ADDITIONAL SUMS INVOLVING GIBONACCI POLYNOMIAL SQUARES

THOMAS KOSHY

ABSTRACT. We investigate four infinite sums involving gibonacci polynomial squares and
their numeric versions, and deduce their Pell versions.

1. INTRODUCTION

Ezxtended gibonacci polynomials z,(x) are defined by the recurrence z,12(x) = a(z)zp+1(x)+
b(x)zn(x), where z is an arbitrary integer variable; a(x), b(x), zo(z), and z;(z) are arbitrary
integer polynomials; and n > 0.

Suppose a(z) = x and b(z) = 1. When zy(z) = 0 and z1(x) = 1, z,(z) = fu(x), the
nth Fibonacci polynomial; and when zp(x) = 2 and z1(z) = z, z,(x) = l,(x), the nth Lucas
polynomial. They can also be defined by Binet-like formulas. Clearly, f,(1) = F,, the nth
Fibonacci number; and 1,,(1) = L, the nth Lucas number [1, 4].

Pell polynomials p,(x) and Pell-Lucas polynomials q,(x) are defined by p,(x) = f,(2z) and
qn(z) = 1,,(22), respectively [4]. In particular, the Pell numbers P, and Pell-Lucas numbers
Q. are given by P, = p,(1) and 2Q, = ¢, (1), respectively [4].

In the interest of brevity, clarity, and convenience, we omit the argument in the functional
notation, when there is no ambiguity; so z, Wﬂl mean z,(x). In addition, we let g, = f,, or

ln, by =pp or gn, A =22 +4,and E = V22 +

It follows by the Binet-like formulas that lim

m— 00 gm+,,.

=04, 5, 6].

1.1. Fundamental Gibonacci Identities. Gibonacci polynomials satisfy the following prop-
erties [4, 5]; they follow by the Binet-like formulas:

fon = faln; (1)

L= A%f7 = A1) 2)
{(—U"*kﬂf;f, if gn = fu;
(-1)"T*A2f2 otherwise;
A (foie = fock) = Sfanfan — A1) for, fon; (4)
Ie =1t = A% fapfan +4(=1)""F for fon). (5)

In+k9n—k — 9721

1.2. Telescoping Gibonacci Sums. In our investigation of infinite sums of gibonacci poly-
nomial squares in [6], we employed the following telescoping sums, where the degree A of each
gn is two; for convenience, we call them lemmas:

S ()
~ — — 5 .
=(k+1)/2 an k g2n+k r=1 9or—1

k>1 odd

Lemma 1.
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Lemma 2.
00 k
1 1
> (- =D
n=k/2+1 Jon—k 92n+k r=1 Yor
k>2, even
Lemma 3.
k
> 1 1 1
> = 5 =>
n=(k+1)/2 an—i—l—k an—i—l—i—k r=1 Yor
k>1, odd
Lemma 4.
k
i 1 1 1
A A - Z A :
n=k/2 an—i—l—k g?n—i—l—i—k r=1 or—1
k>2, even

We now restrict our discourse to applications of these lemmas with A\ = 4. The aforemen-
tioned identities, coupled with these lemmas, play a pivotal role in our explorations.

2. SuMS INVOLVING GIBONACCI POLYNOMIAL SQUARES

In the interest of brevity, we let

I (k+1)/2,k>1, if kis odd; s - 2r — 1, if k is odd;
| k/2+1,k>2,  otherwise; )2 otherwise;
k+1)/2,k>1, if kis odd; 2r, if k is odd;

( and t =
k/2,k > 2, otherwise; ~ ]2r—1, otherwise,

where 1 < r < k. We now begin our explorations with the following result.

