A NOTE ON THE FIBONACCI SEQUENCE AND SCHREIER-TYPE SETS

HÙNG VIỆT CHU

ABSTRACT. A set A of positive integers is said to be Schreier if either $A = \emptyset$ or min $A \ge |A|$. We give a bijective map to prove the recurrence of the sequence $(|\mathcal{K}_{n,p,q}|)_{n=1}^{\infty}$ (for fixed $p \ge 1$ and $q \ge 2$), where

 $\mathcal{K}_{n,p,q} = \{A \subset \{1, \dots, n\} : \text{ either } A = \emptyset \text{ or } (\max A - \max_{2} A = p \text{ and } \min A \ge |A| \ge q) \}$

and max₂ A is the second largest integer in A, given that $|A| \ge 2$. When p = 1 and q = 2, we have that $(|\mathcal{K}_{n,1,2}|)_{n=1}^{\infty}$ is the Fibonacci sequence. As a corollary, we obtain a new combinatorial interpretation for the sequence $(F_n + n)_{n=1}^{\infty}$.

A. Bird [2] showed that for each $n \ge 1$, if we let

 $\mathcal{A}_n := \{ A \subset \{1, \dots, n\} : n \in A \text{ and } \min A \ge |A| \},\$

then $|\mathcal{A}_n| = F_n$. The condition $\min A \ge |A|$ is called the *Schreier condition*, and a set that satisfies the Schreier condition is called a *Schreier set*. (The empty set satisfies the Schreier condition vacuously.) Schreier sets appeared in a paper by Schreier [9] who used them to solve a problem in Banach space theory. The Schreier condition is also the central concept in a celebrated theorem by Odell [8]. Moreover, Schreier sets were independently discovered in combinatorics and appeared in Ramsey-type theorems for subsets of N. Following the discovery by A. Bird, there has been research on various recurrences produced by counting Schreier-type sets (see [1, 3, 4, 5, 6, 7]). In this short note, we retrieve the Fibonacci sequence from a different counting problem than the one by A. Bird. In particular, for $n \ge 1$, define the set

$$\mathcal{K}_n := \{A \subset [n] : \text{either } A = \emptyset \text{ or } (\max A - 1 \in A \text{ and } \min A \ge |A|) \},\$$

where $[n] = \{1, \ldots, n\}$. Although we fix the maximum element of sets in \mathcal{A}_n , we do not fix the maximum of sets in \mathcal{K}_n . Instead, we fix the distance between the largest and the second largest elements of sets in \mathcal{K}_n .

Theorem A. For $n \ge 1$, $|\mathcal{K}_n| = F_n$.

Let us briefly discuss the proof of Theorem A. It is easy to check that $|\mathcal{K}_1| = |\mathcal{K}_2| = 1$. We need only to show that $|\mathcal{K}_{n+1}| - |\mathcal{K}_n| = |\mathcal{K}_{n-1}|$ for all $n \ge 2$. Fix $n \ge 2$. By definition, $\mathcal{K}_n \subset \mathcal{K}_{n+1}$ and

$$\mathcal{K}_{n+1} \setminus \mathcal{K}_n = \{ A \subset [n+1] : n, n+1 \in A \text{ and } \min A \ge |A| \}.$$

We define a bijection $\pi : \mathcal{K}_{n-1} \to \mathcal{K}_{n+1} \setminus \mathcal{K}_n$: for $A \in \mathcal{K}_{n-1}$,

$$\pi(A) := \begin{cases} (A \setminus \{\max A\} + 1) \cup \{n, n+1\}, & \text{if } A \neq \emptyset; \\ \{n, n+1\}, & \text{if } A = \emptyset. \end{cases}$$

Interested readers may verify that π is indeed a bijection or may look at the proof of the more general Theorem C below.

The author thanks an anonymous referee's suggestions that helped improve the exposition of the note.

We have the following immediate corollary, which gives the sequence $(F_n + n)_{n=1}^{\infty}$ (see https://oeis.org/A002062).

Corollary B. Let

$$\mathcal{K}'_n := \{A \subset [n] : either |A| \le 1 \text{ or } (\max A - 1 \in A \text{ and } \min A \ge |A|) \}.$$

Then, $|K'_n| = F_n + n$ for all $n \ge 1$.

