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Abstract. We modify the rules of the classic Tower of Hanoi puzzle in a way to get the
Fibonacci sequence involved in the optimal algorithm of resolution and show some nice prop-
erties of such a variant. In particular, we deduce from this Tower of Hanoi-Fibonacci a
Gray-like code on the set of binary words without the factor 11, which has some properties
interesting in its own right, and from which an iterative algorithm for the Tower of Hanoi-
Fibonacci is obtained. Such an algorithm involves the Fibonacci substitution. Eventually, we
briefly extend the study to some natural generalizations.

1. Introduction

The Tower of Hanoi is a puzzle invented by Édouard Lucas [8, 9] in which a set of n disks
of different radii from 1 to n are put on a peg A in decreasing order, thus materializing a
triangular tower. Two other pegs, B and C, are empty. The aim of the game is to move all
the disks on peg C (or, in a roughly equivalent version, on either B or C), following the two
rules: (1) the disks are moved one at a time, taking a disk on top of a peg and putting it on
top of another peg, and (2) a disk cannot be put over a smaller disk. This is what we will
call the classic Tower of Hanoi puzzle. A set-theoretic description of the puzzle is as follows:
Write either dk or k for the disk of radius k, and ∆k = {1, . . . , k} for the set of the k smallest
disks (with ∆k = ∅ for k < 1). Any state of the puzzle corresponds to an ordered 3-partition
of ∆n, written as (A,B,C) (it will be of convenience here to write with the same letter a peg
and the set of disks on it). Such a partition is referred to as a state of the puzzle, also referred
to as a regular state in the literature, especially when it is necessary to emphasize that disks
on each peg have to be set up with decreasing size (an assumption that is weakened in some
studies but that will not be considered here). A move from such a state to another one, say
(A′, B′, C ′), is allowed if and only if the two ordered partitions are equal up to some d ∈ ∆n

such that d ∈ {min(A),min(B),min(C)} ∩ {min(A′),min(B′),min(C ′)}.
Many variants of the puzzle have been proposed since Lucas’s original one. We point the

reader to the highly valuable book [5] for a general synthesis on the subject.
Lucas already understood that the Tower of Hanoi was deeply linked to numeration systems.

Indeed, he wrote in 1893 [10, p. 58] that

Increasing the number of pegs and slightly modifying the rule of the game would
easily provide representations of all numeration systems. [En augmentant le
nombre de tiges et en modifiant légèrement les règles du jeu, on obtiendrait
facilement des représentations de tous les systèmes de numération.]

The optimal algorithm to solve the puzzle with n disks requires 2n − 1 moves (hence passes
through 2n states), and the total number of admissible states is 3n. (There exists a “worst”
algorithm that solves the puzzle passing through all 3n states exactly once.) Hence, it is not
a surprise that there are natural links between the Tower of Hanoi and binary and ternary
numeration systems. At Lucas’s time, only integral numeration systems were known. Because
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the “worst” solution (i.e., the solution that passes through all possible states) requires 3n − 1
moves, it is sensible to ask for more pegs to represent other numeration systems. But now that
noninteger numeration systems are known, we can give to Lucas’s sentence a new meaning,
keeping the three initial pegs and modifying the rules of the game, to get a Tower of Hanoi
version of some nonconventional ways to write integers.

A first possibility consists in restricting the moves allowed between pegs. For example,
we can forbid any direct move from A to C and from C to A. It is well-known that this
constraint leads to the “worst” algorithm mentioned beforehand, that visits every possible
state of the puzzle among the 3n ones. Each of the possible variants of this kind is linked to
some numeration system (as well as to some Gray code) defined by a linear recurring sequence
(see [12]).

The initial question that gave rise to the present article was the converse: find natural
alternative rules for the Tower of Hanoi such that the minimal number of moves required to
solve the puzzle with n disks corresponds to a sequence fixed a priori. One of these sequences
for which an answer can be found is the Fibonacci sequence, and we will show that the answer
described here extends to some other linear recurring sequences as well.

Apart from the sequence of minimal moves, other links between the Tower of Hanoi and
the Fibonacci sequence can be made. In particular, it is shown in [4] that, for the classic
puzzle with n disks, the number of key states (i.e., for which the minimal number of moves to
reach (∅,∅,∆n) is exactly twice the minimal number of moves to reach (∆n,∅,∅)) is equal to
Fn−1. The same article mentions the following other result, due to Merryfield and published
in [2]: for any n, the set of distinct Ak (resp. Bk, Ck) attained during the optimal algorithm
of resolution of the standard puzzle is of cardinality Fn+2 (resp. Fn+1, Fn+2).

The present paper is organized as follows. In Section 2, we recall the relevant properties of
the classic Tower of Hanoi we wish to generalize. Section 3 is devoted to the main variant we
are interested in. In this variant, Fibonacci moves are defined, involving the sets ∆k in a way
that shares some similarity with the switching Tower of Hanoi rules defined in [7]. We prove
that the variant defined by these kind of moves, the Tower of Hanoi-Fibonacci, is optimally
solved in a number of moves essentially given by the Fibonacci sequence (Section 3.2). Then,
we provide a link with the classic Zeckendorf-Fibonacci numeration system (Section 3.2) and
deduce from it an iterative algorithm for the Tower of Hanoi-Fibonacci. We then study a Gray-
like code associated with this numeration system (Section 3.3), then investigate the general
properties of the graph associated with the puzzle (Section 3.4). Eventually, in Section 4,
we briefly investigate some generalizations and questions, in two directions. The first one is
when the definition of Fibonacci moves is modified to get an optimal algorithm that requires
a number of moves given by a linear recurring sequence of the form mn = mn−p +mn−q + 1.
The second one considers complementary restrictions on moves between pegs, which gives rise
to a Tribonacci-like sequence.

2. The Classic Tower of Hanoi

In the following, a subset {dk1 , . . . , dki} of ∆n with k1 < · · · < ki is simply written k1 · · · ki.
It is known since Lucas that the Tower of Hanoi has a solution for any n ⩾ 0, and that

there is a unique solution with minimal number mn of moves. Such a solution can be described
recursively by the following decomposition, valid for any n ⩾ 1, from which we can deduce
that mn = 2mn−1 + 1, hence mn = 2n − 1 (because m0 = 0):

(∆n,∅,∅)
mn−1−→ (n,∆n−1,∅)

1−→ (∅,∆n−1, n)
mn−1−→ (∅,∅,∆n).
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In this decomposition (as well as in all others in the following), the number written above an
arrow corresponds to the number of moves involved.

