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Abstract. We explore the Jacobsthal consequences of four infinite sums involving gibonacci
polynomial squares.

1. Introduction

Extended gibonacci polynomials zn(x) are defined by the recurrence zn+2(x) = a(x)zn+1(x)+
b(x)zn(x), where x is an arbitrary integer variable; a(x), b(x), z0(x), and z1(x) are arbitrary
integer polynomials; and n ≥ 0.

Suppose a(x) = x and b(x) = 1. When z0(x) = 0 and z1(x) = 1, zn(x) = fn(x), the
nth Fibonacci polynomial ; and when z0(x) = 2 and z1(x) = x, zn(x) = ln(x), the nth Lucas
polynomial. Clearly, fn(1) = Fn, the nth Fibonacci number; and ln(1) = Ln, the nth Lucas
number [1, 5].

On the other hand, let a(x) = 1 and b(x) = x. When z0(x) = 0 and z1(x) = 1, zn(x) =
Jn(x), the nth Jacobsthal polynomial ; and when z0(x) = 2 and z1(x) = 1, zn(x) = jn(x), the
nth Jacobsthal-Lucas polynomial. Correspondingly, Jn = Jn(2) and jn = jn(2) are the nth
Jacobsthal and Jacobsthal-Lucas numbers, respectively. Clearly, Jn(1) = Fn; and jn(1) = Ln

[2, 5].
Gibonacci and Jacobsthal polynomials are linked by the relationships

Jn(x) = x(n−1)/2fn(1/
√
x) and jn(x) = xn/2ln(1/

√
x) [3, 4, 5].

In the interest of brevity, clarity, and convenience, we omit the argument in the functional
notation, when there is no ambiguity; so zn will mean zn(x). In addition, we let gn = fn or

ln, cn = Jn or jn, ∆ =
√
x2 + 4, and D =

√
4x+ 1, where cn = cn(x).

1.1. Sums Involving Gibonacci Polynomial Squares. In Theorems 1–4 of [6], we studied
the following sums involving gibonacci polynomial squares:

∞∑
n=L

f4n[
f2
2n − (−1)kf2

k

]2 =
1

f2k

k∑
r=1

1

f2
s

; (1)

∞∑
n=L

f4n[
l22n + (−1)k∆2f2

k

]2 =
1

∆2f2k

k∑
r=1

1

l2s
; (2)

∞∑
n=M

f4n+2[
f2
2n+1 + (−1)kf2

k

]2 =
1

f2k

k∑
r=1

1

f2
t

; (3)

∞∑
n=M

f4n+2[
l22n+1 − (−1)k∆2f2

k

]2 =
1

∆2f2k

k∑
r=1

1

l2t
, (4)

where k is a positive integer; 1 ≤ r ≤ k;
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L =

{
(k + 1)/2, k ≥ 1, if k is odd;

k/2 + 1, k ≥ 2, otherwise;
s =

{
2r − 1, if k is odd;

2r, otherwise;

M =

{
(k + 1)/2, k ≥ 1, if k is odd;

k/2, k ≥ 2, otherwise;
and t =

{
2r, if k is odd;

2r − 1, otherwise.

2. Jacobsthal Consequences

Our objective is to extract the Jacobsthal versions of the gibonacci sums (1)–(4); we will
accomplish this using the Jacobsthal-gibonacci relationships cited above. To this end, in the
interest of clarity and convenience, we let A denote the left side of each sum and B its right
side; and LHS the left-hand side of the corresponding Jacobsthal sum and RHS its right-hand
side.

2.1. Jacobsthal Version of Equation (1).

Proof. Let A =
f4n[

f2
2n − (−1)kf2

k

]2 . Replace x with 1/
√
x, and multiply the numerator and

denominator of the resulting expression with x4n−2. This yields

A =
x(4n−1)/2

[
x(4n−1)/2f4n

]{
[x(2n−1)/2f2n]2 − (−1)kx2n−k[x(k−1)/2fk]2

}2

=
x(4n−1)/2J4n[

J2
2n − (−1)kx2n−kJ2

k

]2 ;
LHS =

∞∑
n=L

x(4n−1)/2J4n[
J2
2n − (−1)kx2n−kJ2

k

]2 , (5)

where gn = gn(1/
√
x) and cn = cn(x).

