ϕ -EXPANSIONS OF RATIONALS

KING SHUN LEUNG

ABSTRACT. Let ϕ denote the golden ratio $(\sqrt{5}+1)/2$ and x be a positive rational number. We study how the ϕ -expansion of x can be found using some known results on Fibonacci numbers. We characterize those numbers in (0, 1) with finite ϕ -expansions. If $x \in \mathbb{Q} \cap (0, 1)$, we give a precise expression for its ϕ -expansion. In this case, the computation involves only simple operations on integers.

1. INTRODUCTION

Let ϕ denote the golden ratio $(\sqrt{5}+1)/2 = 1.6180339887...$ We see that ϕ satisfies

$$\phi^2 = \phi + 1. \tag{1.1}$$

It follows that

$$\phi^{n+2} = \phi^{n+1} + \phi^n \tag{1.2}$$

for all integers n. It is known ([7, 8]) that any positive real number x can be expressed in the form

$$x = \sum_{i=-h}^{\infty} a_i \phi^{-i}, \tag{1.3}$$

where $a_i \in \mathcal{D} := \{0, 1\}$. A shorthand for (1.3) is

$$x = a_{-h}a_{-h+1}\dots a_{-1}a_0.a_1a_2\dots_{\phi}.$$
 (1.4)

This is not the usual notation (positive (negative) powers of ϕ with positive (negative) indices, see, e.g., [6]), but it is convenient in this paper because we consider mainly numbers in (0, 1). The subscript ϕ is omitted in the rest of this note. We may think of this notion of number representation as a number system with the irrational base ϕ and the digit set \mathcal{D} . Repeating digits are overbarred as in 10.0001 = 10.0001001001001001... The expression (1.3) (or (1.4)), called a ϕ -expansion of x, is unique if we impose two conditions on the expression. The first one is that

$$a_i a_{i+1} = 0$$
 (1.5)

for all *i*. In other words, two consecutive 1s will not appear in a ϕ -expansion. We can see from (1.2) that $\dots 100 \dots = \dots 011 \dots$ Because of (1.5) we accept only the former. The second condition is that a tail of $\overline{01}$ is replaced by a 1 followed by a tail of (hidden) 0s. For example, by repeated application of (1.2), we have $0.1 = 0.011 = 0.01011 = 0.0101011 = \dots = 0.\overline{01}$. We can also prove this result by summing a geometric series: $0.\overline{01} = \phi^{-2} + \phi^{-4} + \phi^{-6} + \phi^{-8} + \dots = \phi^{-2}/(1 - \phi^{-2}) = 1/(\phi^2 - 1) = 1/\phi = \phi^{-1} = 0.1$.

Indeed the representations of numbers in noninteger bases are also studied in the setting of β -expansions ([7, 8]), of which the notion of ϕ -expansions is a special case. Although in this note, we confine our study to the ϕ -expansions of numbers, some of the techniques used here can be adapted to find their β -expansions, especially when β satisfies $\beta^2 = n\beta + 1$, where n(> 1) is an integer.

ϕ -EXPANSIONS OF RATIONALS

Definition 1. We define the sequence of Fibonacci numbers $\{F_n\}_{n \in \mathbb{Z}}$ as follows. For all $n \in \mathbb{Z}$, $F_n = F_{n-1} + F_{n-2}$ with $F_0 = 0$ and $F_1 = 1$. When n is negative, F_n is called a negaFibonacci number.

Table 1 lists the F_n s for n = -9, -8, ..., 9, 10.

n	-9	-8	-7	-6	-5	-4	-3	-2	-1	0	
F_n	34	-21	13	-8	5	-3	2	-1	1	0	
\overline{n}	1	2	3	4	5	6	7	8	9	10	
F_n	1	1	2	3	5	8	13	21	34	55	
	TABLE 1. A list of Fibonacci numbers										

It can be shown that $F_{2m-1} = F_{-2m+1}$ and $F_{2m} = -F_{-2m}$ for all integers m.

We list below a number of results on Fibonacci numbers which will be used to find the ϕ -expansions of numbers in the subsequent sections. The first one is:

$$\phi^n = F_n \phi + F_{n-1} \tag{1.6}$$

for all integers n. It can be proved by applying induction twice.

Then, we have two theorems on the representations of integers as a sum of Fibonacci numbers.

