the weight of weight of

the elements in the set C∗ × T ∗
k−1 × T ∗

k−1 is wT 2
k = ∆2T 2

k .

The sum of the elements in the set U∗
2n×U∗

2n−C∗×T ∗
k×T ∗

k equals U2
2n−wT 2

k−1 = l22n−∆2f2
k ;

and that of those in the set U∗
2n × U∗

2n ∪ C∗ × T ∗
k × T ∗

k equals U2
2n + wT 2

k−1 = l22n +∆2f2
k .

Combining the two cases, we now let

Sn =
T2k−1T4n−1[

U2
2n + (−1)k wT 2

k−1

]2
=

f2kf4n[
l22n + (−1)k∆2f2

k

]2 , (18)

where k is odd or even.
Suppose k is odd. With identities (1) and (2), and Lemma 1, we have

∆2f2kf4n
(l22n −∆2f2

k )
2

=
l22n+k − l22n+k

l22n+kl
2
2n−k

,

∞∑
n=(k+1)/2
k≥1, odd

∆2f2kf4n
(l22n −∆2f2

k )
2

=
∞∑

n=(k+1)/2
k≥1, odd

(
1

l22n−k

− 1

l22n+k

)

=
k∑

r=1

1

l22r−1

, (19)

as in equation (9).
On the flip side, let k be even. Using identities (1) and (2), and Lemma 2, it follows from

equation (18) that

Sn =
f2kf4n(

l22n +∆2f2
k

)2 ,
∆2Sn =

l22n+k − l22n+k

l22n+kl
2
2n−k

,

∞∑
n=k/2+ 1
k≥2, even

∆2f2kf4n(
l22n +∆2f2

k

)2 =
∞∑

n=k/2+ 1
k≥2, even

(
1

l22n−k

− 1

l22n+k

)

=
k∑

r=1

1

l22r
, (20)

as in equation (10). □
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Equations (19) and (20) yield [7]
∞∑
n=1

F4n(
L2
2n − 5

)2 =
1

5
;

∞∑
n=2

F4n(
L2
2n + 5

)2 =
58

6, 615
;

∞∑
n=2

F4n(
L2
2n − 20

)2 =
2, 073

77, 440
;

∞∑
n=3

F4n(
L2
2n + 45

)2 =
4, 736, 509

3, 682, 358, 820
.

3.3. Confirmations of Equations (11) and (12).
Proof. With T ∗

n , U
∗
n, Tn, and Un as before, we have

T2k−1T4n+1[
T 2
2n + (−1)kT 2

k−1

]2 =
f2kf4n+2[

f2
2n+1 + (−1)kf2

k

]2 , (21)

where k is odd or even.
Suppose k is odd. Using identities (1) and (2), and Lemma 3, we have

∆2f2kf4n+2

(f2
2n+1 − f2

k )
2

=
f2
2n+1+k − f2

2n+1−k

f2
2n+1+kf

2
2n+1−k

,

∞∑
n=(k+1)/2
k≥1, odd

∆2f2kf4n+2

(f2
2n+1 − f2

k )
2

=
∞∑

n=(k+1)/2
k≥1, odd

(
1

f2
2n+1−k

− 1

f2
2n+1+k

)

=
k∑

r=1

1

f2
2r

, (22)

confirming equation (11) as desired.
On the other hand, let k be even. With identities (1) and (2), and Lemma 4, we get

f2kf4n+2

(f2
2n+1 + f2

k )
2

=
f2
2n+1+k − f2

2n+1−k

f2
2n+1+kf

2
2n+1−k

,

∞∑
n=k/2

k≥2, even

f2kf4n+2

(f2
2n+1 + f2

k )
2

=
∞∑

n=k/2
k≥2, even

(
1

f2
2n+1−k

− 1

f2
2n+1+k

)

=
k∑

r=1

1

f2
2r−1

. (23)

This confirms equation (12), as expected. □

It follows from equations (22) and (23) that [7]
∞∑
n=1

F4n+2(
F 2
2n+1 − 1

)2 =
1

5
;

∞∑
n=2

F4n+2(
F 2
2n+1 − 4

)2 =
649

8, 640
;

∞∑
n=1

F4n+2(
F 2
2n+1 + 1

)2 =
5

12
;

∞∑
n=2

F4n+2(
F 2
2n+1 + 9

)2 =
21, 901

354, 900
.

Finally, we turn to the confirmations of sums (13) and (14).
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3.4. Confirmations of Equations (13) and (14).
Proof. Using the product sets T ∗

2k−1 × T ∗
4n+1, U

∗
2n+1 × U∗

2n+1, C
∗ × C∗, and T ∗

k−1 × T ∗
k−1, we

get

T2k−1T4n+1[
U2
2n+1 − (−1)kwT 2

k−1

]2 =
f2kf4n+2[

l22n+1 − (−1)k∆2f2
k

]2 , (24)

where k is odd or even.
Suppose k is odd. Then,

T2k−1T4n+1(
U2
2n+1 + wT 2

k−1

)2 =
f2kf4n+2(

l22n+1 +∆2f2
k

)2 . (25)

With identities (1) and (2), and Lemma 4, we have

∆2f2kf4n+2(
l22n+1 +∆2f2

k

)2 =
l22n+1+k − l22n+1−k

l22n+1+kl
2
2n+1−k

,

∞∑
n=(k+1)/2
k≥1, odd

∆2f2kf4n+2

(l22n+1 +∆2f2
k )

2
=

∞∑
n=(k+1)/2
k≥1, odd

(
1

f2
2n+1−k

− 1

f2
2n+1+k

)

=

k∑
r=1

1

l22r
, (26)

confirming equation (13).
When k is even, we get similarly from equation (24) that

∆2f2kf4n+2(
l22n+1 −∆2f2

k

)2 =
l22n+1+k − l22n+1−k

l22n+1+kl
2
2n+1−k

,

∞∑
n=k/2

k≥2, even

∆2f2kf4n+2

(l22n+1 −∆2f2
k )

2
=

∞∑
n=k/2

k≥2, even

(
1

l22n+1−k

− 1

l22n+1+k

)

=
k∑

r=1

1

l22r−1

. (27)

This confirms equation (14), as desired. □

It follows by equations (26) and (27) that [7]
∞∑
n=1

F4n+2(
L2
2n+1 + 5

)2 =
1

45
;

∞∑
n=1

F4n+2(
L2
2n+1 − 5

)2 =
17

240
;

∞∑
n=2

F4n+2(
L2
2n+1 + 20

)2 =
2, 137

238, 140
;

∞∑
n=2

F4n+2(
L2
2n+1 − 45

)2 =
1, 745, 329

170, 958, 480
.

4. Pell Consequences

With the gibonacci-Pell relationship bn(x) = gn(2x), we can construct the graph-theoretic
proofs of the Pell versions of equations (7) – (14) independently by changing the weight of the
loop at v1 from x to 2x. We encourage the gibonacci enthusiasts to pursue them.
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