THOMAS KOSHY

ABSTRACT. We investigate four infinite sums involving gibonacci polynomial squares and their numeric versions, and deduce their Pell versions.

1. Introduction

Extended gibonacci polynomials $z_n(x)$ are defined by the recurrence $z_{n+2}(x) = a(x)z_{n+1}(x) + b(x)z_n(x)$, where x is an arbitrary integer variable; a(x), b(x), $z_0(x)$, and $z_1(x)$ are arbitrary integer polynomials; and $n \ge 0$.

Suppose a(x) = x and b(x) = 1. When $z_0(x) = 0$ and $z_1(x) = 1$, $z_n(x) = f_n(x)$, the nth Fibonacci polynomial; and when $z_0(x) = 2$ and $z_1(x) = x$, $z_n(x) = l_n(x)$, the nth Lucas polynomial. They can also be defined by Binet-like formulas. Clearly, $f_n(1) = F_n$, the nth Fibonacci number; and $l_n(1) = L_n$, the nth Lucas number [1, 4].

Pell polynomials $p_n(x)$ and Pell-Lucas polynomials $q_n(x)$ are defined by $p_n(x) = f_n(2x)$ and $q_n(x) = l_n(2x)$, respectively [4]. In particular, the Pell numbers P_n and Pell-Lucas numbers Q_n are given by $P_n = p_n(1)$ and $2Q_n = q_n(1)$, respectively [4].

In the interest of brevity, clarity, and convenience, we omit the argument in the functional notation, when there is no ambiguity; so z_n will mean $z_n(x)$. In addition, we let $g_n = f_n$ or l_n , $h_n = n_n$ or q_n , $\Delta = \sqrt{x^2 + 4}$, and $E = \sqrt{x^2 + 1}$.

In the latter is no among the problem of l_n , $b_n = p_n$ or q_n , $\Delta = \sqrt{x^2 + 4}$, and $E = \sqrt{x^2 + 1}$.

It follows by the Binet-like formulas that $\lim_{m \to \infty} \frac{1}{g_{m+r}} = 0$ [4, 5, 6].

1.1. **Fundamental Gibonacci Identities.** Gibonacci polynomials satisfy the following properties [4, 5]; they follow by the Binet-like formulas:

$$f_{2n} = f_n l_n; (1)$$

$$l_n^2 - \Delta^2 f_n^2 = 4(-1)^n; (2)$$

$$g_{n+k}g_{n-k} - g_n^2 = \begin{cases} (-1)^{n+k+1} f_k^2, & \text{if } g_n = f_n; \\ (-1)^{n+k} \Delta^2 f_k^2, & \text{otherwise;} \end{cases}$$
(3)

$$\Delta^2 \left(f_{n+k}^4 - f_{n-k}^4 \right) = f_{4k} f_{4n} - 4(-1)^{n+k} f_{2k} f_{2n}; \tag{4}$$

$$l_{n+k}^4 - l_{n-k}^4 = \Delta^2 [f_{4k} f_{4n} + 4(-1)^{n+k} f_{2k} f_{2n}]. \tag{5}$$

1.2. **Telescoping Gibonacci Sums.** In our investigation of infinite sums of gibonacci polynomial squares in [6], we employed the following telescoping sums, where the degree λ of each g_n is two; for convenience, we call them lemmas:

Lemma 1.

$$\sum_{\substack{n=(k+1)/2\\k>1,\,odd}}^{\infty} \left(\frac{1}{g_{2n-k}^{\lambda}} - \frac{1}{g_{2n+k}^{\lambda}}\right) = \sum_{r=1}^{k} \frac{1}{g_{2r-1}^{\lambda}}.$$

AUGUST 2023 207

THE FIBONACCI QUARTERLY

Lemma 2.

$$\sum_{\substack{n=k/2+1\\k\geq 2,\, even}}^{\infty} \left(\frac{1}{g_{2n-k}^{\lambda}} - \frac{1}{g_{2n+k}^{\lambda}}\right) = \sum_{r=1}^{k} \frac{1}{g_{2r}^{\lambda}}.$$