Theorem 2. (Zeckendorf's Theorem [3]) Let N be a positive integer. Then, there exist positive integers $i_j \ge 2$ with $i_{j+1} > i_j + 1$ such that $N = \sum_{j=1}^m F_{i_j}$. This representation (called the Zeckendorf representation) of N is unique.

For example, the Zeckendorf representation of 99 can be found by the Greedy algorithm as follows: $99 = 89 + 10 = 89 + 8 + 2 = F_{11} + F_6 + F_3$.

Theorem 3. (Representations of integers by negaFibonacci numbers [4]) Let N be a nonzero integer. Then, there exist positive integers $i_j \ge 1$ with $i_{j+1} > i_j + 1$ such that $N = \sum_{j=1}^m F_{-i_j}$. This representation of N is unique.

For example, the negaFibonacci representation of 99 can be obtained by Bunder's algorithm [4] as follows: $99 = 89 + 10 = 89 + 13 - 3 = F_{-11} + F_{-7} + F_{-4}$.

Similarly, the negaFibonacci representation of -99 is given by

 $-99 = -144 + 45 = -144 + 34 + 11 = -144 + 34 + 13 - 2 = -144 + 34 + 13 - 3 + 1 = F_{-12} + F_{-9} + F_{-7} + F_{-4} + F_{-1}.$

Let q be a positive integer greater than one. It can be shown that the sequence $\{F_n \mod q\}_{n=0}^{\infty}$ is periodic ([11, 12]). The (shortest) period is called the *qth Pisano period* [13] and written $\pi(q)$. Table 2 shows that $\pi(7) = 16$.

\overline{n}	0	1	2	3	4	5	6	7	8	9	10
$F_n \mod 7$	0	1	1	2	3	5	1	6	0	6	6
\overline{n}	11	12	13	14	15	16	17	18	19	20	21
$F_n \mod 7$	5	4	2	6	1	0	1	1	2	3	5
TABLE 2. A table of $F_n \mod 7$											

It can be deduced from the periodicity of $\{F_n \mod q\}_{n=0}^{\infty}$ that

 $F_{k-1} \equiv F_{k+1} \equiv F_{k+2} \equiv 1 \mod q, \tag{1.7}$

MAY 2023

163

THE FIBONACCI QUARTERLY

where $k := \pi(q)$.

The following result is a particular case of Theorem 3.4 in [10].

Theorem 4. Let $x = p/q \in \mathbb{Q} \cap (0,1)$ where p and q are positive integers and (p,q) = 1. Then the ϕ -expansion of x is strictly periodic with period $k = \pi(q)$, i.e., it takes the form $x = 0.\overline{a_1 a_2 \dots a_k}$.

Remark 5. The converse of Theorem 4 is not true in the sense that some numbers with strictly periodic ϕ -expansions are not rationals. For example, $0.\overline{100} = \phi^{-1}/(1-\phi^{-3}) = \phi^2/(\phi^3-1) = \phi^2/(F_3\phi + F_2 - 1) = \phi^2/(2\phi + 1 - 1) = \phi/2 \notin \mathbb{Q}.$

The rest of this note is organized as follows. Section 2 following this introductory section gives a characterization of numbers in (0, 1) with finite ϕ -expansions. The main result of this paper, a precise description of the ϕ -expansion of a rational in (0, 1) (Theorem 10) is given in Section 3. In this section, we will also illustrate with examples how we can apply the previous results to find the ϕ -expansions of positive rationals.

2. Numbers in (0,1) with Finite ϕ -expansions

It is known [6] that all positive real numbers that have a finite expansion are given by the positive numbers in $\mathbb{Z}[\phi^{-1}]$. We characterize the numbers in (0, 1) with finite expansions below.

Theorem 6. The ϕ -expansion of a number $x \in (0, 1)$ is finite if and only if $x = A\phi + B$ for some integers A and B with negaFibonacci representations $A = \sum_{j=1}^{m} F_{-i_j}$ and $B = \sum_{j=1}^{m} F_{-i_j-1}$ for some increasing sequence $\{i_j\}_{j=1}^m$ of positive integers satisfying $i_{j+1} > i_j + 1$.