To prove that this is indeed the (only) optimal solution, it is enough to prove that, in an
optimal solution, the disk dn moves exactly once. From now, we write X ⊔ Y ⊔ Z for an
ordered partition {X,Y, Z} of {d1, . . . , dn} in which the order of the elements X, Y , and Z is
not known. Also, we write X ⊔Y ⊔Z −→ R⊔S ⊔T to define a move (or a sequence of moves)
in which the position of the element R (resp. S, T ) of the final partition is the same as the
position of the element X (resp. Y , Z) in the initial partition. The rules of the puzzle imply

that any move of dn is of the form dn ⊔∆n−1 ⊔∅ 1−→ ∅ ⊔∆n−1 ⊔ dn. Let S be the set of all
partitions of the form dn ⊔ ∆n−1 ⊔ ∅, and let M be the number of moves of the disk dn in
an optimal solution. Hence, there are 2M elements of S, written Si for i ∈ {1, . . . , 2M}, such
that our optimal solution can be decomposed in the following way:

(∆n,∅,∅) =: S0 −→ S1
1−→ S2 −→ · · · −→ S2M−1

1−→ S2M −→ S2M+1 := (∅,∅,∆n).

The optimality assumption and the symmetry of the pegs implies that, for any 0 ⩽ i ⩽ M ,
the number of moves corresponding to S2i −→ S2i+1 is equal to mn−1. Hence, we have
mn = (M + 1)mn−1 +M , so the optimal choice corresponds to M = 1, as expected.

Because the number of states during the optimal resolution of the puzzle is 1+mn = 2n, it is
natural to consider the binary expansion of length exactly n to code the successive states from
0 to 2n − 1. It is easily proved by induction that the index k (between 1 to n) of the leftmost
changing digit from the binary expansion of i to the binary expansion of i+ 1 corresponds to
the disk that is moved when going from the state i to the state i + 1. As a consequence, we
have that, for any 1 ⩽ k ⩽ n, the number of times the disk dk is moved is 2n−k.

Also, consider the alternative coding of the states of the puzzle with n disks by elements of
{0, 1}n given by the following rules: the initial state (∆n,∅,∅) is labelled 0n, and when we
go from partition (A,B,C) to (A′, B′, C ′) by moving the disk d = dk, the label of the state
(A′, B′, C ′) is defined as the label of (A,B,C) in which the kth digit has been switched (that
is: this digit becomes a 0 if it was a 1 and a 1 if it was a 0). Then, an induction shows that the
sequence of codings of the successive states thus obtained coincides with the reflected binary
Gray code, that is: the list Gn of all binary words with exactly n letters defined recursively
by G0 = {0} and Gn = 0Gn−1 + 1Gn−1 (where, for a sequence L = {x1, . . . , xk} of words and
d a letter, dL = {dx1, . . . , dxn} and, with M = {y1, . . . , yℓ}, the notation L +M stands for
{x1, . . . , xk, y1, . . . yℓ}). The fundamental property of such a list Gn is that any two consecutive
elements of the list differ by exactly one digit.

It was observed in [6] that the graph Hn = (Vn, En) of the classic Tower of Hanoi has a
fractal structure similar to the Sierpiński triangle, Hn being made of three copies of Hn−1 for
any n ⩾ 1, any two of these copies being linked by a single edge corresponding to a move of
the form n ⊔∆n−1 ⊔∅ −→ ∅ ⊔∆n−1 ⊔ n (see Figure 1).

Eventually, the optimal solution of the puzzle can be described by the following algorithm:
move d1 (always in the way A → B → C → A if n is odd, and in the way A → C → B → A if
n is even), then, while there is a disk dk ̸= d1 that can be moved, move that disk, then move
again d1.

3. The Tower of Hanoi-Fibonacci

3.1. Definition and Optimal Algorithm.

Definition 3.1. Let X and Y be two different pegs such that, for some k ∈ ∆n, we have
X = kX̃ and Y = ∆k−1Ỹ . Write Z for the third peg. We define a k-Fibonacci move as a
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Figure 1. The graph H3 of the classic Tower of Hanoi with 3 disks.

move that consists in putting simultaneously k − 1 and k onto Z, i.e.:

kX̃ ⊔∆k−1Ỹ ⊔ Z −→ X̃ ⊔∆k−2Ỹ ⊔ (k − 1)kZ.

A Fibonacci move is a k-Fibonacci move for some k. The Tower of Hanoi-Fibonacci is the
Tower of Hanoi puzzle in which only Fibonacci moves are allowed. (Note that this definition
will be slightly modified in Section 3.4.)

Note that the 1-Fibonacci move is the one in which only one disk is moved (the disk d1).
Hence, this move is the only one common to the Tower of Hanoi-Fibonacci and the classic
Tower of Hanoi. Figure 2 provides an example of a 3-Fibonacci move.

Figure 2. The 3-Fibonacci move from (35,∆24, 6) to (5,∆14, 236).

Theorem 3.2. The Tower of Hanoi-Fibonacci with n disks admits a solution for any n ⩾ 0.
There is only one optimal algorithm for it, that needs exactly Fn+2−1 Fibonacci moves (hence
passes through Fn+2 different states).

As an example, here is the optimal solution in the case n = 5.

(∆5,∅,∅) −→ (2345,∅, 1) −→ (345, 12,∅) −→ (45, 1, 23) −→

(45,∅, 123) −→ (5, 34, 12) −→ (15, 34, 2) −→ (5, 1234,∅) −→
(∅, 123, 45) −→ (∅, 23, 145) −→ (12, 3, 45) −→ (1,∅, 2345) −→ (∅,∅,∆5)
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Proof. The proof is similar to the classic case. First, the cases n = 0 and n = 1 admit trivial
solutions, with m0 = 0 = F2 − 1 and m1 = 1 = F3 − 1, where mn stands for the minimal
number of moves to solve the puzzle with n disks. Now, put n ⩾ 2 and assume that the puzzle
with n − 1 and n − 2 disks are both solvable, with mn−2 = Fn − 1 and mn−1 = Fn+1 − 1.
Consider the puzzle with n disks. To be moved, the disk of radius n needs to be alone on its
peg, and needs the tower ∆n−1 to be on another peg. A similar reasoning as the one made for
the classic puzzle (see Section 2) shows that, in an optimal solution, the disk dn moves exactly
once. Therefore, we get a recursive description of the optimal solution of the puzzle with n
disks:

(∆n,∅,∅)
mn−1−→ (n,∆n−1,∅)

1−→ (∅,∆n−2, (n− 1)n)
mn−2−→ (∅,∅,∆n).