Lemma 3.

$$\sum_{\substack{n=(k+1)/2\\k>1 \text{ odd}\\k>1 \text{ odd}}}^{\infty} \left(\frac{1}{g_{2n+1-k}^{\lambda}} - \frac{1}{g_{2n+1+k}^{\lambda}} \right) = \sum_{r=1}^{k} \frac{1}{g_{2r}^{\lambda}}.$$

Lemma 4.

$$\sum_{\substack{n=k/2\\k>2,\,even}}^{\infty} \left(\frac{1}{g_{2n+1-k}^{\lambda}} - \frac{1}{g_{2n+1+k}^{\lambda}} \right) = \sum_{r=1}^{k} \frac{1}{g_{2r-1}^{\lambda}}.$$

We now restrict our discourse to applications of these lemmas with $\lambda = 4$. The aforementioned identities, coupled with these lemmas, play a pivotal role in our explorations.

2. Sums Involving Gibonacci Polynomial Squares

In the interest of brevity, we let

$$L = \begin{cases} (k+1)/2, k \ge 1, & \text{if } k \text{ is odd;} \\ k/2+1, k \ge 2, & \text{otherwise;} \end{cases} \qquad s = \begin{cases} 2r-1, & \text{if } k \text{ is odd;} \\ 2r, & \text{otherwise;} \end{cases}$$

$$M = \begin{cases} (k+1)/2, k \ge 1, & \text{if } k \text{ is odd;} \\ k/2, k \ge 2, & \text{otherwise;} \end{cases} \text{ and } t = \begin{cases} 2r-1, & \text{if } k \text{ is odd;} \\ 2r, & \text{otherwise,} \end{cases}$$

where $1 \le r \le k$. We now begin our explorations with the following result.

Theorem 1. Let k be a positive integer. Then

$$\sum_{n=L}^{\infty} \frac{f_{4k}f_{8n} - 4(-1)^k f_{2k}f_{4n}}{\left[f_{2n}^2 - (-1)^k f_k^2\right]^4} = \Delta^2 \sum_{r=1}^k \frac{1}{f_s^4}.$$

Proof. Using identities (3) and (4), we have

$$\frac{f_{4k}f_{8n} - 4(-1)^k f_{2k}f_{4n}}{\Delta^2 \left[f_{2n}^2 - (-1)^k f_k^2\right]^4} = \frac{f_{2n+k}^4 - f_{2n-k}^4}{f_{2n+k}^4 f_{2n-k}^4} \\
= \frac{1}{f_{2n-k}^4} - \frac{1}{f_{2n+k}^4}.$$
(6)

Suppose k is odd. With Lemma 1, this yields

$$\sum_{\substack{n=(k+1)/2\\k>1, odd}}^{\infty} \frac{f_{4k}f_{8n} + 4f_{2k}f_{4n}}{\left(f_{2n}^2 + f_k^2\right)^4} = \sum_{r=1}^k \frac{\Delta^2}{f_{2r-1}^4}.$$
 (7)

On the other hand, suppose k is even. Then, by Lemma 2, equation (6) gives

$$\sum_{\substack{n=k/2+1\\k\geq 2 \text{ even}}}^{\infty} \frac{f_{4k}f_{8n} - 4f_{2k}f_{4n}}{\left(f_{2n}^2 - f_k^2\right)^4} = \sum_{r=1}^k \frac{\Delta^2}{f_{2r}^4}.$$
 (8)

Combining the two cases, we get the desired result.