Proof. If $x = A\phi + B = (\sum_{j=1}^{m} F_{-i_j})\phi + \sum_{j=1}^{m} F_{-i_j-1} = \sum_{j=1}^{m} (F_{-i_j}\phi + F_{-i_j-1}) = \sum_{j=1}^{m} \phi^{-i_j} < \sum_{j=1}^{m} \phi^{-(2j-1)} < 0.\overline{10} = 1$. It follows from Theorem 3 that (1.5) is satisfied in the expression $x = \sum_{j=1}^{m} \phi^{-i_j}$.

Only if. Let m be the number of 1s in the ϕ -expansion of x. Then, there exists an increasing sequence of positive integers $\{i_j\}_{j=1}^m$ such that $i_{j+1} > i_j+1$ and $x = \sum_{j=1}^m \phi^{-i_j} = \sum_{j=1}^m (F_{-i_j}\phi + F_{-i_j-1}) = (\sum_{j=1}^m F_{-i_j})\phi + \sum_{j=1}^m F_{-i_j-1}$. Here, $\sum_{j=1}^m F_{-i_j}$ and $\sum_{j=1}^m F_{-i_j-1}$ are integers. \Box Remark 7. And erson [1] studies the representations of integers A and B in $A\phi + B > 0$ as sums of Fibonacci numbers with no restriction on the signs of the subscripts.

The following simpler characterization of the numbers in (0, 1) was suggested by the referee. Let $w(A) := |\phi A|$ for $A \in \mathbb{Z}^+$, the famous Wythoff sequence.

Theorem 8. (Referee) The ϕ -expansion of a number $x \in (0,1)$ is finite if and only if $x = A\phi - w(A)$ for some positive integer A, or $x = A\phi + w(-A) + 1$ for some negative integer A.

Proof. Only if. Because $x \in (0,1)$, the ϕ -expansion of x can only have nonzero digits with negative indices (because the geometric series starting at $1/\phi$ and multiplier ϕ^{-2} sums to 1). Now, because $\phi^{-1} = \phi - 1$, x can be written as $x = A\phi + B$ for some integers A and B. The condition $x \in (0,1)$ then forces B = -w(A) or B = w(-A) + 1, according to the sign of A.

If. According to Theorem 2 in [6], the set of numbers that possess a finite ϕ -expansion are the positive elements of $\mathbb{Z}[\phi^{-1}]$. Because $\phi^{-1} = \phi - 1$, these are the positive elements of the ring $Z(\phi)$, so the numbers $A\phi - w(A)$, and $A\phi + w(-A) + 1$ have finite expansions.

To find the ϕ -expansion of $x = 10\phi - 16$, we see that the negaFibonacci representation of 10 is $10 = -3 + 13 = F_{-4} + F_{-7}$, whereas that of -16 is $-16 = 5 - 21 = F_{-5} + F_{-8}$. By Theorem 6, we get $x = (F_{-4} + F_{-7})\phi + (F_{-5} + F_{-8}) = (F_{-4}\phi + F_{-5}) + (F_{-7}\phi + F_{-8}) = \phi^{-4} + \phi^{-7} = 0.0001001$.

ϕ -EXPANSIONS OF RATIONALS

Remark 9. We can deduce from Theorem 6 that the ϕ -expansion of any positive integer is finite (see [9] for a different proof). Let N be a positive integer. The assertion is obviously true if N = 1. If $N \ge 2$, then there exists a positive integer $n(\ge 2)$ for which $M := N\phi^{-n} < 1$. Using (1.6), we can express M in the form $M = A\phi + B$, where A and B are integers. As $M \in (0, 1)$, it follows from Theorem 6 that the ϕ -expansion of M is finite. As a result, the ϕ -expansion of N is also finite as it can be obtained by shifting the decimal point in the ϕ -expansion of M n places to the right.

3. ϕ -expansions of Rationals

3.1. ϕ -expansions of Rationals in (0,1). [2] gives the ϕ -expansions of $\frac{1}{2}$, $\frac{1}{3}$, $\frac{1}{4}$, $\frac{1}{5}$, and $\frac{1}{10}$. The main result (Theorem 10) of this note is a precise description of the ϕ -expansion of a rational number $x \in (0, 1)$.

Theorem 10. Let $x = p/q \in (0,1)$ and $k = \pi(q)$ be defined as in Theorem 4. Then the ϕ -expansion of x is given by $x = 0.\overline{a_1a_2...a_k}$ if and only if the a_is satisfy the Zeckendorf representation of $(F_{k+2}-1)x$, i.e., $(F_{k+2}-1)x = a_1F_{k+1} + a_2F_k + \cdots + a_kF_2$.