Hence, we have that mn = mn−1 + 1 + mn−2, so, by the induction hypothesis, mn =
(Fn+1 − 1) + 1 + (Fn − 1) = Fn+2 − 1, as required. □

3.2. Link with the Zeckendorf-Fibonacci Numeration System. The classic link be-
tween binary numeration system and the standard Tower of Hanoi extends to the Zeckendorf
(or Zeckendorf-Fibonacci) numeration system and the Tower of Hanoi-Fibonacci. This link
will provide us with an iterative algorithm for the optimal solution of the latter puzzle.

Recall that, as proved in [13], for any fixed n ⩾ 2 and any integer 0 < k < Fn+1, there
exists a unique finite sequence (ui)2⩽i⩽n ∈ {0, 1}n−1 such that uiui+1 = 0 for any i and

k =
∑

2⩽i⩽n

uiFi. Such a sequence is the Zeckendorf-Fibonacci expansion of k, Z(k), also written

as [un · · ·u2]F . When we need the length of a Zeckendorf-Fibonacci expansion to be of a
certain kind (as in the following theorem), we allow ourselves to append leading 0s to it, hence
considering [0un · · ·u2]F as equivalent to [un · · ·u2]F .

In the following, a ZF-sequence (or ZF-word) will denote any binary sequence (or binary
word) satisfying the property that it does not contain 11 anywhere in its terms. Two ZF-words
like un · · ·u2 and 0un · · ·u2 will be regarded as equivalent. Under this equivalence relation, the
Zeckendorf-Fibonacci expansion of k is unique. Moreover, this expansion defines a bijection
from N∗ := N\{0} onto the set of (nonempty) ZF-sequences.

The Zeckendorf-Fibonacci expansion of k > 0 can be obtained by the application of the
following algorithm:

• r := k, ui := 0 for all i ⩾ 2, n := max(j ⩾ 2 : Fj ⩽ k)
• while r > 0:

i := max(j : Fj ⩽ r)
ui := 1
r := r − Fi

• return((ui)2⩽i⩽n).

Theorem 3.3. Let n ⩾ 0 be some integer, let 0 < k < Fn+2, and let k−1 = [un+1 · · ·u2]F and
k = [vn+1 · · · v2]F . Let j be the largest index such that uj ̸= vj. The kth move of the optimal
solution of the Tower of Hanoi-Fibonacci puzzle with n disks is a (j − 1)-Fibonacci move.

Proof. This is a simple induction making use of the recursive description of the algorithm

(∆n,∅,∅) −→ (n,∆n−1,∅) −→ (∅,∆n−2, (n− 1)n) −→ (∅,∅,∆n).

The property is true for n = 0 and n = 1. Assume it is true for n − 2 and n − 1 for some
n ⩾ 2. The moves from (∆n,∅,∅) to (n,∆n−1,∅) are moves from 1 to mn−1 = Fn+1 − 1,
so their Zeckendorf-Fibonacci expansion of length n are all of the form [0un · · ·u2]F . Hence,
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by the induction hypothesis on the puzzle with n − 1 disks, the property is true for all these
moves.

Now, the Fibonacci move (n,∆n−1,∅) −→ (∅,∆n−2, (n − 1)n) is the Fn+1th one, of
Zeckendorf-Fibonacci expansion of length n equal to [10 · · · 0]F . The largest moving disk
in this move is the nth one, and the largest index j as defined in the theorem is equal to n+1,
so the theorem is also valid for this move.

The remaining Fn moves are the ones with Zeckendorf-Fibonacci expansion of length n of
the form [10un−1 · · ·u2]F , where [un−1 · · ·u0]F is the Zeckendorf-Fibonacci expansion of length
n − 2 of k − Fn+1. Hence, we can apply the induction hypothesis on the puzzle with n − 2
disks, and we are done. □

Theorem 3.4. Let 0 < k ⩽ n be two integers. For the Hanoi-Fibonacci puzzle with n disks,
the number of k-Fibonacci moves in the optimal algorithm is equal to Fn+1−k.

Proof. We proceed by induction on n and (decreasing) induction on k. For k = n, the number
we are looking for is equal to 1, which corresponds indeed to Fn+1−k = F1 = 1. For k = n− 1,
it is easy to check that there is also exactly one k-Fibonacci move, a number equal to Fn+1−k =
F2. Now, for k < n− 1, by the induction hypothesis, the part (∆n,∅,∅) −→ (n,∆n−1,∅) of
the algorithm involves a number of k-Fibonacci moves equal to F(n−1)+1−k = Fn−k, and the
part (∅,∆n−2, (n − 1)n) −→ (∅,∅,∆n) involves F(n−2)+1−k = Fn−k−1 moves, hence a total
equal to Fn−k + Fn−k−1 = Fn+1−k moves. □

Theorem 3.3 provides a complete iterative algorithm for the Tower of Hanoi-Fibonacci,
with the only issue that, for 1-Fibonacci moves (i.e., a move of the single disk d1), one has to
determine on which peg the disk d1 has to move. Here is an answer to this question. Let us
say that d1 is moving to the right (resp. to the left) whenever it moves from A to B, from B
to C or from C to A (resp. from A to C, from B to A or from C to B). Thus, by Theorem
3.4, we can code the sequence of 1-Fibonacci moves for the puzzle with n disks as a word
µn ∈ {l, r}Fn , where l denotes a move to the left and r a move to the right. We then have the
following result.

Theorem 3.5. In the optimal algorithm for the Tower of Hanoi-Fibonacci:

• if n ∈ 2N∗, then the kth letter of µn is an r if and only if Z(k) has an even number of
1s;

• if n /∈ 2N∗, then the kth letter of µn is an r if and only if Z(k) has an odd number of
1s.