In particular, we get

$$\sum_{n=1}^{\infty} \frac{f_4 f_{8n} + 4 f_2 f_{4n}}{\left(f_{2n}^2 + 1\right)^4} = \Delta^2; \qquad \sum_{n=1}^{\infty} \frac{3 F_{8n} + 4 F_{4n}}{\left(F_{2n}^2 + 1\right)^4} = 5;$$

$$\sum_{n=2}^{\infty} \frac{f_8 f_{8n} - 4 f_4 f_{4n}}{\left(f_{2n}^2 - x^2\right)^4} = \frac{\Delta^2 \left(f_2^4 + f_4^4\right)}{f_2^4 f_4^4}; \qquad \sum_{n=2}^{\infty} \frac{7 F_{8n} - 4 F_{4n}}{\left(F_{2n}^2 - 1\right)^4} = \frac{410}{243}.$$

With identity (2), it follows from Theorem 1 that

$$\sum_{n=L}^{\infty} \frac{f_{4k} f_{8n} - 4(-1)^k f_{2k} f_{4n}}{\left[l_{2n}^2 - (-1)^k \Delta^2 f_k^2 - 4\right]^4} = \frac{1}{\Delta^6} \sum_{r=1}^k \frac{1}{f_s^4}.$$
 (9)

This implies

$$\sum_{n=1}^{\infty} \frac{f_4 f_{8n} + 4 f_2 f_{4n}}{\left(l_{2n}^2 + x^2\right)^4} = \frac{1}{\Delta^6}; \qquad \sum_{n=1}^{\infty} \frac{3 F_{8n} + 4 F_{4n}}{\left(L_{2n}^2 + 1\right)^4} = \frac{1}{125};$$

$$\sum_{n=2}^{\infty} \frac{f_8 f_{8n} - 4 f_4 f_{4n}}{\left[l_{2n}^2 - (x^2 + 2)^2\right]^4} = \frac{f_2^4 + f_4^4}{\Delta^6 f_2^4 f_4^4}; \qquad \sum_{n=2}^{\infty} \frac{7 F_{8n} - 4 F_{4n}}{\left(L_{2n}^2 - 9\right)^4} = \frac{82}{30,375}.$$

Next, we explore the Lucas version of Theorem 2

Theorem 2. Let k be a positive integer. Then

$$\sum_{n=L}^{\infty} \frac{f_{4k}f_{8n} + 4(-1)^k f_{2k}f_{4n}}{\left[l_{2n}^2 + (-1)^k \Delta^2 f_k^2\right]^4} = \frac{1}{\Delta^2} \sum_{r=1}^k \frac{1}{l_s^4}.$$
Proof. Using equations (3) and (5), we get

$$\frac{\Delta^{2} \left[f_{4k} f_{8n} + 4(-1)^{k} f_{2k} f_{4n} \right]}{\left[l_{2n}^{2} + (-1)^{k} \Delta^{2} f_{k}^{2} \right]^{4}} = \frac{l_{2n+k}^{4} - l_{2n-k}^{4}}{l_{2n+k}^{4} l_{2n-k}^{4}} \\
= \frac{1}{l_{2n-k}^{4}} - \frac{1}{l_{2n+k}^{4}}.$$
(10)

Let k be odd. By Lemma 1, this yields

$$\sum_{\substack{n=(k+1)/2\\k>1 \text{ odd}}}^{\infty} \frac{f_{4k}f_{8n} - 4f_{2k}f_{4n}}{\left(l_{2n}^2 - \Delta^2 f_k^2\right)^4} = \frac{1}{\Delta^2} \sum_{r=1}^k \frac{1}{l_{2r-1}^4}.$$
 (11)

When k is even, equation (10), coupled with Lemma 2, gives

$$\sum_{\substack{n=k/2+1\\k\geq 2, even\\k\geq 2, even}}^{\infty} \frac{f_4 f_{8n} + 4 f_{2k} f_{4n}}{\left(l_{2n}^2 + \Delta^2 f_k^2\right)^4} = \frac{1}{\Delta^2} \sum_{r=1}^k \frac{1}{l_{2r}^2}.$$
 (12)

Combining the two cases yields the given result, as desired.