Case 1. Suppose k is odd. Now, let B =
1

f2k

k∑
r=1

1

f2
2r−1

. Replacing x with 1/
√
x, and then

multiplying the numerator and denominator with x(4r+2k−5)/2 yields

B =
x(2k−1)/2

x(2k−1)/2f2k

k∑
r=1

x2r−2[
x(2r−2)/2f2r−1

]2 ;
RHS =

x(2k−5)/2

J2k

k∑
r=1

x2r

J2
2r−1

, (6)

where gn = gn(1/
√
x) and cn = cn(x).

This, coupled with equation (5) with k odd, yields

∞∑
n=L

x2nJ4n(
J2
2n + x2n−kJ2

k

)2 =
xk−1

J2k

k∑
r=1

x2r−1

J2
2r−1

. (7)

Case 2. Suppose k is even. We then have B =
1

f2k

k∑
r=1

1

f2
2r

. Replace x with 1/
√
x, and then

multiply the numerator and denominator of the resulting expression with x(4r+2k−3)/2. This
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gives

B =
x(2k−1)/2

x(2k−1)/2f2k

k∑
r=1

x2r−1[
x(2r−1)/2f2r

]2 ;
RHS =

x(2k−3)/2

J2k

k∑
r=1

x2r

J2
2r

, (8)

where gn = gn(1/
√
x) and cn = cn(x).

It then follows by equations (5) and (8) that

∞∑
n=L

x2nJ4n(
J2
2n − x2n−kJ2

k

)2 =
xk−1

J2k

k∑
r=1

x2r

J2
2r

.

Combining the two cases, we get the Jacobsthal version of equation (1):

∞∑
n=L

x2nJ4n[
J2
2n − (−1)kx2n−kJ2

k

]2 =
xk−1

J2k

k∑
r=1

xs

J2
s

. (9)

□

In particular, this yields
∞∑

n=L

F4n[
F 2
2n − (−1)kF 2

k

]2 =
1

F2k

k∑
r=1

1

F 2
s

;
∞∑

n=L

4nJ4n[
J2
2n − (−1)k22n−kJ2

k

]2 =
2k−1

J2k

k∑
r=1

2s

J2
s

.

Consequently, we have [6]
∞∑
n=1

F4n(
F 2
2n + 1

)2 = 1;
∞∑
n=1

F4n(
F 2
2n − 1

)2 =
10

27
;

∞∑
n=1

4nJ4n(
J2
2n + 22n−1

)2 = 2;

∞∑
n=2

4nJ4n(
J2
2n − 22n−2

)2 =
232

125
.

2.2. Jacobsthal Version of Equation (2).

Proof. Let A =
f4n[

l22n + (−1)k∆2f2
k

]2 . Replacing x with 1/
√
x, and multiplying the numerator

and denominator of the resulting expression with x4n−2 yields

A =
x2f4n[

xl22n + (−1)kD2f2
k

]2
=

x(4n−3)/2
[
x(4n−1)/2f4n

]{
(x2n/2l2n)2 + (−1)kD2x2n−k[x(k−1)/2fk]2

}2

=
x(4n−3)/2J4n[

j22n + (−1)kD2x2n−kJ2
k

]2 ;
LHS =

∞∑
n=L

x(4n−3)/2J4n[
j22n + (−1)kD2x2n−kJ2

k

]2 , (10)

where gn = gn(1/
√
x) and cn = cn(x).
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With B =
1

∆2f2k

k∑
r=1

1

l2s
, let k be odd. Now, replace x with 1/

√
x, and then multiply the

numerator and denominator with x(4r+2k−3)/2. Then,

B =
x

D2f2k

k∑
r=1

1

l22r−1

=
x(2k+1)/2

D2
[
x(2k−1)/2f2k

] k∑
r=1

x2r−1[
x(2r−1)/2l2r−1

]2 ;
RHS =

x(2k+1)/2

D2J2k

k∑
r=1

x2r−1

j22r−1

, (11)

where gn = gn(1/
√
x) and cn = cn(x).

Using equations (10) and (11), we get

∞∑
n=(k+1)/2
k≥1,odd

x2nJ4n(
j22n −D2x2n−kJ2

k

)2 =
xk+2

D2J2k

k∑
r=1

x2r−1

j22r−1

.

Suppose k is even. Replacing x with 1/
√
x, and multiplying the numerator and denominator

with x(4r+2k−1)/2 yields

B =
x

D2f2k

k∑
r=1

1

l22r

=
x(2k+1)/2

D2
[
x(2k−1)/2f2k

] k∑
r=1

x2r(
x2r/2l2r

)2 ;
RHS =

x(2k+1)/2

D2J2k

k∑
r=1

x2r

j22r
, (12)

where gn = gn(1/
√
x) and cn = cn(x).