Proof. We proceed by induction on n ⩾ 2. Write the decomposition of the optimal solution of
the puzzle, with the corresponding number of 1-Fibonacci moves (given by Theorem 3.4 with
k = 1) above each arrow.

(∆n,∅,∅)
Fn−1−1−→ (n,∆n−1,∅)

0−→ (∅,∆n−2, (n− 1)n)
Fn−2−1−→ (∅,∅,∆n).

Assume, for example, n ∈ 2N∗ (the other case would be similar). Consider the kth letter of
µn corresponding to a 1-Fibonacci move among the Fn−1 − 1 first ones. By the induction
hypothesis, that n−1 is odd, and that the 1-Fibonacci moves corresponding to (∆n,∅,∅) −→
(n,∆n−1,∅) are the same as the one for (∆n,∅,∅) −→ (n,∅,∆n−1), but with exchanging
the rs and the ls, we have that the considered kth letter is an r if and only if Z(k) has an
even number of 1s. For a value of k corresponding to a 1-Fibonacci move among the last
Fn−2 − 1 Fibonacci moves, the reasoning is the same, with the additional consideration that
the Zeckendorf expansion of k is now of the form [10un−3 · · ·u2]F . □
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Let us also mention the following qualitative results that show in particular that the number
of 1-Fibonacci moves to the left and to the right are as balanced as possible.

Corollary 3.6. We have µ0 = ∅, µ1 = l, and for any n ⩾ 2, µn = (µn−1µn−2)
∗ (hence

µn = µn−2µn−3µn−3µn−4 for n ⩾ 4), where µ∗ stands for the word in which each l has been
replaced by an r and each r by an l. Moreover, denoting by |µ|d the number of letters d ∈ {r, l}
in the word µ, we have

|µ3n|r = |µ3n|l, |µ3n+1|l − |µ3n+1|r = 1, and |µ3n+2|r − |µ3n+2|l = 1.

Proof. The first part is proved by an induction on n and the following decomposition of the
optimal solution of the puzzle (for n ⩾ 2), in which the words on the arrows stand for the
sequences of moves of d1 during 1-Fibonacci moves:

(∆n,∅,∅)
µ∗
n−1−→ (n,∆n−1,∅) −→ (∅,∆n−2, (n− 1)n)

µ∗
n−2−→ (∅,∅,∆n).

The second part is a simple induction on n. □

3.3. Gray-like Code. To complete notations set up for lists in Section 2, for any list L of
elements of {0, 1}n, write ′L (resp. L′) for the list made of all elements of L in which the
leftmost (resp. rightmost) letter of each element is removed. Then, set N0 = ∅, N1 := {1}
and Nn := 10′Nn−1 + 10Nn−2 (here writing each word always with a 1 as leftmost digit).

Eventually, let G :=
∑
i⩾0

Ni := {g1, g2, . . .}. Such a construction may be seen as a mirroring

process analogous to the classic one for binary Gray codes, as shown in Table 1.

G6



g1 = 0 0 0 0 0 1
}
N1

g2 = 0 0 0 0 1 0
}
N2

g3 = 0 0 0 1 0 0
}

N3g4 = 0 0 0 1 0 1
g5 = 0 0 1 0 0 1

 N4g6 = 0 0 1 0 0 0
g7 = 0 0 1 0 1 0
g8 = 0 1 0 0 1 0

 N5

g9 = 0 1 0 0 0 0
g10 = 0 1 0 0 0 1
g11 = 0 1 0 1 0 1
g12 = 0 1 0 1 0 0
g13 = 1 0 0 1 0 0


N6

g14 = 1 0 0 1 0 1
g15 = 1 0 0 0 0 1
g16 = 1 0 0 0 0 0
g17 = 1 0 0 0 1 0
g18 = 1 0 1 0 1 0
g19 = 1 0 1 0 0 0
g20 = 1 0 1 0 0 1

Table 1. The Gray-like code of the Tower of Fibonacci-Hanoi with n = 6
disks.
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Recall that the Hamming distance between w,w′ ∈ {0, 1}n, written h(w,w′), is the number
of their different digits, that is: for w = w1 · · ·wn and w′ = w′

1 · · ·w′
n, we have h(w,w′) =

card(1 ⩽ i ⩽ n : wi ̸= w′
i). When w and w′ do not have the same number of letters, we

append as many 0s as necessary to the shortest one to make it of the same length as the other.

Theorem 3.7. The set G = {g1, g2, . . .} is in bijection with the set of all nonempty ZF-words
(assuming the equivalence between un · · ·u2 and 0un · · ·u2). Moreover, for any n ⩾ 1, we have

h(gn, gn+1) =

{
2, if n+ 1 = Fk for some k ⩾ 3;
1, otherwise.

For any n ⩾ 1, the list Nn is made of all the ZF-words of length n (with a 1 as a leftmost
digit), each appearing exactly once.

Proof. By induction, assume that ′Nn−1 ∪ Nn−2 contains all ZF-words of {0, 1}n−2 exactly
once, ′Nn−1 (resp. Nn−2) containing those with a 0 (resp. a 1) as the leftmost digit. Hence,
by the definition of Nn, Nn contains all ZF-words in {0, 1}n with 10 as the leftmost digits,
each exactly once. As a consequence, by the induction hypothesis, ′Nn ∪ Nn−1 contains all
ZF-words of {0, 1}n−1 exactly once, with ′Nn (resp. Nn−1) containing those with a 0 (resp. a
1) as the leftmost digit. Hence, G is in bijection with the set of all ZF-words (but the empty
one).

