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Abstract. Let D
(v)
n be the nth generalized derangement number that is a generalization of

the classic derangement number Dn = D
(0)
n . In this note, we investigate the set Sv of those

integers n for which D
(v)
n is not a sum of three squares. We characterize the set S0 and the

set Sv for odd values of v. We prove that in these cases the set Sv has natural density and
compute its value. In particular, the natural density of S0 is equal to 1/24.

1. Introduction

Let N be the set of nonnegative integers, N+ the set of positive integers, and for a given
k ∈ N+, let N≥k = {n ∈ N : n ≥ k}. Moreover, by ν2(n) we denote the 2-adic valuation of an
integer n; i.e., the largest k ∈ N such that 2k|n (with the convention ν2(0) = +∞).

One of the classic theorems of arithmetic theory of quadratic forms is the characterization
of integers that can be represented as a sum of three squares of integers. The result, proved
by Legendre in 1798, states that the Diophantine equation

n = x2 + y2 + z2,

where n is positive integer, has no solution in integers x, y, z if and only if n is of the form
n = 22k(8m + 7). Thus, the question concerning the representation of n as a sum of three

squares is reduced to the study of 2-adic valuation of n, with the modulo 8 behavior of n/2ν2(n)

(in the case when ν2(n) is even). This approach was successfully adapted in the study of various
Diophantine equations of the form

un = x2 + y2 + z2, (1.1)

where (un)n∈N is an integer sequence of a combinatorial origin. For example, Granville and

Zhu presented the characterization of those n for which equation (1.1) with un =
(
2n
n

)
has a

solution (note that some initial results concerning this case were also obtained by Robbins in
[7]). The same approach was used in a recent study of Deshouillers and Luca concerning the
solvability of (1.1) with un = n! [1]. In this case, one can also consult a recent paper of Hajdu
and Papp [3], where the question concerning the so called gap sequences is investigated.

The numbers
(
2n
n

)
and n! have a natural combinatorial interpretation and it is interesting

to ask for which numbers with a combinatorial origin, similar results can be obtained. In this

note, we continue this line of research and consider the equation (1.1) with un = D
(v)
n . Here,

for v ∈ N, the number D
(v)
n is the so called generalized derangement number. More precisely,

for fixed v ∈ N and n ∈ N, the nth generalized derangement number D
(v)
n is defined by (see
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Munarini [6])

D(v)
n =

n∑
k=0

(−1)k
(
v + n− k

n− k

)
n!

k!
.

We prefer the notation D
(v)
n instead of Munarini’s d

(v)
n to strengthen the connection with the

classic derangement numbers, which are the special case for v = 0. Arithmetic properties of
these numbers were investigated from different perspectives (e.g., the recent paper [10] and

reference given there). In general, for a given v ∈ N, the number D
(v)
n is the permanent of

the (0, 1)-matrix of size n × (n + v) with n zeros not on a line. For various values of v, the

number D
(v)
n has an additional combinatorial interpretation. Recall that D

(0)
n is the number of

the permutations of the set {1, . . . , n} without fixed points - the classic derangement number
or rencontres numbers was introduced and studied by Montmort [5] (for a large number of

interpretations of these numbers, see entry A000166 in [8]). For v = 1, the number D
(1)
n

counts permutations of the set {1, . . . , n + 1} having no substrings of the form (k, k + 1) for

any k ∈ {1, . . . , n}. The numberD
(2)
n counts certain type of necklaces (for a precise description,

see the entry A000153 in [8]) and so on.

One can easily check that D
(v)
0 = 1, D

(v)
1 = v, and for n ≥ 2, we have

D(v)
n = (n+ v − 1)D

(v)
n−1 + (n− 1)D

(v)
n−2. (1.2)

Moreover, we have the identity that connects the value of D
(v)
n with D

(v−1)
n ; i.e.,

D(v)
n = nD

(v)
n−1 +D(v−1)

n .