Proof. Only if. Theorem 4 states that the ϕ -expansion of x takes the form $x = 0.\overline{a_1a_2...a_k}$. Then, we have $\phi^k x = a_1a_2...a_k.\overline{a_1a_2...a_k}$. This implies that $x = \phi^k x - a_1\phi^{k-1} - a_2\phi^{k-2} - \cdots - a_k$.

Using
$$(1.6)$$
, we get

 $x = (F_{k-1}x - a_1F_{k-2} - a_2F_{k-3} - \dots - a_kF_{-1}) + (F_kx - a_1F_{k-1} - a_2F_{k-2} - \dots - a_kF_0)\phi.$ It follows that

$$(F_{k-1}-1)x - a_1F_{k-2} - a_2F_{k-3} - \dots - a_kF_{-1} = 0, (3.1)$$

$$F_k x - a_1 F_{k-1} - a_2 F_{k-2} - \dots - a_k F_0 = 0.$$
(3.2)

To determine the a_i s, we can proceed as follows. Adding (3.1) and (3.2) gives

$$(F_{k+1}-1)x - a_1F_k - a_2F_{k-1} - \dots - a_kF_1 = 0.$$
(3.3)

Adding (3.2) and (3.3) gives

$$(F_{k+2} - 1)x - a_1F_{k+1} - a_2F_k - \dots - a_kF_2 = 0.$$
(3.4)

Because $(F_{k+2} - 1)x$ is a positive integer, Theorem 2 gives that $a_1F_{k+1} + \cdots + a_kF_2$ is the Zeckendorf representation of $(F_{k+2} - 1)x$ (where we use (1.5) because $0.\overline{a_1a_2...a_k}$ is a ϕ -expansion).

If. Suppose $(F_{k+2}-1)x = a_1F_{k+1} + a_2F_k + \cdots + a_kF_2$ and the ϕ -expansion of x is $x = 0.\overline{b_1b_2\ldots b_k}$. Then by the "only if" part of this theorem, the b_i s satisfy $(F_{k+2}-1)x = b_1F_{k+1} + b_2F_k + \cdots + b_kF_2$. As the Zeckendorf representation of $(F_{k+2}-1)x$ is unique, $b_i = a_i$ for $i = 1, 2, \ldots, k$.

To find the ϕ -expansion of 2/7, we have seen from Table 2 that $\pi(7) = 16$. By Theorem 10, we have

 $(F_{18}-1)(2/7) = a_1F_{17}+a_2F_{16}+\dots+a_{16}F_2$. Applying Theorem 2, we obtain $(F_{18}-1)(2/7) = 2583(2/7) = 738 = 610+89+34+5 = F_{15}+F_{11}+F_9+F_5$. That means $a_3 = a_7 = a_9 = a_{13} = 1$ and all other a_i s are equal to zero. Hence, 2/7 = 0.0010001010001000.

We can verify our result as follows.

 $\begin{array}{l} 0.\overline{0010001010001000} = (\phi^{-3} + \phi^{-7} + \phi^{-9} + \phi^{-13})/(1 - \phi^{-16}) = (\phi^{13} + \phi^9 + \phi^7 + \phi^3)/(\phi^{16} - 1) \\ 1) = [(F_{13}\phi + F_{12}) + (F_9\phi + F_8) + (F_7\phi + F_6) + (F_3\phi + F_2)]/(F_{16}\phi + F_{15} - 1) = [(233\phi + 144) + (34\phi + 21) + (13\phi + 8) + (2\phi + 1)]/(987\phi + 610 - 1) = (282\phi + 174)/(987\phi + 609) = [2(141\phi + 87)]/[7(141\phi + 87)] = 2/7. \end{array}$

MAY 2023

THE FIBONACCI QUARTERLY

3.2. ϕ -expansions of Rationals Greater Than One. We can use the idea of Remark 9 to find the ϕ -expansion of an integer greater than one. We illustrate the idea explicitly with the examples below.