Now consider the property of Hamming distances. By induction, assume the property is
satisfied for Gn−1 and that the Hamming distance among two successive elements of Nk is
always equal to 1. We have Gn = 0Gn−1 + Nn = 0Gn−1 + 10′Nn−1 + 10Nn−2. Hence, by
the induction hypothesis, the Hamming distance of any pair of successive elements of Gn is
equal to 1, apart, possibly, for the pairs (0gFn+1−1, gFn+1) (made by the last element of Gn−1

and the following one in Gn) and (gFn+1+Fn−1−1, gFn+1+Fn−1) (made by the last element of

Gn−1 + 10′Nn−1 and the following one in Gn).
To prove that the induction hypothesis is valid also for n, it only remains to prove that

the Hamming distance of the first of these pairs is equal to 2 and the one of the second pair
is equal to 1. For the first one, by the definition of Nn, the two different digits of 0gFn+1−1

and gFn+1 are the two leftmost ones, that is: writing 0gFn+1−1 in the form 010un−3 · · ·u1, we
have gFn+1 = 100un−3 · · ·u1. Hence, their Hamming distance is indeed equal to 2. For the
second pair, by construction we have (writing w′ for the word w from which the leftmost digit
has been removed) gFn+1+Fn−1−1 = 10g′Fn+1−Fn−1

= 10g′Fn
and gFn+1+Fn−1 = 10gFn−1. As

already noted, gFn = 0100un−4 · · ·u1 and gFn−10010un−4 · · ·u1, so 10g′Fn
= 1000un−4 · · ·u1

and 10gFn−1 = 1010un−4 · · ·u1, hence their Hamming distance is equal to 1. □

Strictly speaking, a Gray code has the property that two consecutive elements are always
of Hamming distance equal to 1, hence our list G is only a Gray-like code. One may wonder if
we could recover a real Gray code that lists all the ZF-words. By itself, such a question is too
large, and a natural restriction on it is to ask for such a Gray code to be length-increasing,
that is: the list (gn)n⩾1 should order the words in such a way that the leftmost 1 of gn is of
increasing index with n. It is easy to check that such a natural condition cannot be satisfied,
because for w the last ZF-word of length n− 1 and w′ the first one of length n, we necessarily
have h(w,w′) ⩾ 2. This remark leads to the following result.

Theorem 3.8. Let (un)n>0 be a length-increasing sequence made of all nonnull ZF-words
(each of them appearing exactly once). For any n > 0, we have h(un, un+1) ⩾ h(gn, gn+1).
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Basically, this result says that, among all orderings of the set of ZF-words satisfying the
length-increasing property, the list G minimizes the Hamming distance between its consecutive
elements.

As it is done in [11, Theorem 5] for another Gray-like code linked to Fibonacci combinatorics
given in [3], it is possible to “de-mirror” the construction of Gn, in the following sense.

Theorem 3.9. Let n > 1 and let us define from the list Nn−1, a new list by writing each
element of Nn−1 twice in a row if and only if this element ends with a 0. More precisely, the
new list is defined by the following algorithm, where Nn−1 = {gFn , . . . , gFn+1−1}:

• L := ∅
• for i from 0 to Fn−1 − 1:

if gFn+i has a 0 as a rightmost digit then L := L+ {gFn+i, gFn+i},
else L := L+ {gFn+i}

• return(L).
The list thus obtained is equal to N ′

n. Moreover, for n > 3, there is a unique way to
concatenate (on the right) to each element of N ′

n, a 0 or a 1 so as to get a list of ZF-words
such that the Hamming distance of any consecutive words is equal to 1. The list obtained after
this concatenation is equal to Nn.

Before providing the proof, let us mention that the sequence of 0s and 1s to be concatenated
on the right of the words of N ′

n will be made mathematically explicit in Theorem 3.10 below.
Also, a practical way to carry out these concatenations is to consider a word in the list N ′

n

ending with a 1 (we leave it to the reader to check that the first word of this kind appears in
the third place of N ′

n at the latest, for any n ⩾ 3): because it must remain a ZF-word in the
process, we have to concatenate a 0 to it. Then, the other concatenations are made inductively
by the following process, given that the Hamming distance between consecutive words must
be equal to 1: a word g ∈ N ′

n with d as the last digit concatenated to it being given, let g′ be
its successor (or its predecessor) in the list. If g = g′, then concatenate the digit 1 − d to g′,
otherwise concatenate d to it.

Proof of Theorem 3.9. The result can be checked for n ⩽ 4, so in the sequel we assume n > 4.
We have that Nn = 10′Nn−1 + 10Nn−2, hence

′Nn = 0′Nn−1 + 0Nn−2, and

Nn = 10′Nn−1 + 10Nn−2

= 10(0′Nn−2 + 0Nn−3) + 10(10′Nn−3 + 10Nn−4)

= 100(Nn−3 +
′Nn−2) + 1010(Nn−4 +

′Nn−3),

so
′Nn = 00(Nn−3 +

′Nn−2) + 010(Nn−4 +
′Nn−3).

Hence, writing Zn := Nn +′Nn+1, we have

Zn = 100Zn−3 + 1010Zn−4 + 00Zn−2 + 010Zn−3.

For any list L, write L for the list L in which any sequence of the same element is replaced
by a single occurrence of this element. To be precise, if L = {ℓ1, . . . , ℓk}, then L is given by
the following algorithm:

• L := {ℓ1}; i := 1
• for j from 2 to k:

if ℓj ̸= ℓi then L := L+ {ℓj} and i := j
• return(L)
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The first part of the theorem can therefore be rewritten as N ′
n = Nn−1. We prove this by

induction, the induction hypothesis being: for some n ⩾ 5 and for any 1 < k < n, we have
N ′

k = Nk−1 and Z ′
k = Zk−1. (The cases where n < 5 can be checked separately.) Consider Zn

first. Note that if two lists L1 and L2 have no common element, then L1 + L2 = L1 + L2. In
the equality Z ′

n = 100Z ′
n−3 + 1010Z ′

n−4 + 00Z ′
n−2 + 010Z ′

n−3, the four lists on the right side
are pairwise disjoint (as sets), because of the different prefixes of their elements. Hence, by
the induction hypothesis, we have

Z ′
n = 100Z ′

n−3 + 1010Z ′
n−4 + 00Z ′

n−2 + 010Z ′
n−3

= 100Z ′
n−3 + 1010Z ′

n−4 + 00Z ′
n−2 + 010Z ′

n−3

= 100Zn−4 + 1010Zn−5 + 00Zn−3 + 010Zn−4

= Zn−1.

Now, we have Nn = 100Zn−3 + 1010Zn−4. The lists 100Z ′
n−3 and 1010Z ′

n−4 are disjoint
(because of their prefixes), so

N ′
n = 100Z ′

n−3 + 1010Z ′
n−4

= 100Z ′
n−3 + 1010Z ′

n−4

= 100Zn−4 + 1010Zn−5

= Nn−1.