Motivated by findings from the papers [1, 2], we study the set

Sv := {n ∈ N : D(v)
n is not a sum of three squares of integers}

and the counting function

Sv(x) = #{n : n ≤ x and n ∈ Sv}.
Let us describe the content of the paper in some detail. In Section 2, we obtain a precise

description of the elements of the set S0. Using this characterization of S0, we compute S0(x)
with error of logarithmic growth and prove that the natural density of S0 in N is equal to
1/24. In Section 3, we describe the elements of the set Sv for v ≡ 1 (mod 2) and compute
the natural density. In the last section, we speculate on possible solutions of more difficult

problems concerning the representability of D
(0)
n as a sum of two squares or as a sum of two

squares and a fourth power.

2. Characterization of the Elements of the Set S0

We start our investigations with the case v = 0. To simplify the notation, we write Dn

instead of D
(0)
n . Recall that Dn is the number of permutations of the set {1, . . . , n} without

fixed points. By a simple combinatorial argument, one can check that the sequence (Dn)n∈N
satisfies the following recurrence

D0 = 1, Dn = nDn−1 + (−1)n for n ∈ N+. (2.1)

Using recurrence (2.1) two times, we get an additional recurrence relation in the following
form

D0 = 1, D1 = 0, Dn = (n− 1)(Dn−1 +Dn−2) for n ∈ N≥2, (2.2)

which also follows from (1.2) by taking v = 0.
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We start with the following lemma.

Lemma 2.1. We have the following congruences:

D2n ≡ 1 (mod 8) and D2n+1 ≡ 2n (mod 8).

Proof. First, note that recurrence (2.1) implies the recurrenceD2n = 2n(2n−1)D2(n−1)+1−2n.
We have D0 = D2 ≡ 1 (mod 8), and by induction on n, we get

D2n ≡ 2n(2n− 1)D2(n−1) + 1− 2n ≡ 2n(2n− 1) + 1− 2n ≡ 4n(n− 1) + 1 ≡ 1 (mod 8).

The first congruence follows.
The second congruence is an immediate consequence of the first one. Indeed, we have

D2n+1 = (2n+ 1)D2n − 1 ≡ 2n+ 1− 1 ≡ 2n (mod 8),

and we get the statement. □

To obtain the characterization of the elements in S0, we also need the following characteri-
zation of the 2-adic valuation of Dn.

Lemma 2.2. For n ∈ N, we have ν2(Dn) = ν2(n− 1).

Proof. For n = 0, 1, 2, the statement is true. From recurrence (2.2) and Lemma 2.1, we have
that

ν2(Dn) = ν2((n− 1)(Dn−1 +Dn−2)) = ν2(n− 1) + ν2(Dn−1 +Dn−2) = ν2(n− 1).

□

We characterize the behavior of Dn/2
ν2(n−1) modulo 8 in the following result.

Theorem 2.3. Let n ∈ N and write n = 2k(2m+ 1) + 1 for some k,m ∈ N. Then,

Dn

2ν2(n−1)
=

D2k(2m+1)+1

2k
≡


1 (mod 8) for k = 0,

1− 2m (mod 8) for k = 1,

3− 2m (mod 8) for k = 2,

7− 2m (mod 8) for k ≥ 3.

Proof. The case k = 0 is already proved in Lemma 2.1. We thus assume that k ≥ 1. From
recurrence (2.2) and Lemma 2.1, we get that

D2k(2m+1)+1

2k
= (2m+ 1)(D2k(2m+1) +D2k(2m+1)−1)

≡ (2m+ 1)(D2(2km+2k−1−1)+1 + 1) (mod 8)

≡


(2m+ 1)(D4m+1 + 1) (mod 8) for k = 1,

(2m+ 1)(D2(4m+1)+1 + 1) (mod 8) for k = 2,

(2m+ 1)(D2(2k−1(2m+1)−1)+1 + 1) (mod 8) for k ≥ 3

≡


(2m+ 1)(4m+ 1) (mod 8) for k = 1,

(2m+ 1)(2(4m+ 1) + 1) (mod 8) for k = 2,

(2m+ 1)(2k(2m+ 1)− 1) (mod 8) for k ≥ 3

≡


1− 2m (mod 8) for k = 1,

3− 2m (mod 8) for k = 2,

7− 2m (mod 8) for k ≥ 3;

and the result follows. □
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As a consequence, we get the following theorem.

