REPRESENTING GENERALIZED DERANGEMENTS AS SUMS OF THREE SQUARES

MACIEJ ULAS

ABSTRACT. Let $D_n^{(v)}$ be the *n*th generalized derangement number that is a generalization of the classic derangement number $D_n = D_n^{(0)}$. In this note, we investigate the set S_v of those integers *n* for which $D_n^{(v)}$ is not a sum of three squares. We characterize the set S_0 and the set S_v for odd values of *v*. We prove that in these cases the set S_v has natural density and compute its value. In particular, the natural density of S_0 is equal to 1/24.

1. INTRODUCTION

Let \mathbb{N} be the set of nonnegative integers, \mathbb{N}_+ the set of positive integers, and for a given $k \in \mathbb{N}_+$, let $\mathbb{N}_{\geq k} = \{n \in \mathbb{N} : n \geq k\}$. Moreover, by $\nu_2(n)$ we denote the 2-adic valuation of an integer n; i.e., the largest $k \in \mathbb{N}$ such that $2^k | n$ (with the convention $\nu_2(0) = +\infty$).

One of the classic theorems of arithmetic theory of quadratic forms is the characterization of integers that can be represented as a sum of three squares of integers. The result, proved by Legendre in 1798, states that the Diophantine equation

$$n = x^2 + y^2 + z^2,$$

where n is positive integer, has no solution in integers x, y, z if and only if n is of the form $n = 2^{2k}(8m + 7)$. Thus, the question concerning the representation of n as a sum of three squares is reduced to the study of 2-adic valuation of n, with the modulo 8 behavior of $n/2^{\nu_2(n)}$ (in the case when $\nu_2(n)$ is even). This approach was successfully adapted in the study of various Diophantine equations of the form

$$u_n = x^2 + y^2 + z^2, (1.1)$$

where $(u_n)_{n\in\mathbb{N}}$ is an integer sequence of a combinatorial origin. For example, Granville and Zhu presented the characterization of those *n* for which equation (1.1) with $u_n = \binom{2n}{n}$ has a solution (note that some initial results concerning this case were also obtained by Robbins in [7]). The same approach was used in a recent study of Deshouillers and Luca concerning the solvability of (1.1) with $u_n = n!$ [1]. In this case, one can also consult a recent paper of Hajdu and Papp [3], where the question concerning the so called gap sequences is investigated. The numbers $\binom{2n}{n}$ and n! have a natural combinatorial interpretation and it is interesting

The numbers $\binom{2n}{n}$ and n! have a natural combinatorial interpretation and it is interesting to ask for which numbers with a combinatorial origin, similar results can be obtained. In this note, we continue this line of research and consider the equation (1.1) with $u_n = D_n^{(v)}$. Here, for $v \in \mathbb{N}$, the number $D_n^{(v)}$ is the so called generalized derangement number. More precisely, for fixed $v \in \mathbb{N}$ and $n \in \mathbb{N}$, the *n*th generalized derangement number $D_n^{(v)}$ is defined by (see

The research of the author is supported by the grant of the National Science Centre (NCN), Poland, no. UMO-2019/34/E/ST1/00094.

Munarini [6])

$$D_n^{(v)} = \sum_{k=0}^n (-1)^k \binom{v+n-k}{n-k} \frac{n!}{k!}$$

We prefer the notation $D_n^{(v)}$ instead of Munarini's $d_n^{(v)}$ to strengthen the connection with the classic derangement numbers, which are the special case for v = 0. Arithmetic properties of these numbers were investigated from different perspectives (e.g., the recent paper [10] and reference given there). In general, for a given $v \in \mathbb{N}$, the number $D_n^{(v)}$ is the permanent of the (0, 1)-matrix of size $n \times (n + v)$ with n zeros not on a line. For various values of v, the number $D_n^{(v)}$ has an additional combinatorial interpretation. Recall that $D_n^{(0)}$ is the number of the permutations of the set $\{1, \ldots, n\}$ without fixed points - the classic derangement number or rencontres numbers was introduced and studied by Montmort [5] (for a large number $D_n^{(1)}$ counts permutations of the set $\{1, \ldots, n + 1\}$ having no substrings of the form (k, k + 1) for any $k \in \{1, \ldots, n\}$. The number $D_n^{(2)}$ counts certain type of necklaces (for a precise description, see the entry A000153 in [8]) and so on.