Now, let us prove the following statement: let g ∈ Nn−1 with 0 as its rightmost digit (so
g0 and g1 belong to Nn). There is no word between g0 and g1 in Nn. The same is true when
replacing N by Z in this statement. This is done by induction, the induction hypothesis being
that the property is true for any k < n for the lists Nk and Zk (where n ⩾ 5). Consider
the relation Zn = 100Zn−3 + 1010Zn−4 + 00Zn−2 + 010Zn−3 and let g0 and g1 be in Zn.
Because of the different prefixes on the right side, g0 and g1 belong to the same term of the
right sum of lists, hence are consecutive words by the induction hypothesis. Now, because
Nn = 100Zn−3 + 1010Zn−4, the same reasoning applies, and the statement is proved.

Hence, we know that the algorithm presented in the statement of the theorem indeed pro-
duces the list N ′

n. To prove the last statements in the theorem, consider the remark made
right after the statement of Theorem 3.9. This remark shows that there exists a unique way to
concatenate 0s and 1s to the right of the words in N ′

n to get ZF-words of length n where two
consecutive ones are of Hamming distance 1. Hence, because by Theorem 3.7 we have that in
Nn two consecutive words are of Hamming distance 1, the concatenation process described in
the remark indeed produces Nn from N ′

n, as required. □

Following [11] also leads to the following description that makes use of the Fibonacci sub-
stitution to describe the way digits are to be added to the elements of Nn−1 to get Nn.

Theorem 3.10. Let σ be the Fibonacci substitution on the alphabet {α, β}, defined by σ(α) =
αβ and σ(β) = α, and let (σn)n∈N := σ∞(α) be its fixed point. The sequence of rightmost
digits in G is the sequence (τn)n∈N∗ on the alphabet {0, 1} defined by τ1 = 1 and, for any n ⩾ 2,
τn = 1 if and only if σ⌊n/2⌋−1 = β.

In other words, the sequence of rightmost digits in G begins with a 1, then shows a sequence
of 00s and 11s under the recoding of the fixed point of the Fibonacci substitution defined by
α 7−→ 00 and β 7−→ 11.
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Proof. Write (rn)n∈N∗ for the sequence of rightmost digits of G. Our goal is to prove that
rn = τn for any n. This is easily checked for n ⩽ 2.

Let n ⩾ 3 and let k be the largest integer such that Fk+1 ⩽ n (so gn ∈ Nk). The word
given by the rightmost letter of each element of Nm is rFm+1 · · · rFm+2−1, so the relation Nk =

10′Nk−1 + 10Nk−2 gives rFk+1
· · · rFk+2−1 = rFk+1−1 · · · rFk−1, so rn = r2Fk+1−1−n. Because

2Fk+1 − 1 − n < n, this equality, together with r1 = 1 and r2 = 0, is a complete recursive
definition of (rn)n∈N∗ .

Because we also have τ1 = 1 and τ2 = 0, it only remains to show that τn = τ2Fk+1−1−n for
any n ⩾ 3. This is a consequence of some standard properties of the Fibonacci substitution.
First, the fixed point of σ can be described as the limit of the (eventually) increasing sequence
(Bj)j∈N of words in {α, β} such that B0 = β, B1 = α, and Bj = Bj−1Bj−2 for any j ⩾ 2. For
any j ⩾ 2, write B′

j for the block Bj in which the last two letters have been removed, and

let us show that B′
j is palindromic for any j. It is true for B′

2 (which is empty) and for B′
3

(equal to α), so we can assume j ⩾ 4 so that all subsequent expressions are well-defined and
correct. We write first Bj as Bj−2Bj−3Bj−2. Also, by an immediate induction, we have that
Bj−2 = B′

j−2αβ for even values of j and Bj−2 = B′
j−2βα for odd values of j. Hence, for j even

(the case j odd being similar), Bj = B′
j−2αβB

′
j−3βαB

′
j−2αβ, so B′

j = B′
j−2αβB

′
j−3βαB

′
j−2,

which is palindromic by induction.
Write Cj for the block obtained from Bj by the recoding α 7−→ 00 and β 7−→ 11, and define

C ′
j from B′

j in the same way (or, equivalently, from removing from Cj its last four digits). The

sequence (τn)n∈N∗ is therefore the limit of the words 1C ′
j , where C ′

j is palindromic. Also, by

induction for any j ⩾ 0, we have card(Bj) = Fj+1, so card(C ′
j) = 2Fj+1 − 4 for j ⩾ 2.

Now, for any n ⩾ 3, let κ be an integer for which n ⩽ 2Fκ+1 − 3 (that is, κ is chosen in
such a way that there are at least n digits in the sequence 1C ′

κ). Because the initial 1 in 1C ′
κ

corresponds to τ1, the symmetry given by the palindromicity of C ′
κ means that τn = τ2Fκ+1−1−n.

This relation holds for any κ for which n ⩽ 2Fκ+1 − 3. The value k defined previously as the
largest integer such that Fk+1 ⩽ n is one of these κs, whenever we have Fk+2 − 1 ⩽ 2Fk+1 − 3
(because n ⩽ Fk+2−1). This latter inequality holds for all k ⩾ 4. Thus, checking the equality
τn = rn for all n ⩽ F4+2 − 1 = 7, we get that both the sequences (rn)n∈N∗ and (τn)n∈N∗ have
the same recursive definition with the same initial values, hence are equal. □

Eventually, let us write the complete “de-mirrored” algorithm given by Theorems 3.9
and 3.10 to get Nn from Nn−1 = {gFn , . . . , gFn+1−1}:

• Initialization: L := ∅
• for i from Fn to Fn+1 − 1:

if gi ends with a 1 then L := L+ {gi}
else L := L+ {gi}+ {gi}

• write L =: {gFn+1 , . . . , gFn+2−1}
• for i from Fn+1 to Fn+2 − 1:

in L, do gi := giτi
• return(L).

3.4. The Hanoi-Fibonacci Graphs. In the present section, our aim is to investigate how to
represent the Tower of Hanoi-Fibonacci by a graph Fn = (Vn, En), in which Vn contains the 3n

possible states of the puzzle, and En is the set of arcs (e, e′) such that the move from e to e′ is a
Fibonacci move (Figure 3). Note that, contrary to the graph of the classic Tower of Hanoi, this
graph is oriented because Fibonacci moves are not reversible (except for 1-Fibonacci moves).