Theorem 2.4. Let n ∈ N. We have the following equivalence:

n ∈ S0 ⇐⇒ n = 32s+ 21 or n = 22k+3s+ 22k + 1

for some s ∈ N and k ∈ N≥2.

Proof. From Legendre’s theorem, we know that n ∈ S0 if and only if ν2(Dn) = ν2(n − 1) ≡
0 (mod 2) and Dn/2

ν2(n−1) ≡ 7 (mod 8). Thus, from Theorem 2.3, we get:

(1) n = 4(2m+ 1) + 1 and 3− 2m ≡ 7 (mod 8); or
(2) n = 22k(2m+ 1) + 1 and 7− 2m ≡ 7 (mod 8).

In the first case, we get m ≡ 2 (mod 4); i.e., m = 4s+ 2. Hence, n = 8m+ 5 = 32s+ 21.
In the second case, we get m ≡ 0 (mod 4); i.e., m = 4s. Hence, n = 22k(8s + 1) + 1. Our

result follows.
□

The above characterization allows us to get precise information concerning the behavior of
S0(x). More precisely, we are able to prove the following result.

Corollary 2.5. We have the equality

S0(x) =
1

24
x+O(log2 x).

In particular, the natural density of the set S0 in N is equal to

dens(S0) = lim
x→+∞

S0(x)

x
=

1

24
.

Proof. Using the characterization of the set S0 given in Theorem 2.4, we get the following
chain of equalities:

S0(x) =#{n ≤ x : n = 32s+ 21, s ∈ N}

+#{n ≤ x : n = 22k(8s+ 1) + 1, s ∈ N+, k ∈ N≥2}

=
x

32
+O(1) +

log2 x∑
k=2

( x

22k+3
+O(1)

)
=

x

32
+

x

96
+O(log2 x) =

x

24
+O(log2 x).

The second property from the statement is immediate. □

3. Characterization of the Elements of the Set Sv for v Odd

Let v = 2m+1 for some m ∈ N. We start with a lemma that shows it is enough to consider

D
(v (mod 8))
n . More precisely, we have the following lemma.

Lemma 3.1. For given v ∈ N and each n ∈ N we have

D(v+8)
n ≡ D(v)

n (mod 8).

If v is also an odd integer, then for each n ∈ N, the number D
(v)
n is odd. In this particular

case, we have the equality of sets Sv = Sv (mod 8).
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Proof. The first statement is true for n = 0 because D
(v)
0 = 1 for each v. For n = 1, we have

D
(v+8)
1 −D

(v)
1 = v + 8− v = 8 ≡ 0 (mod 8). Let us assume that it is true for n− 1 and n− 2.

Then, from the recurrence relation satisfied by D
(v)
n and the induction hypothesis, we get

D(v+8)
n −D(v)

n ≡ (n+ v − 1)(D
(v+8)
n−1 −D

(v)
n−1) + (n− 1)(D

(v+8)
n−2 −D

(v)
n−2) ≡ 0 (mod 8),

and our result follows.
Assume that v is odd and recall that D

(v)
0 = 1 and D

(v)
1 = v. It is clear that these integers

are odd. Next, for n ≥ 2 we have D
(v)
n = (n+ v − 1)D

(v)
n−1 + (n− 1)D

(v)
n−2 and assuming that

our statement is true for n− 1 and n− 2 and using induction on n, we have

D(v)
n ≡ nD

(v)
n−1 + (n− 1)D

(v)
n−2 ≡ 2n− 1 ≡ 1 (mod 2),

and our result follows. □

Having the above properties at our disposal, we prove the following theorem.