Theorem 1. Let k be a positive integer. Then

Z far fon — 4(-1)F f2kf4n B QZ
- 1
n=L [ ( ) f2 f
Proof. Using identities (3) and (4), we have
Farfsn — A(=1)F for fan _ Somir = o
A2 [f22n - (_1)kf]3]4 f§n+kf24n—k
1 1
e (6)
féln—k fgln-&-k:
Suppose k is odd. With Lemma 1, this yields
k
Jakfsn + 4for fa A?
> duk "= 5 ™)
aetorne (f3, + fk) =1 J2r—1
k>1, odd
On the other hand, suppose k is even. Then, by Lemma 2, equation (6) gives
k
Jakfsn — 4ok fa A?
Z 3 t=D T (8)
n=k/2+1 (an - fk;) r=1"Y2r
k>2, even
Combining the two cases, we get the desired result. ([

In particular, we get
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n + 4f2fin o 3%, + 4Fy,
Z fafsn +4f2fan AZ 3 82 + o _ g
n 1 (f2n+1) nO:ol (F2n+1)
Z fefsn —4fafan A% (f3 + 1) 3 TFg, —4Fy, 410
n=2 (f2n - $2)4 félf:ll ’ n=2 (F22n - 1)4 243
With identity (2), it follows from Theorem 1 that
f4k:f8n — 4(=1)* fop. fan
Z )kAZf2 - 4_A6Zf4' (9)
This implies
Z f4f8n+4f2f4n _ 1 i3F8n+4F4n 1
A 2 4 125’
n 1 ) no:ol (L2n + 1)
Z f8f8n_4f4f4n _ f§+ff Z7F8n_4F4n _ 82
@ o OAEE X o) | W03

Next, we explore the Lucas version of Theorem 2.

Theorem 2. Let k be a positive integer. Then

k
Z far fon +4(= )kakf4n 1 Zl
=L l%n )kAZfQJ r=1 l§
Proof. Using equations (3 ) and ( ), we get

A [farefsn + ACD forfan] _ Bagr —

4
[l%n (_ )kAQf;?]4 12n+kl§n k
1 1
lgnJrk

4
lQn k

74
l2n k

Let k be odd. By Lemma 1, this yields

i Jak fan — 4f2kf4n - Z 14

. (11)
n=(k+1)/2 ( Aka 2r—1
k>1, odd

When £ is even, equation (10), coupled with Lemma 2, gives

ffn+4f fn

k>2 even

Combining the two cases yields the given result, as desired. U

It follows from equations (11) and (12) that

Zf4f8n_4f2f4n 1 i3F8n_4F4n 1
TL

1 Ayt Akt = (13, -5)"
Z fs fSn +Afafan B+ i TFs, +4Fy, 2,482
2 1 A% 2) N A2l4l4’ ~ (L§n+5)4 2,917,215
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Using identity (2), it follows from the theorem that

Z Jak fsn +4 D* forfan ijl'
[A2f2, + (-1)kA2f2 4 4] —
This implies
Z fafsn — 4f2f4z _ i 3Py 4P _ 1,
A2f2n ) A2z’ 5F22n —1)4 5
= fsfsn +Afifin B+ TFen +4Fy, 2,482
Z:z [A2f3,+ (@2 +2)2]" ALY HZQ (5F, +9)° 2,917,215

The next result is also an application of identities (3) and (4).

Theorem 3. Let k be a positive integer. Then

Z farfsnta + 4(=1)F for, fanto _ A2 Zk: 1

1
n=M f2n+1+( )kf}?]
Proof. With identities (3) and (4), we get

SarSsnta +4(=DF for fanto _ Fanrek = Fonsron
AZ [f22n+1 + (_1)kf]?]4 f§n+1+kf§n+17k
1 1
= - . (13)
Fonsioe  Jonsisn
Now, let & be odd. With Lemma 3, this yields
—4
Z farfonta — Aforfanye _ A2 Z (14)
n=(k+1)/2 (f2n+1 fk:) f27"
k>1, odd
With k even and Lemma 4, it follows from equation (13) that
N fufsra + 4o 1
4k J8n+4 2k Jan+2
D X D Pk (15)
n—Fk/2 (f2n+1 + fk) r=172r—1
k>2, even
Equation (14), together with equation (15), gives the desired result. O
In particular, we have
i fafsna —Afafanys A% i 3Fgnta —4Funya 5.
4 - 4 - y
n= 1 (f2n+1 - 1) x no:ol (F2n+1 1)
Z fsfsnia +Afifunse D2 (f1+15) Z TFgpta +4Funi2 85
- 4 ) == .
n=1 f2n+1 + 1’2) f3 n=1 (F 2n+1 + 1) 48