Theorem 3.11. For any n ⩾ 2, the unoriented graph that corresponds to Fn is nonplanar.
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Proof. Because Fn ⊂ Fn+1 for any n, it is sufficient to prove that F2 is nonplanar.

Figure 3. The graph F2 of the Tower of Hanoi-Fibonacci with 2 disks. (Line
segments stand for arcs going both ways.)

Let us merge the vertices (∅, 2, 1) and (1, 2,∅) into a single vertex a, then the vertices
(1,∅, 2) and (∅, 1, 2) to get a second vertex b, and eventually the vertices (2,∅, 1) and (2, 1,∅)
to get a third vertex c. The graph thus obtained can be split into two subsets of vertices,
V = {a, b, c} (the merged “external” vertices) and V ′ = {(12,∅,∅), (∅, 12,∅), (∅,∅, 12)}
(the “internal” vertices). The set of edges of this new graph is the set of all possible edges
between V and V ′, hence it is isomorphic to the complete bipartite graph K3,3. Hence, K3,3

is a minor of F2, so F2 is not planar. □

Theorem 3.12. For any n ⩾ 0, Fn is strongly connected. In other words, any possible state
of the puzzle can be attained from any other under the rules of the Tower of Hanoi-Fibonacci.

Proof. We proceed by induction on n. Assume Fn is strongly connected, and consider Fn+1.
This latter graph contains exactly three copies of Fn that we denote by FA

n , FB
n , and FC

n

depending on the peg on which dn+1 is located in each. By the induction hypothesis, each
of these three copies of Fn is strongly connected. Hence, to obtain the desired result, it is
sufficient to prove that there exists an arc from some vertex of FX

n to some vertex of FY
n for

any different pegs X and Y . The Fibonacci move (n+ 1) ⊔∆n ⊔∅ −→ ∅ ⊔∆n−1 ⊔ n(n+ 1)
provides such an arc. □

The previous drawing of F2 seems difficult to extend in a natural way to larger values of n,
and a slight modification of Figure 1 seems more interesting for visualization purposes, even if
it needs some specific coding to makes the arrow diagram handy. Also, as stated in Definition
3.1, it will be easier to work with a slightly modified version of a Fibonacci move, hereafter
defined as

kX̃ ⊔∆k−1Ỹ ⊔ Z −→ ∆k−2X̃ ⊔ Ỹ ⊔ (k − 1)kZ.
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In this new version, the tower ∆k−2 ends up on X̃ instead of remaining on Ỹ . This does not
fundamentally change what precedes, and it is easy to check that all the results obtained under
the initial Definition 3.1 of Fibonacci moves remain unchanged under the present variant. (In
particular, because the graph F2 remains the same for this variant, the new graph is still
nonplanar.)

Now, with this variant of Fibonacci moves, we can make use of the classic graph of Figure 1
to represent the Hanoi-Fibonacci puzzle. In this graph, we preserve the edges that represent
1-Fibonacci moves. The other edges are also preserved, but become arcs of a form that we will
call pseudo-arcs. More precisely, the graph Gn of the classic puzzle is made of three copies of
Gn−1, together with three edges that make Gn connected. In Fn, these edges are n-pseudo-arcs,
represented as arrows labelled by 2n−2 + 1 (for n ⩾ 2). Let v be a vertex of Fn, which is the
origin of a k-pseudo-arc e (hence with 1 < k ⩽ n). The k-Fibonacci move for the vertex v
ends up on the vertex v′ obtained by a jump of length 2k−2+1 in the direction of the arc, i.e.,
v′ is the vertex of the graph at a distance 2k−2 + 1 from v (each arc or pseudo-arc counting
for 1) attained by following the path of length 2k−2 + 1 defined by the geometrical direction
defined by e (Figure 4).

Figure 4. The graph F3 of the Tower of Hanoi-Fibonacci with 3 disks
(under the variant of the Fibonacci moves) with its pseudo-arcs.

Theorem 3.13. Under the previous definition of Fn, if the vertex v is the origin of a k-
pseudo-arc (k ⩾ 2), then the vertex v′ is the state of the puzzle attained by the (only) possible
k-Fibonacci move from the state v.

Proof. Assume the result until n − 1. The graph Fn contains three copies of Fn−1, in each
of which the property is true by induction. Therefore, it remains only to prove that the
property is true also for the n-pseudo-arcs of Fn. By symmetry, it is enough to consider the
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case of the n-pseudo-arc of origin (n,∆n−1,∅). The n-Fibonacci move from this state leads
to (∆n−2,∅, (n− 1)n). Also, under the classic rules of the Tower of Hanoi puzzle, going from
(n,∆n−1,∅) to (∆n−2,∅, (n−1)n) with the optimal algorithm requires exactly 2n−2+1 moves,
which are all on the same geometrical direction on Hn, so we are done. □

We deduce from this a combinatorial proof of the following equality (see Figure 5), which
has some similarities with the classic sum of the nth row of Pascal’s triangle being 2n and the
sum of its nth diagonal being Fn.

Figure 5. Vizualization of Corollary 3.14 for n = 5.

Corollary 3.14. For any n ⩾ 0, we have

2n = Fn+2 +

n−2∑
k=0

2kFn−1−k.

Proof. With the notation of Section 2, we have 2n − 1 = mn. Also, by Theorem 3.4 and the
proof of Theorem 3.13, we have

mn = Fn +
n+1∑
k=3

(2k−3 + 1)Fn+2−k

=

n+1∑
k=2

Fn+2−k +

n+1∑
k=3

2k−3Fn+2−k

= Fn+2 − 1 +
n−2∑
k=0

2kFn−1−k. □

4. Some Generalizations and Questions

4.1. Modifying the Fibonacci Moves. Here, we briefly consider alternative ways of defin-
ing the allowed moves, extending in a natural way the Fibonacci moves. We write ∆n′

n for the

set of disks dk with n′ ⩽ k ⩽ n (so ∆n′
n = ∆1

n = ∆n for n′ ⩽ 1 and ∆n′
n = ∅ for n′ > n).
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Definition 4.1. Let p ⩾ 1 and q ⩾ 0 be two integers. Let X and Y be two different pegs of

some state such that, for some k ∈ ∆n, we have X = ∆k−p+1
k X ′ and Y = ∆k−pY

′. Write
Z for the third peg of the state. We define a (p, q)-move as a move that consists in putting

simultaneously all the disks of ∆k−p+1−q
k onto Z, i.e.,

∆k−p+1
k X ′ ⊔∆k−pY

′ ⊔ Z −→ X ′ ⊔∆k−p−qY
′ ⊔∆k−p+1−q

k Z.