Proof. Clearly, $|\mathcal{K}'_n| - |\mathcal{K}_n| = n$ for all $n \ge 1$. Using Theorem A, the result follows.

We shall prove a more general result. Let $\max_2 A$ be the second largest number in A if $|A| \ge 2$. For $n, p \ge 1$ and $q \ge 2$, define

$$\mathcal{K}_{n,p,q} := \{ A \subset [n] : \text{ either } A = \emptyset \text{ or } (\max A - \max_2 A = p \text{ and } \min A \ge |A| \ge q) \}.$$

Note that $\mathcal{K}_{n,1,2} = \mathcal{K}_n$.

Theorem C. Fix $n, p \ge 1$ and $q \ge 2$. We have

$$|\mathcal{K}_{n,p,q}| = \begin{cases} 1, & \text{if } 1 \le n \le p + 2q - 3; \\ |\mathcal{K}_{n-1,p,q}| + |\mathcal{K}_{n-2,p,q}| + \binom{n-p-q}{q-2} - 1, & \text{if } n > p + 2q - 3. \end{cases}$$

Proof. We prove Theorem C by recalling that $\mathcal{K}_{n-1,p,q} \subset \mathcal{K}_{n,p,q}$, then writing

$$\mathcal{K}_{n,p,q} \setminus \mathcal{K}_{n-1,p,q} = \mathcal{S} \cup \mathcal{T}$$

for certain disjoint sets S and T, and finally verifying that $|S| = |\mathcal{K}_{n-2,p,q}| - 1$, whereas $|\mathcal{T}| = \binom{n-p-q}{q-2}$.

Fix $p \ge 1$ and $q \ge 2$. First, we check that for $1 \le n \le p + 2q - 3$, $|\mathcal{K}_{n,p,q}| = 1$. Recall that $\mathcal{K}_{n,p,q} = \{A \subset [n] : \text{ either } A = \emptyset \text{ or } (\max A - \max_{2} A = p \text{ and } \min A \ge |A| \ge q)\}.$

Suppose A is nonempty and $A \in \mathcal{K}_{n,p,q}$. Write $A = \{a_1, \ldots, a_k\}$. Then, $a_1 \ge q$, $a_k \le p + 2q - 3$, and $a_{k-1} \le 2q - 3$. Hence,

$$|\{a_1, \ldots, a_{k-1}\}| \leq q-2$$

and so, $|A| \leq q - 1$, which contradicts the requirement that $|A| \geq q$. Therefore, for $1 \leq n \leq p + 2q - 3$, $\mathcal{K}_{n,p,q} = \{\emptyset\}$.

For $n \ge p + 2q - 2$, we show that $|\mathcal{K}_{n,p,q}| = |\mathcal{K}_{n-1,p,q}| + |\mathcal{K}_{n-2,p,q}| + {\binom{n-p-q}{q-2}} - 1$. Let $\mathcal{S} = \{A \in \mathcal{K}_{n,p,q} \setminus \mathcal{K}_{n-1,p,q} : |A| \ge q+1\}$ and $\mathcal{T} = \{A \in \mathcal{K}_{n,p,q} \setminus \mathcal{K}_{n-1,p,q} : |A| = q\}$. We define a bijection $\pi : \mathcal{K}_{n-2,p,q} \setminus \{\emptyset\} \to \mathcal{S}$ for a nonempty set $A \in \mathcal{K}_{n-2,p,q}$ by

$$\pi(A) := (A \setminus \{\max A\} + 1) \cup \{n - p, n\}.$$

First, π is well-defined. Because $n \in \pi(A)$, $\pi(A) \notin \mathcal{K}_{n-1,p,q}$. That max $A \leq n-2$ implies that max₂ $A \leq n-2-p$, so $\pi(A)$ does not contain any number strictly between n-p and n. Hence,

$$\max \pi(A) - \max_{2} \pi(A) = n - (n - p) = p.$$

Also, $|\pi(A)| = |A| + 1 \ge q + 1$ and

$$\min \pi(A) = \min A + 1 \ge |A| + 1 = |\pi(A)|.$$

Therefore, $\pi(A) \in \mathcal{S}$.