Theorem 3.2. For a given m ∈ N and n ∈ N the following congruences are true:

D(8m+1)
n ≡ 2

⌊n
2

⌋
+ 1 (mod 8);

D(8m+3)
n ≡ D

(8m+1)
2n ≡ 2n+ 1 (mod 8);

D(8m+5)
n ≡


1 for n ≡ 0, 5 (mod 8),

3 for n ≡ 3, 6 (mod 8),

5 for n ≡ 1, 4 (mod 8),

7 for n ≡ 2, 7 (mod 8);

D(8m+7)
n ≡ 6(n (mod 2)) + 1 (mod 8).

Proof. In each case, the proof of the expression for D
(v)
n (mod 8) given in the statement is a

simple application of Theorem 3.1 and induction on n. Because the proofs go in exactly the
same way, we present the details only in the case when v ≡ 1 (mod 8).

If v ≡ 1 (mod 8), then from Theorem 3.1, we get that for each n the congruence D
(v)
n ≡

D
(1)
n (mod 8) is true. Next, using induction on n, we easily get D

(1)
n ≡ 2

⌊
n
2

⌋
+ 1 (mod 8) and

hence, the result. □

As an immediate application of Theorem 3.2, we get the following corollary.

Corollary 3.3. For an odd integer v, we have Sv = Sv (mod 8). Moreover, we have the following
equalities of sets:

S1 = {n ∈ N : n ≡ 6, 7 (mod 8)},
S3 = {n ∈ N : n ≡ 3 (mod 4)},
S5 = {n ∈ N : n ≡ 2, 7 (mod 8)},
S7 = {n ∈ N : n ≡ 1 (mod 2)},

and the densities

dens(Sv) = lim
x→+∞

Sv(x)

x
=

{
1/4 for v ≡ 1, 3, 5 (mod 8);

1/2 for v ≡ 7 (mod 8).
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Proof. Because for an odd value of v, the number D
(v)
n is odd, the equality of sets follow from

the congruence D
(v+8)
n ≡ D

(v)
n (mod 8) (Lemma 3.1).

The description of the set Sv for v = 1, 3, 5, 7 is equivalent with the study of solutions (in

variable n) of the congruence D
(v)
n ≡ 7 (mod 8). This form is an immediate consequence of

Theorem 3.2. Finally, having the characterization of elements of the set Sv, we easily obtain
that Sv(x) = x/4 + O(1) for v ≡ 1, 3, 5 (mod 8) and Sv(x) = x/2 + O(1) for v ≡ 7 (mod 8).
Applying these equalities, we get the values of the corresponding densities. □

4. Computational Observations, Questions, and A Conjecture

From our investigations in the previous section, the following problem is the most interesting.

Problem 4.1. Let v be even. Characterize the elements of the set Sv = {n ∈ N :

D
(v)
n is not the sum of three squares}.

It is not difficult to prove that for each even v, the set Sv is infinite. More precisely, we
have the following congruences

D
(8m+2)
8n+2 ≡ D

(8m+6)
8n+6 ≡ 7 (mod 8).

Thus, 8n + 2 ∈ S8m+2 and 8n + 6 ∈ S8m+6. We thus see that if v ≡ 2 (mod 4) and Sv has a
density, then dens(Sv) ≥ 1/8. Similarly, we have

D
(4m)
32n+pi

≡ 28 (mod 32),

where m ≡ i (mod 8) and

(p0, . . . , p7) = (21, 9, 29, 17, 5, 25, 13, 1).

These congruences imply that if v ≡ 0 (mod 4) and Sv has a density, then dens(Sv) ≥ 1/32.
One can also check that for v = 2m, and for each n ∈ N and i ∈ {0, 2, 3}, the following
noncongruence holds:

D
(2m)
4n+2(m (mod 2))+i ̸≡ 0 (mod 4).

Performing analysis similar to the one presented in Section 3, it is possible to obtain those

values of n such that D
(2m)
4n+2(m (mod 2))+i ≡ 7 (mod 8); i.e., we have 4n+2(m (mod 2))+ i ∈ Sv.