With equations (10) and (12), we get

∞∑
n=k/2+1
k≥2,even

x2nJ4n(
j22n +D2x2n−kJ2

k

)2 =
xk+2

D2J2k

k∑
r=1

x2r

j22r
.

By combining the two cases, we get the Jacobsthal version of equation (2):

∞∑
n=L

x2nJ4n[
j22n + (−1)kD2x2n−kJ2

k

]2 =
xk+2

D2J2k

k∑
r=1

xs

j2s
. (13)

□

This implies,

∞∑
n=L

F4n[
L2
2n + 5(−1)kF 2

k

]2 =
1

5F2k

k∑
r=1

1

L2
s

;
∞∑

n=L

22nJ4n[
j22n + 9(−1)k22n−kJ2

k

]2 =
2k+2

9J2k

k∑
r=1

2s

j2s
.

It then follows that [6]
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∞∑
n=1

F4n(
L2
2n − 5

)2 =
1

5
;

∞∑
n=2

F4n(
L2
2n + 5

)2 =
58

6, 615
;

∞∑
n=1

4nJ4n(
j22n − 9 · 22n−1

)2 =
16

9
;

∞∑
n=2

4nJ4n(
j22n + 9 · 22n−2

)2 =
24, 896

325, 125
.

2.3. Jacobsthal Version of Equation (3).

Proof. Let A =
f4n+2[

f2
2n+1 + (−1)kf2

k

]2 . Replace x with 1/
√
x, and multiply the numerator and

denominator of the resulting expression with x(4n+1)/2. We then get

A =
x(4n−1)/2

[
x(4n+1)/2f4n+2

]{(
x2n/2f2n+1

)2
+ (−1)kx2n−k[xk/2fk]2

}2

=
x(4n−1)/2J4n+2[

J2
2n+1 + (−1)kx2n−kJ2

k

]2 ;
LHS =

∞∑
n=M

x(4n−1)/2J4n+2[
J2
2n+1 + (−1)kx2n−kJ2

k

]2 , (14)

where gn = gn(1/
√
x) and cn = cn(x).

Now, let B =
1

f2k

k∑
r=1

1

f2
t

. With k odd, replace x with 1/
√
x, and multiply the numerator

and denominator with x(4r+2k−3)/2. This yields

B =
x(2k−1)/2

x(2k−1)/2f2k

k∑
r=1

x2r−1[
x(2r−1)/2f2r

]2
=

x(2k+1)/2

D2
[
x(2k−1)/2f2k

] k∑
r=1

x2r−1[
x(2r−1)/2f2r

]2 ;
RHS =

x(2k−1)/2

J2k

k∑
r=1

x2r−1

J2
2r

, (15)

where gn = gn(1/
√
x) and cn = cn(x).

This, coupled with equation (14), yields

∞∑
n=(k+1)/2
k≥1,odd

x2n+1J4n+2(
J2
2n+1 − x2n−kJ2

k

)2 =
xk

J2k

k∑
r=1

x2r

J2
2r

.

When k is even, B =
1

f2k

k∑
r=1

1

f2
2r−1

. Replacing x with 1/
√
x, and multiplying the numerator

and denominator with x(4r+2k−3)/2, we get

B =
x(2k−1)/2

x(2k−1)/2f2k

k∑
r=1

x2r−2[
x(2r−2)/2f2r−1

]2 ;
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RHS =
x(2k−1)/2

J2k

k∑
r=1

x2r−2

J2
2r−1

, (16)

where gn = gn(1/
√
x) and cn = cn(x).

It follows by equations (14) and (16) that

∞∑
n=k/2

k≥2, even

x2n+1J4n+2(
J2
2n+1 + x2n−kJ2

k

)2 =
xk

J2k

k∑
r=1

x2r−1

J2
2r−1

.

By combining the two cases, we get the Jacobsthal version of equation (3):

∞∑
n=M

x2n+1J4n+2[
J2
2n+1 + (−1)kx2n−kJ2

k

]2 =
xk

J2k

k∑
r=1

xt

J2
t

. (17)

□

It then follows that

∞∑
n=M

F4n+2[
F 2
2n+1 + (−1)kF 2

k

]2 =
1

F2k

k∑
r=1

1

F 2
t

;
∞∑

n=M

22n+1J4n+2[
J2
2n+1 + (−1)k22n−kJ2

k

]2 =
2k

J2k

k∑
r=1

2t

J2
t

.