It follows from equations (11) and (12) that

$$\sum_{n=1}^{\infty} \frac{f_4 f_{8n} - 4 f_2 f_{4n}}{\left(l_{2n}^2 - \Delta^2\right)^4} = \frac{1}{\Delta^2 x^4}; \qquad \sum_{n=2}^{\infty} \frac{3 F_{8n} - 4 F_{4n}}{\left(L_{2n}^2 - 5\right)^4} = \frac{1}{5};$$

$$\sum_{n=2}^{\infty} \frac{f_8 f_{8n} + 4 f_4 f_{4n}}{\left(l_{2n}^2 + \Delta^2 x^2\right)^4} = \frac{l_2^4 + l_4^4}{\Delta^2 l_2^4 l_4^4}; \qquad \sum_{n=2}^{\infty} \frac{7 F_{8n} + 4 F_{4n}}{\left(L_{2n}^2 + 5\right)^4} = \frac{2,482}{2,917,215}.$$

AUGUST 2023 209

THE FIBONACCI QUARTERLY

Using identity (2), it follows from the theorem that

$$\sum_{n=L}^{\infty} \frac{f_{4k} f_{8n} + 4(-1)^k f_{2k} f_{4n}}{\left[\Delta^2 f_{2n}^2 + (-1)^k \Delta^2 f_k^2 + 4\right]^4} = \frac{1}{\Delta^2} \sum_{r=1}^k \frac{1}{l_s^4}.$$

This implies

$$\sum_{n=1}^{\infty} \frac{f_4 f_{8n} - 4 f_2 f_{4n}}{\left(\Delta^2 f_{2n}^2 - x^2\right)^4} = \frac{1}{\Delta^2 x^4}; \qquad \sum_{n=1}^{\infty} \frac{3 F_{8n} - 4 F_{4n}}{(5 F_{2n}^2 - 1)^4} = \frac{1}{5};$$

$$\sum_{n=2}^{\infty} \frac{f_8 f_{8n} + 4 f_4 f_{4n}}{\left[\Delta^2 f_{2n}^2 + (x^2 + 2)^2\right]^4} = \frac{l_2^4 + l_4^4}{\Delta^2 l_2^4 l_4^4}; \qquad \sum_{n=2}^{\infty} \frac{7 F_{8n} + 4 F_{4n}}{\left(5 F_{2n}^2 + 9\right)^4} = \frac{2,482}{2,917,215}.$$

The next result is also an application of identities (3) and (4).

Theorem 3. Let k be a positive integer. Then

$$\sum_{n=M}^{\infty} \frac{f_{4k} f_{8n+4} + 4(-1)^k f_{2k} f_{4n+2}}{\left[f_{2n+1}^2 + (-1)^k f_k^2\right]^4} = \Delta^2 \sum_{r=1}^k \frac{1}{f_t^4}.$$

Proof. With identities (3) and (4), we get

$$\frac{f_{4k}f_{8n+4} + 4(-1)^k f_{2k}f_{4n+2}}{\Delta^2 \left[f_{2n+1}^2 + (-1)^k f_k^2\right]^4} = \frac{f_{2n+1+k}^4 - f_{2n+1-k}^4}{f_{2n+1+k}^4 f_{2n+1-k}^4} \\
= \frac{1}{f_{2n+1-k}^4} - \frac{1}{f_{2n+1+k}^4}.$$
(13)

Now, let k be odd. With Lemma 3, this yields

$$\sum_{\substack{n=(k+1)/2\\k>1 \text{ odd}}}^{\infty} \frac{f_{4k}f_{8n+4} - 4f_{2k}f_{4n+2}}{\left(f_{2n+1}^2 - f_k^2\right)^4} = \Delta^2 \sum_{r=1}^k \frac{1}{f_{2r}^4}.$$
 (14)

With k even and Lemma 4, it follows from equation (13) that

$$\sum_{\substack{n=k/2\\k>2, \text{ even}}}^{\infty} \frac{f_{4k} f_{8n+4} + 4f_{2k} f_{4n+2}}{\left(f_{2n+1}^2 + f_k^2\right)^4} = \Delta^2 \sum_{r=1}^k \frac{1}{f_{2r-1}^4}.$$
 (15)

Equation (14), together with equation (15), gives the desired result.