However, we were unable to compute the 2-adic valuation of the number D
(2m)
4n+2(m (mod 2))+1

and numeric computations suggest that for each m, we have ν2(D
(2m)
4n+2(m (mod 2))+1) → +∞

with n. This suggests the following problem.

Problem 4.2. Let m ∈ N and n ∈ N. Compute the value of ν2(D
(2m)
4n+2(m (mod 2))+1).

For v = 0 or v odd, we obtained the existence (and the value) of dens(Sv). A natural
question arises whether it is possible to prove the existence of the density of Sv for v even
without characterizing the elements of the set Sv. We thus formulate the following question.

Question 4.3. Let v be even positive integer. Does the natural density of Sv exist?

In light of a result obtained in Section 2, one can ask related questions about the existence

of representations of Dn = D
(0)
n by sums of even powers. It is clear that the same type of

questions can be asked for any v ∈ N+.
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First, let

T := {n ∈ N : Dn is a sum of two squares of integers}.
It is clear that T ⊂ N \ S0. Recall that a positive integer m can be written as a sum of
two squares if and only if prime numbers p such that p|m and p ≡ 3 (mod 4) appear in the
factorization of m with even powers. However, as we know, the number Dn grows quickly with
n. Indeed, the number of digits of Dn is around n log n and it is a nontrivial problem to check
whether n ∈ T . We checked that there are at least 22 elements of the set T that are ≤ 200.
They are the following:

1, 2, 3, 4, 6, 10, 11, 12, 13, 14, 18, 26, 30, 34, 38, 62, 66, 74, 89, 118, 131, 138.

In the range under consideration, there are five values of n for which we have not been able
to check whether n is in T or not. They are the following: 147, 177, 184, 188, 193. The reason
is simple. There is no quick way to check whether a large composite integer is the sum of two
squares without factoring it (in the case of a prime number, the situation is better - see for
example [9]). In each of the problematic cases, the number Dn contains a composite co-factor
with more than 200 digits, which we have not been able to factor. This explains the difficulty
in obtaining larger elements of T . For example, we know that 74 ∈ T and this follows from
the factorization D74 = 73pq, where

p = 532202503414385269441033, q = 30384550713083856285289293474527653.

Here, p and q are primes with 24 and 35 digits respectively. Moreover, to show that 144 ̸∈
T , a 30 digit prime factor p = 262818855883805693639763176627 of the 232 digit number
D144/(11 · 143 · 848804537899393) was found.

In light of our computations, we formulate the following question.

Question 4.4. Is the set T infinite?

We believe that the answer to this question is YES, but it seems that proving such a result
is difficult. On the other hand, it is not difficult to prove that the set N \ T is infinite. Let
p ≡ 3 (mod 4) be a prime and suppose that p||n − 1. If additionally p ∤ Dn−1 + Dn+1, then
νp(Dn) = 1 and the number Dn cannot be a sum of two squares. Equivalently, because p|n−1
and Dn−1 ≡ (−1)n−1D0 (mod n− 1), we get that Dn−1 ≡ (−1)n−1 (mod p). Similar reasoning

reveals that Dn−2 ≡ (−1)n−2−(p−1)Dp−1 (mod n−2−(p−1)) and thus, Dn−2 ≡ (−1)n (mod p).
We thus see that our n satisfies n ̸∈ T provided p does not divide Dp−1−1. Let pm be the mth
prime. We checked that the congruence Dpm−1 ≡ 1 (mod pm) has only two solutions p2 = 3
and p5 = 11 for m ≤ 20000, and we can produce many arithmetic progression of numbers
not in T . Although limited, our computations strongly suggest that the natural density of
the set N \ T is 1. To show that N \ T is infinite, we take p = 7. Then, for each k ∈ N and
i ∈ {1, . . . , 6}, the number n = 49k + 7i + 1 has the property that ν7(Dn) = 1 and hence,
n ̸∈ T .