In particular, we then get [6]
∞∑
n=1

F4n+2(
F 2
2n+1 − 1

)2 = 1;
∞∑
n=1

F4n+2(
F 2
2n+1 + 1

)2 =
5

12
;

∞∑
n=1

4nJ4n+2(
J2
2n+1 − 22n−1

)2 = 4;

∞∑
n=1

4nJ4n+2(
J2
2n+1 + 22n−2

)2 =
52

45
.

Finally, we explore the Jacobsthal counterpart of equation (4).

2.4. Jacobsthal Version of Equation (4).

Proof. LetA =
f4n+2[

l22n+1 − (−1)k∆2f2
k

]2 . Now, replace x with 1/
√
x, and multiply the numerator

and denominator of the resulting expression with x4n. We then get

A =
x2f4n+2[

xl22n+1 − (−1)kD2f2
k

]2
=

x(4n+3)/2
[
x(4n+1)/2f4n+2

]{[
x(2n+1)/2l2n+1

]2 − (−1)kD2x2n−k+1
[
x(k−1)/2fk

]2}2

=
x(4n+3)/2J4n+2[

j22n+1 − (−1)kD2x2n−k+1J2
k

]2 ;
LHS =

∞∑
n=M

x(4n+3)/2J4n+2[
j22n+1 − (−1)kD2x2n−k+1J2

k

]2 , (18)

where gn = gn(1/
√
x) and cn = cn(x).
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Now, let B =
1

∆2f2k

k∑
r=1

1

l2t
. Suppose k is odd. Replacing x with 1/

√
x, and multiplying the

numerator and denominator with x(4r+2k−1)/2 yields

B =
x

D2f2k

k∑
r=1

1

l22r

=
x(2k+1)/2

D2
[
x(2k−1)/2f2k

] k∑
r=1

x2r(
x2r/2l2r

)2 ;
RHS =

x(2k+1)/2

D2J2k

k∑
r=1

x2r

j22r
, (19)

where gn = gn(1/
√
x) and cn = cn(x).

It then follows by equations (18) and (19) that

∞∑
n=(k+1)/2
k≥1, odd

x2n+1J4n+2(
j22n+1 +D2x2n−k+1J2

k

)2 =
xk

D2J2k

k∑
r=1

x2r

j22r
. (20)

With k even, we have B =
1

∆2f2k

k∑
r=1

1

l22r−1

. Now, replace x with 1/
√
x, and multiply the

numerator and denominator with x(4r+2k−1)/2. This gives

B =
x

D2f2k

k∑
r=1

1

l22r−1

=
x(2k+1)/2

D2
[
x(2k−1)/2f2k

] k∑
r=1

x2r−1[
x(2r−1)/2l2r−1

]2 ;
RHS =

x(2k+1)/2

D2J2k

k∑
r=1

x2r−1

j22r−1

, (21)

where gn = gn(1/
√
x) and cn = cn(x).

Coupled with equation (18), this gives

∞∑
n=k/2

k≥2, even

x2n+1J4n+2(
j22n+1 −D2x2n−k+1J2

k

)2 =
xk

D2J2k

k∑
r=1

x2r−1

j22r−1

.

Merging equations (20) and (21), we get the desired Jacobsthal version:

∞∑
n=M

x2n+1J4n+2[
j22n+1 − (−1)kD2x2n−k+1J2

k

]2 =
xk

D2J2k

k∑
r=1

xt

j2t
. (22)

□

MAY 2023 141



THE FIBONACCI QUARTERLY

In particular, we have

∞∑
n=M

F4n+2[
L2
2n+1 − 5(−1)kF 2

k

]2 =
1

5F2k

k∑
r=1

1

L2
t

;

∞∑
n=M

22n+1J4n+2[
j22n+1 − 9(−1)k22n−k+1J2

k

]2 =
2k

9J2k

k∑
r=1

2t

j2t
.

Consequently, we have [6]
∞∑
n=1

F4n+2(
L2
2n+1 + 5

)2 =
1

45
;

∞∑
n=1

F4n+2(
L2
2n+1 − 5

)2 =
17

240
;

∞∑
n=1

4nJ4n+2(
j22n+1 + 9 · 22n

)2 =
4

225
;

∞∑
n=1

4nJ4n+2(
j22n+1 − 9 · 22n−1

)2 =
212

2, 205
.
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