Using identity (2), Theorem 3 yields

4 6 4-°
n=M ln+1+(_ )kA2f13+4] A r=1 ft

Consequently, we have

Z f4l;f8n+4+4( D* for fanya 1 Zk: 1
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Z fafsnia —4fafanye 1 i 3Fsnia —4Funie 1
n=1 (l2n+1 - 952) Az’ n=1 (L300 —1* 125°
Z fefsnta +4fafanve i+ 13 i TFsnia +4Fin2 17T
1 By + (22 +2)?2 ] ASfy = (L, + 9)4 6,000

The followmg result presents the Lucas counterpart of Theorem 3.

Theorem 4. Let k be a positive integer. Then

Z SarSsnta — A1 for fanso _ 1 Z 1

2 i
n=M [l%n+l ( )kA2f2] A r=1 lt
Proof. Using identities (3) and (5), we have
A? [farfsnta — A1 forfansa] ik~ b1k
[l%n—i-l ( 1)kA2f]3]4 l§n+1+kl%n+1 k
1 1
= - -3 . (16)
bni1-k Longin

With k odd, and Lemma 3, this yields

n 4 n
Z f4kfz 4+ f22kf4 2 — Z T (17)
nk— k+1)/2 (l 2n+1 +A fk

When £ is even, using Lemma 4, equation (16) yields

Z Jakfanta — 4 ok fant2 - Z l4 . (18)

n=k/2 ( 2n+1 Aka) 2r—1
k>2, even

The given result now follows by equations (17) and (18), as desired. O
It follows from this theorem that

Z f4f n+4 t4fofante 1 i 3Fsnia +4Fms 1

= Baa A?)! A2l = (L5 +9)! 405’

Z f8f8n+4 —Afafinrz _ U+ i TFsnia — 4Fumy2 257

= A2/AL i = :
n=1 (2n+1 _A%Z) A%l n=1 (L%nJrl 5) 3,840

Using identity (2), Theorem 4 yields

fanfsnta = 4D forfanta
Z (823, — (-)FA2f7 — 4] AQZZ“

This yields

Z fafsnsa+ Afafante 1 i 3Fsnia +4Funy2 1

oA+ NG L (5Fg,  + 1) 105°
Z fafsnra —Afafanee UG i TFsn+a — 4Funia 257

[A2f2 - (@222t AL = (5F2,,,-9)" 3,840
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3. PELL CONSEQUENCES

With the gibonacci-Pell relationship by (z) = g,(2x), Theorems 1-4 yield the following Pell
versions:

i PakPsn — 4(=1)* pokpan _4p? zk: i;

= [P — R g
Z parpsn + 41 porpan 1 Zk: i’

el 165, +4(- )kE2Pk] 4B? H q;
ParPsnta + 4(=1) Do pani2 s 1 .
nZ]\/[ [p2n+1 +(-1) pi}“ - ; i
Z PakPsnta — 4(-1) szp4n+2 _ 1 e 1
n=M q2n+1 4(- 1)kE2 2} 4E? r=1 qf’
respectively. Consequently, we have

i Py Psn — 4(=1)" Pop. Psn, _ 3 i 1.
P (_1)kpk2]4 i

i Py Psn +4(-1)"Pox P _ 9 zk: 1,

o 1@ 2y =

Z Py Psnta +4(-1)* PopPans2 N zk: 1.
= (PRt (0P =i
Z Py Panta — 4(=1)" Po Pyn 12 _ 2Zk: 1 ’
o (@ —200)FR] =t

again, respectively.
4. CHEBYSHEV AND VIETA IMPLICATIONS

Finally, we add that Chebyshev polynomials T;, and U,, Vieta polynomials V,, and v,,
and gibonacci polynomials g,, are linked by the relationships V,,(z) = i"~1f,(-iz), v,(z) =
il (=iz), Vp(x) = Up—1(2/2), and v,(x) = 27T,(x/2), where i = /-1 [2, 3, 4]. They can
be employed to find the Chebyshev and Vieta versions of Theorems 1-4. In the interest of
brevity, we omit them and encourage gibonacci enthusiasts to explore them.
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