However, here is a heuristic reasoning provided by the referee that supports the belief that
the set T is infinite. It is known, by Landau’s result, that the number of integers n such that
n ≤ x and n is a sum of two squares of integers is ∼ c0x/

√
log x, with some positive constant

c0. So, one can say that “the probability” that a positive integer n is a sum of two squares is
around c1/

√
log n for some constant c1. Because

Dn = n!
n∑

i=0

(−1)i

i!
,
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we can apply Stirling’s formula for n! and get that
√
logDn = (1 + o(1))

√
n log n. Thus, one

can expect that the expectation that Dn is a sum of two squares is c1/
√
n log n. However,

this expectation is probably smaller because n − 1|Dn and the gcd(n − 1, Dn−1 + Dn−2) is
not divisible by a prime p ≡ 3 (mod 4). So, if Dn is a sum of two squares, then n − 1 and
Dn−1 +Dn−2 should be almost sums of two squares in the sense that there is a small square-
free number d, divisible only by primes q ≡ 3 (mod 4), such that Dq−1 ≡ 1 (mod q) and that
n−1 = d(x21+x22) and Dn−1+Dn−2 = d(y21+y22). Assuming that these events are independent,
one may expect the probability that Dn is a sum of two squares is equal to c2/(

√
n log n) for

some positive constant c2. As a consequence, we would get that the number of n ∈ T up to x
is ∑

n≤x

1√
n log n

≍ (2 + o(1))

√
x

log x
.

This means that T is likely to be infinite and contains x1/2−o(1) integers n ≤ x as x tends to
infinity.

We preformed some additional computations that suggest the expectation that Dn behaves
like a random integer of the same size is a bit too optimistic. More precisely, in the discussed
context, one can also ask what is the distribution of Dn (mod p) for a given prime number p.
Let us recall that for any given odd number m, the sequence (Dn (mod m))n∈N is periodic of
period 2m [4, Proposition 1]. Due to the periodicity modulo p, it is enough to consider Dn

for n ≤ 2p− 1. It seems that the sequence (Dn (mod p)) tends to avoid many residue classes.
Let p ≤ 93179 = p9000. We computed the number r(p) of elements of the set

R(p) := {Dn (mod p) : n ∈ {0, . . . , 2p− 1}}.
In Figure 1, we can see the graphs of the functions f(k) = pk and g(k) = r(pk) for k ≤ 9000.
The figure strongly suggest that pk − r(pk) tends to infinity with k.

Figure 1. Plot of the functions f(k) = pk and g(k) = r(pk) (left) and the
function h(k) = (pk − r(pk))/r(pk) (right) for k ≤ 9000.

One can also speculate whether the sequence of quotients (r(pk)/pk)k∈N is convergent. Nu-
meric calculations in the considered range confirmed that r(pk) > 7

11pk. Moreover, it seems

that for k ≥ 20 we have r(pk) <
23
25pk.

It seems that the set of values of the quotients (pk − r(pk))/r(pk) cluster around the hori-
zontal line y = 0.135997237.

Now, let

Q := {n ∈ N : Dn is a sum of two squares and a fourth power}
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It is clear that T ⊂ Q and thus, Q ⊂ N \ S0. The problem whether n ∈ Q is also a difficult
one. Indeed, no characterization of integers that can be represented in the form x2 + y2 + z4

without computing the representation somehow is known. On the other hand, we checked that
for n ∈ N \ S0, n ≤ 50, and n ̸= 5, 37, we have n ∈ Q. More precisely, for each n ̸= 5, 37,
we were able to find a small value of z such that Dn − z4 is a sum of two squares. The only
representation of D5 = 44 as a sum of three squares is D5 = 22 + 22 + 62 and thus, D5 is not
a sum of two squares and a fourth power. We were unable to check whether D37 is a sum of
two squares and a fourth power. We know that there is no z ≤ 106 such that D37 − z4 is a
sum of two squares. Therefore, in the light of our computations, we formulate the following
conjecture.

Conjecture 4.5. The set Q is infinite and has a positive natural density in the set N \ S0.
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