In particular, we have

$$\sum_{n=1}^{\infty} \frac{f_4 f_{8n+4} - 4 f_2 f_{4n+2}}{\left(f_{2n+1}^2 - 1\right)^4} = \frac{\Delta^2}{x^4}; \qquad \sum_{n=1}^{\infty} \frac{3 F_{8n+4} - 4 F_{4n+2}}{\left(F_{2n+1}^2 - 1\right)^4} = 5;$$

$$\sum_{n=1}^{\infty} \frac{f_8 f_{8n+4} + 4 f_4 f_{4n+2}}{\left(f_{2n+1}^2 + x^2\right)^4} = \frac{\Delta^2 \left(f_1^4 + f_3^4\right)}{f_3^4}; \qquad \sum_{n=1}^{\infty} \frac{7 F_{8n+4} + 4 F_{4n+2}}{\left(F_{2n+1}^2 + 1\right)^4} = \frac{85}{48}$$

Using identity (2), Theorem 3 yields

$$\sum_{n=M}^{\infty} \frac{f_{4k} f_{8n+4} + 4(-1)^k f_{2k} f_{4n+2}}{\left[l_{2n+1}^2 + (-1)^k \Delta^2 f_k^2 + 4\right]^4} = \frac{1}{\Delta^6} \sum_{r=1}^k \frac{1}{f_t^4}.$$

Consequently, we have

$$\sum_{n=1}^{\infty} \frac{f_4 f_{8n+4} - 4 f_2 f_{4n+2}}{\left(l_{2n+1}^2 - x^2\right)^4} = \frac{1}{\Delta^6 x^4}; \qquad \sum_{n=1}^{\infty} \frac{3 F_{8n+4} - 4 F_{4n+2}}{\left(L_{2n+1}^2 - 1\right)^4} = \frac{1}{125};$$

$$\sum_{n=1}^{\infty} \frac{f_8 f_{8n+4} + 4 f_4 f_{4n+2}}{\left[l_{2n+1}^2 + (x^2 + 2)^2\right]^4} = \frac{f_1^4 + f_3^4}{\Delta^6 f_3^4}; \qquad \sum_{n=1}^{\infty} \frac{7 F_{8n+4} + 4 F_{4n+2}}{\left(L_{2n+1}^2 + 9\right)^4} = \frac{17}{6,000}.$$

The following result presents the Lucas counterpart of Theorem 3

Theorem 4. Let k be a positive integer. Then

$$\sum_{n=M}^{\infty} \frac{f_{4k}f_{8n+4} - 4(-1)^k f_{2k}f_{4n+2}}{\left[l_{2n+1}^2 - (-1)^k \Delta^2 f_k^2\right]^4} = \frac{1}{\Delta^2} \sum_{r=1}^k \frac{1}{l_t^4}.$$
 Proof. Using identities (3) and (5), we have

$$\frac{\Delta^{2} \left[f_{4k} f_{8n+4} - 4(-1)^{k} f_{2k} f_{4n+2} \right]}{\left[l_{2n+1}^{2} - (-1)^{k} \Delta^{2} f_{k}^{2} \right]^{4}} = \frac{l_{2n+1+k}^{4} - l_{2n+1-k}^{4}}{l_{2n+1+k}^{4} l_{2n+1-k}^{4}} \\
= \frac{1}{l_{2n+1-k}^{4}} - \frac{1}{l_{2n+1+k}^{4}}.$$
(16)