To find the ϕ -expansion of 23, we can proceed as follows. Because $23 = 15 + 8 < 13\phi + 8 = F_7\phi + F_6 = \phi^7$ (by (1.6)), we let $M := 23\phi^{-7}$. Using (1.6) and Theorem 3, we have $M = 23(F_{-7}\phi + F_{-8}) = 23 \cdot 13\phi + 23(-21) = 299\phi - 483 = (F_{-1} + F_{-4} + F_{-8} + F_{-11} + F_{-13})\phi + (F_{-2} + F_{-5} + F_{-9} + F_{-12} + F_{-14}) = (F_{-1}\phi + F_{-2}) + (F_{-4}\phi + F_{-5}) + (F_{-8}\phi + F_{-9}) + (F_{-11}\phi + F_{-12}) + (F_{-13}\phi + F_{-14}) = \phi^{-1} + \phi^{-4} + \phi^{-8} + \phi^{-11} + \phi^{-13}$. Then, $23 = M\phi^7 = \phi^6 + \phi^3 + \phi^{-1} + \phi^{-4} + \phi^{-6} = 1001000.100101$.

We end this note with an example on how to find the ϕ -expansion of a nonintegral rational greater than one.

To find the ϕ -expansion of $\frac{17}{3}$, the first step is to write $\frac{17}{3} = 5\frac{2}{3}$. It is easy to see that 5 has ϕ -expansion 1000.1001, and an application of Theorem 10 gives that the ϕ -expansion of 2/3 is $0.\overline{10000010} = 0.1000\overline{00101000}$. Then, we have $5\frac{2}{3} = 1000.1001 + 0.1000 + 0.0000\overline{00101000}$. The sum of the first two terms can be obtained by repeated use of (1.2) as follows: 1000.1001 + 0.1000 = 1000.0111 + 0.1000 = 1000.1111 = 1001.0011 = 1001.0100. Finally, we have $5\frac{2}{3} = 1001.0100 + 0.0000\overline{00101000} = 1001.0100\overline{00101000} = 1001.0100\overline{0010100}$.

Acknowledgement

The author thanks the referee for the valuable comments and suggestions, especially the inclusion of Theorem 8 and the simplification of the proof of Theorem 10. The author is also grateful to the Editor for the advice on the presentation of examples.

References

- P. G. Anderson, Extended Fibonacci Zeckendorf theory. In: Proceedings of the Sixteenth International Conference on Fibonacci Numbers and Their Applications, The Fibonacci Quarterly, 52.5 (2014), 15-21.
- [2] G. Bergman, A base number system with an irrational base, Mathematical Magazine, **31.2** (1957), 98-110.
- [3] J. L. Brown, Zeckendorf's theorem and some applications, The Fibonacci Quarterly, 2.3 (1964), 163–168.
 [4] M. W. Bunder, Zeckendorf representation using negative Fibonacci numbers, The Fibonacci Quarterly,
- **30.2** (1992), 111-115. [5] L. C. Eggan and C. L. vanden Eynden, "Decimal" expansions to nonintegral bases, The American Mathe-
- [5] L. C. Eggan and C. L. vanden Eynden, "Decimal" expansions to nonintegral bases, The American Mathematical Monthly, 73 (1966), 576-582.
- [6] C. Frougny and B. Solomyak, Ergod. th. and dynam. sys., 12 (1992), 713-723.
- [7] W. Parry, On the β-expansion of real numbers, Acta Mathematica Academiae Scientiarum Hungarica, 11 (1960), 401–416.
- [8] A. Renyi, Representations for real numbers and their ergodic properties, Acta Mathematica Academiae Scientiarum Hungarica, 8 (1957), 477-493.
- [9] C. Rousseau, The phi number system revisited, Mathematics Magazine, 68.4 (1995), 283-284.
- [10] K. Schmidt, On periodic expansions of Pisot numbers and Salem numbers, Bulletin of London Mathematical Society, 12 (1980), 269-278.
- [11] A. Vince, The Fibonacci sequence modulo N, The Fibonacci Quarterly, 16.5 (1978), 403-407.
- [12] D. D. Wall, Fibonacci series modulo m, The American Mathematical Monthly, 67.6 (1960), 525-532.
- [13] J. W. Wrench, Review of B. H. Hannon and W. L. Morris, Tables of arithmetical functions related to the Fibonacci numbers, Mathematics of Computation, 23 (1969), 459-460.

MSC2020: 11A63, 11A67, 11B39, 11B50, 11K16

Department of Mathematics and Information Technology, The Education University of Hong Kong, 10 Lo Ping Road, Tai Po, Hong Kong,

Email address: ksleung@eduhk.hk