We will talk about the (p, q)-Tower of Hanoi for the Tower of Hanoi puzzle in which only
(p, q)-moves are allowed.

Note that the (1, 0) case is the classic puzzle, and that the (1, 1) one is the Tower of Hanoi-
Fibonacci puzzle.

Theorem 4.2. The (p, q)-Tower of Hanoi puzzle with n disks admits a solution for any n ⩾ 0.
There exists only one optimal algorithm for it that needs exactly mn (p, q)-moves, where the
sequence (mn)n∈Z is defined by

mn =

{
0, if n ⩽ 0;

mn−p +mn−p−q + 1, if n > 0.

Proof. For n ⩽ p, the (p, q)-move (∆n,∅,∅) −→ (∅,∅,∆n) is allowed, so we have mn = 1 for
any n ⩽ p, which correspond to the formula stated in the theorem.

For n > p, the optimal solution is provided by the sequence of critical states, each of which
needs, by induction, the number of moves written on its arrow:

(∆n,∅,∅)
mn−p−→ (∆n−p+1

n ,∆n−p,∅)
1−→ (∅,∆n−p−q,∆

n−p+1−q
n )

mn−p−q−→ (∅,∅,∆n).

To prove that this description is the (only) optimal solution, it is sufficient to prove that, in an
optimal solution, the disk dn, and therefore all the disks from dn−p+1 to dn, move exactly once,
which is done by a similar argument already given for the classic puzzle (Section 2) and the
Hanoi-Fibonacci one (Theorem 3.2). By summing the number of moves, we get the expected
formula. □

There is no serious doubt that generalizations of Zeckendorf-Fibonacci, Gray-like codes, and
pseudo-arcs of the graph Hn can be given for (p, q)-moves, but some additional technicalities
may be hard to overcome. For example, the case p = q = 2 provides a sequence mn that is
not strictly increasing (because m2n−1 = m2n), hence a convenient numeration system derived
from it is probably not as simple as the Zeckendorf one for the Fibonacci sequence in the case
p = q = 1. The study of the corresponding graph for (p, q)-moves may be a little bit tricky as
well.

4.2. Restricting the Moves Between Pegs. Possible variants on the classic puzzle consist
in allowing moves only between some pegs. For example, in the clockwise-cyclic variant intro-
duced in [1], additionally to the classic rules of Section 2, a disk can move only from A to B,
from B to C, or from C to A.

Any variant of this type can be defined by an oriented graph with set of vertices {A,B,C},
an arc XY standing for the moves from the peg X to the peg Y that are allowed. The sensible
variants of this kind (i.e., for which the puzzle is solvable for any n) are the ones for which
the corresponding graph is strongly connected [5, Proposition 8.4]. We will not consider all
possible cases here, but only mention briefly the linear variant, in which the allowed moves
are those from A to B, from B to A, from B to C, and from C to B. It is well-known that, for
such a restriction, the optimal algorithm for the classic puzzle needs 3n−1 moves, so, because
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the number of distinct states is 3n, the linear puzzle also provides the “worst solution”, that
is, the longest solution that does not come back to any state already met.

Now, consider the linear variant for the Tower of Hanoi-Fibonacci, in which a k-Fibonacci
move is allowed if and only if it makes dk going from A to B, from B to A, from B to C, or
from C to B. Write again mn for the minimal number of moves to solve this variant with n
disks. The optimal solution is then given by the following recursive description (for n ⩾ 3):

(∆n,∅,∅)
mn−1−→ (n,∅,∆n−1)

1−→ (∅,∆n−1
n ,∆n−2)

1−→

(∆n−2
n−1, n,∆n−3)

mn−3−→ (∆n−1, n,∅)
1−→ (∆n−2,∅,∆n−1

n )
mn−2−→ (∅,∅,∆n).

Hence, the sequence (mn)n is given by m0 = 0, m1 = 2, m2 = 5, and, for any n ⩾ 3,
mn = mn−1 + mn−2 + mn−3 + 3 (a kind of a Tribonacci sequence). This time, the proof
that such a description provides the (only) optimal algorithm is a consequence of that, in an
optimal algorithm, the disks dn moves exactly twice.

Regarding the other variants derived from the restriction of moves between pegs, there is
probably no specific difficulty to address them in the context of Fibonacci moves (or (p, q)-
moves), apart from some of these variants already involve linear recurring sequences of order
6 in the classic Tower of Hanoi, so are possibly tiresome to describe in our even more technical
context.

More interesting would be to find a general way to derive the sequence of moves (or at least
the number of moves) from the conjunction of the two kinds of rules. For example, is it possible
to deduce the previous Tribonacci sequence directly from what we separately know from the
linear variant of the classic puzzle and from our study of the Tower of Hanoi-Fibonacci, instead
of the recursive description we presented?

4.3. Further Questions. We could also consider even more general rules for the moves. For
example, we could allow moves of the form kX ′⊔∆k−1Y

′⊔Z −→ X ′⊔∆k−3(k−1)Y ′⊔(k−2)kZ,
and so on. One may wonder if two different rules can lead to the same sequence, hence asking
for the links between these rules.

Eventually, a deeper work would be to obtain a theoretical way to find from a linear recurring
sequence, some natural rules for the Tower of Hanoi for which the number of moves of the
optimal algorithm would be given by the sequence. This will probably involve a more precise
definition of a “natural rule”. (For example, we may ask whether we can always restrict the
study to Markovian moves, i.e., moves for which their legality depends only on the initial
and final states.) In a sense, answering this question would truly complete Lucas’s original
assertion.
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[5] A. M. Hinz, S. Klavžar, and C. Petr, The Tower of Hanoi — Myths and Maths, second ed., Birkhäuser,
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[7] S. Klavžar and U. Milutinović, Graphs S(n, k) and a variant of the Tower of Hanoi problem, Czechoslov.

Math. J., 47.122 (1997), 95–104.
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