With k odd, and Lemma 3, this yields

$$\sum_{\substack{n=(k+1)/2\\k\geq 1, \text{ odd}}}^{\infty} \frac{f_{4k}f_{8n+4} + 4f_{2k}f_{4n+2}}{\left(l_{2n+1}^2 + \Delta^2 f_k^2\right)^4} = \frac{1}{\Delta^2} \sum_{r=1}^k \frac{1}{l_{2r}^4}.$$
 (17)

When k is even, using Lemma 4, equation (16) yields

$$\sum_{\substack{n=k/2\\k\geq 2, \text{ even}}}^{\infty} \frac{f_{4k} f_{8n+4} - 4f_{2k} f_{4n+2}}{\left(l_{2n+1}^2 - \Delta^2 f_k^2\right)^4} = \frac{1}{\Delta^2} \sum_{r=1}^k \frac{1}{l_{2r-1}^4}.$$
 (18)

211

The given result now follows by equations (17) and (18), as desired.

$$\sum_{n=1}^{\infty} \frac{f_4 f_{8n+4} + 4 f_2 f_{4n+2}}{\left(l_{2n+1}^2 + \Delta^2\right)^4} = \frac{1}{\Delta^2 l_2^4}; \qquad \sum_{n=1}^{\infty} \frac{3 F_{8n+4} + 4 F_{4n+2}}{\left(L_{2n+1}^2 + 5\right)^4} = \frac{1}{405};$$

$$\sum_{n=1}^{\infty} \frac{f_8 f_{8n+4} - 4 f_4 f_{4n+2}}{\left(l_{2n+1}^2 - \Delta^2 x^2\right)^4} = \frac{l_1^4 + l_3^4}{\Delta^2 l_1^4 l_3^4}; \qquad \sum_{n=1}^{\infty} \frac{7 F_{8n+4} - 4 F_{4n+2}}{\left(L_{2n+1}^2 - 5\right)^4} = \frac{257}{3,840}.$$

Using identity (2), Theorem 4 yields

$$\sum_{n=M}^{\infty} \frac{f_{4k} f_{8n+4} - 4(-1)^k f_{2k} f_{4n+2}}{\left[\Delta^2 f_{2n+1}^2 - (-1)^k \Delta^2 f_k^2 - 4\right]^4} = \frac{1}{\Delta^2} \sum_{r=1}^k \frac{1}{l_t^4}.$$

This yields

$$\sum_{n=1}^{\infty} \frac{f_4 f_{8n+4} + 4 f_2 f_{4n+2}}{\left(\Delta^2 f_{2n+1}^2 + x^2\right)^4} = \frac{1}{\Delta^2 l_2^4}; \qquad \sum_{n=1}^{\infty} \frac{3 F_{8n+4} + 4 F_{4n+2}}{(5 F_{2n+1}^2 + 1)^4} = \frac{1}{405};$$

$$\sum_{n=1}^{\infty} \frac{f_8 f_{8n+4} - 4 f_4 f_{4n+2}}{\left[\Delta^2 f_{2n+1}^2 - (x^2 + 2)^2\right]^4} = \frac{l_1^4 + l_3^4}{\Delta^2 l_1^4 l_3^4}; \qquad \sum_{n=1}^{\infty} \frac{7 F_{8n+4} - 4 F_{4n+2}}{\left(5 F_{2n+1}^2 - 9\right)^4} = \frac{257}{3,840}.$$

AUGUST 2023

3. Pell Consequences

With the gibonacci-Pell relationship $b_n(x) = g_n(2x)$, Theorems 1–4 yield the following Pell versions:

$$\begin{split} \sum_{n=L}^{\infty} \frac{p_{4k}p_{8n} - 4(-1)^k p_{2k}p_{4n}}{\left[p_{2n}^2 - (-1)^k p_k^2\right]^4} &= 4E^2 \sum_{r=1}^k \frac{1}{p_s^4}; \\ \sum_{n=L}^{\infty} \frac{p_{4k}p_{8n} + 4(-1)^k p_{2k}p_{4n}}{\left[q_{2n}^2 + 4(-1)^k E^2 p_k^2\right]^4} &= \frac{1}{4E^2} \sum_{r=1}^k \frac{1}{q_s^4}; \\ \sum_{n=M}^{\infty} \frac{p_{4k}p_{8n+4} + 4(-1)^k p_{2k}p_{4n+2}}{\left[p_{2n+1}^2 + (-1)^k p_k^2\right]^4} &= 4E^2 \sum_{r=1}^k \frac{1}{p_t^4}; \\ \sum_{n=M}^{\infty} \frac{p_{4k}p_{8n+4} - 4(-1)^k p_{2k}p_{4n+2}}{\left[q_{2n+1}^2 - 4(-1)^k E^2 p_k^2\right]^4} &= \frac{1}{4E^2} \sum_{r=1}^k \frac{1}{q_t^4}, \end{split}$$

respectively. Consequently, we have

$$\sum_{n=L}^{\infty} \frac{P_{4k}P_{8n} - 4(-1)^k P_{2k}P_{4n}}{\left[P_{2n}^2 - (-1)^k P_k^2\right]^4} = 8\sum_{r=1}^k \frac{1}{P_s^4};$$

$$\sum_{n=L}^{\infty} \frac{P_{4k}P_{8n} + 4(-1)^k P_{2k}P_{4n}}{\left[Q_{2n}^2 + 2(-1)^k P_k^2\right]^4} = 2\sum_{r=1}^k \frac{1}{Q_s^4};$$

$$\sum_{n=M}^{\infty} \frac{P_{4k}P_{8n+4} + 4(-1)^k P_{2k}P_{4n+2}}{\left[P_{2n+1}^2 + (-1)^k P_k^2\right]^4} = 8\sum_{r=1}^k \frac{1}{P_t^4};$$

$$\sum_{n=M}^{\infty} \frac{P_{4k}P_{8n+4} - 4(-1)^k P_{2k}P_{4n+2}}{\left[Q_{2n+1}^2 - 2(-1)^k P_k^2\right]^4} = 2\sum_{r=1}^k \frac{1}{Q_t^4};$$

again, respectively.

4. Chebyshev and Vieta Implications

Finally, we add that Chebyshev polynomials T_n and U_n , Vieta polynomials V_n and v_n , and gibonacci polynomials g_n are linked by the relationships $V_n(x) = i^{n-1}f_n(-ix)$, $v_n(x) = i^n l_n(-ix)$, $V_n(x) = U_{n-1}(x/2)$, and $v_n(x) = 2T_n(x/2)$, where $i = \sqrt{-1}$ [2, 3, 4]. They can be employed to find the Chebyshev and Vieta versions of Theorems 1–4. In the interest of brevity, we omit them and encourage gibonacci enthusiasts to explore them.

5. Acknowledgment

The author thanks the reviewer for a careful reading of the article, and for encouraging words and constructive suggestions.

References

- [1] M. Bicknell, A primer for the Fibonacci numbers: Part VII, The Fibonacci Quarterly, 8.4 (1970), 407–420.
- [2] A. F. Horadam, Vieta polynomials, The Fibonacci Quarterly, 40.3 (2002), 223–232.
- [3] T. Koshy, Vieta polynomials and their close relatives, The Fibonacci Quarterly, 54.2 (2016), 141–148.
- [4] T. Koshy, Fibonacci and Lucas Numbers with Applications, Volume II, Wiley, Hoboken, New Jersey, 2019.
- [5] T. Koshy, Sums involving gibonacci polynomials, The Fibonacci Quarterly, 60.4 (2022), 344–351.

[6] T. Koshy, Sums involving gibonacci polynomial squares, The Fibonacci Quarterly, **61.2** (2023), 98–104. MSC2020: Primary 11B37, 11B39, 11C08.

Department of Mathematics, Framingham State University, Framingham, MA 01701 $\it Email\ address$: tkoshy@emeriti.framingham.edu

AUGUST 2023 213