Next, π is one-to-one. Let $A_1, A_2 \in \mathcal{K}_{n-2,p,q} \setminus \{\emptyset\}$ such that $\pi(A_1) = \pi(A_2)$. Note that $\max(A_i \setminus \{\max A_i\} + 1) \leq (n-2-p) + 1 = n-1-p$ for i = 1, 2.

AUGUST 2023

THE FIBONACCI QUARTERLY

Hence, $\pi(A_1) = \pi(A_2)$ implies that $A_1 \setminus \{\max A_1\} = A_2 \setminus \{\max A_2\}$. So, $\max_2 A_1 = \max_2 A_2$, which, combined with $\max A_i - \max_2 A_i = p$ for i = 1, 2 gives $A_1 = A_2$. We conclude that π is one-to-one.

Next, π is onto. Take $A \in S$. Then $n, n-p \in A$ and $|A| \ge q+1$. Let $B = A \setminus \{n-p, n\} - 1$ and $\ell = \max B$. Let $C = B \cup \{\ell + p\}$. We claim that $C \in \mathcal{K}_{n-2,p,q}$. Indeed,

$$\max C = \max B + p \le n - p - 1 - 1 + p = n - 2,$$

$$\min C = \min A - 1 \ge |A| - 1 = |B| + 1 = |C|, \text{ and}$$

$$|C| = |B| + 1 = |A| - 1 \ge (q + 1) - 1 = q.$$

It is clear from how we define C that $\max C - \max_2 C = p$. Finally, $\pi(C) = A$ by construction. We have shown that $|S| = |\mathcal{K}_{n-2,p,q} \setminus \{\emptyset\}| = |\mathcal{K}_{n-2,p,q}| - 1$. It remains to show that

$$|\mathcal{T}| = \binom{n-p-q}{q-2}.$$

A set A is in \mathcal{T} if and only if $\min A \ge |A| = q$, $\max A = n$, and $\max_2 A = n - p$. Hence, we can write a set A in \mathcal{T} as $A = D \cup \{n - p, n\}$, where $D \subset \{q, \ldots, n - p - 1\}$ and |D| = q - 2. Therefore, $|\mathcal{T}| = \binom{n-p-q}{q-2}$. This completes our proof as

$$\begin{aligned} |\mathcal{K}_{n,p,q}| &= |\mathcal{K}_{n-1,p,q}| + |\mathcal{K}_{n,p,q} \setminus \mathcal{K}_{n-1,p,q}| \\ &= |\mathcal{K}_{n-1,p,q}| + |\mathcal{S}| + |\mathcal{T}| \\ &= |\mathcal{K}_{n-1,p,q}| + |\mathcal{K}_{n-2,p,q}| + \binom{n-p-q}{q-2} - 1. \end{aligned}$$

References

- K. Beanland, H. V. Chu, and C. E. Finch-Smith, Schreier sets, linear recurrences, and Turán sequences, The Fibonacci Quarterly, 60.4 (2022), 352–356.
- [2] A. Bird, Schreier sets and the Fibonacci sequence, https://outofthenormmaths.wordpress.com/2012/ 05/13/jozef-schreier-schreier-sets-and-the-fibonacci-sequence/.
- [3] H. V. Chu, On a relation between Schreier-type sets and a modification of Turán graphs, preprint. Available at https://arxiv.org/pdf/2205.08280.pdf.
- [4] H. V. Chu, The Fibonacci sequence and Schreier-Zeckendorf sets, J. Integer Seq., 22 (2019).
- H. V. Chu, S. J. Miller, and Z. Xiang, Higher order Fibonacci sequences from generalized Schreier sets, The Fibonacci Quarterly, 58.3 (2020), 249–253.
- [6] H. V. Chu, Partial sums of the Fibonacci sequence, The Fibonacci Quarterly, 59.2 (2021), 132–135.
- [7] P. J. Mahanta, Partial sums of the Gibonacci sequence, preprint. Available at: https://arxiv.org/pdf/ 2109.03534.pdf.
- [8] E. Odell, On Schreier unconditional sequences, Contemp. Math., 144 (1993), 197–201.
- [9] J. Schreier, Ein gegenbeispiel zur theorie der schwachen konvergentz, Studia Math., 2 (1962), 58–62.

MSC2020: 11B39 (primary), 11B37, 11Y55 (secondary)

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN, URBANA, IL 61820 *Email address*: hungchu2@illinois.edu