One can easily check that $D_0^{(v)} = 1$, $D_1^{(v)} = v$, and for $n \ge 2$, we have

$$D_n^{(v)} = (n+v-1)D_{n-1}^{(v)} + (n-1)D_{n-2}^{(v)}.$$
(1.2)

Moreover, we have the identity that connects the value of $D_n^{(v)}$ with $D_n^{(v-1)}$; i.e.,

$$D_n^{(v)} = nD_{n-1}^{(v)} + D_n^{(v-1)}$$

Motivated by findings from the papers [1, 2], we study the set

 $S_v := \{n \in \mathbb{N} : D_n^{(v)} \text{ is not a sum of three squares of integers} \}$

and the counting function

$$S_v(x) = \#\{n : n \le x \text{ and } n \in S_v\}$$

Let us describe the content of the paper in some detail. In Section 2, we obtain a precise description of the elements of the set S_0 . Using this characterization of S_0 , we compute $S_0(x)$ with error of logarithmic growth and prove that the natural density of S_0 in \mathbb{N} is equal to 1/24. In Section 3, we describe the elements of the set S_v for $v \equiv 1 \pmod{2}$ and compute the natural density. In the last section, we speculate on possible solutions of more difficult problems concerning the representability of $D_n^{(0)}$ as a sum of two squares or as a sum of two squares and a fourth power.

2. Characterization of the Elements of the Set S_0

We start our investigations with the case v = 0. To simplify the notation, we write D_n instead of $D_n^{(0)}$. Recall that D_n is the number of permutations of the set $\{1, \ldots, n\}$ without fixed points. By a simple combinatorial argument, one can check that the sequence $(D_n)_{n \in \mathbb{N}}$ satisfies the following recurrence

$$D_0 = 1, \ D_n = nD_{n-1} + (-1)^n \text{ for } n \in \mathbb{N}_+.$$
 (2.1)

Using recurrence (2.1) two times, we get an additional recurrence relation in the following form

$$D_0 = 1, \ D_1 = 0, \ D_n = (n-1)(D_{n-1} + D_{n-2}) \quad \text{for} \quad n \in \mathbb{N}_{\ge 2},$$
(2.2)

which also follows from (1.2) by taking v = 0.

VOLUME 61, NUMBER 3

GENERALIZED DERANGEMENTS AS SUMS OF THREE SQUARES

We start with the following lemma.

Lemma 2.1. We have the following congruences:

$$D_{2n} \equiv 1 \pmod{8}$$
 and $D_{2n+1} \equiv 2n \pmod{8}$.

Proof. First, note that recurrence (2.1) implies the recurrence $D_{2n} = 2n(2n-1)D_{2(n-1)} + 1 - 2n$. We have $D_0 = D_2 \equiv 1 \pmod{8}$, and by induction on n, we get

 $D_{2n} \equiv 2n(2n-1)D_{2(n-1)} + 1 - 2n \equiv 2n(2n-1) + 1 - 2n \equiv 4n(n-1) + 1 \equiv 1 \pmod{8}.$

The first congruence follows.

The second congruence is an immediate consequence of the first one. Indeed, we have

$$D_{2n+1} = (2n+1)D_{2n} - 1 \equiv 2n+1 - 1 \equiv 2n \pmod{8}$$

and we get the statement.

To obtain the characterization of the elements in S_0 , we also need the following characterization of the 2-adic valuation of D_n .

Lemma 2.2. For $n \in \mathbb{N}$, we have $\nu_2(D_n) = \nu_2(n-1)$.

Proof. For n = 0, 1, 2, the statement is true. From recurrence (2.2) and Lemma 2.1, we have that

$$\nu_2(D_n) = \nu_2((n-1)(D_{n-1} + D_{n-2})) = \nu_2(n-1) + \nu_2(D_{n-1} + D_{n-2}) = \nu_2(n-1).$$

We characterize the behavior of $D_n/2^{\nu_2(n-1)}$ modulo 8 in the following result.

Theorem 2.3. Let $n \in \mathbb{N}$ and write $n = 2^k(2m+1) + 1$ for some $k, m \in \mathbb{N}$. Then,

$$\frac{D_n}{2^{\nu_2(n-1)}} = \frac{D_{2^k(2m+1)+1}}{2^k} \equiv \begin{cases} 1 \pmod{8} & \text{for } k = 0, \\ 1 - 2m \pmod{8} & \text{for } k = 1, \\ 3 - 2m \pmod{8} & \text{for } k = 2, \\ 7 - 2m \pmod{8} & \text{for } k \ge 3. \end{cases}$$

Proof. The case k = 0 is already proved in Lemma 2.1. We thus assume that $k \ge 1$. From recurrence (2.2) and Lemma 2.1, we get that

$$\begin{split} \frac{D_{2^k(2m+1)+1}}{2^k} &= (2m+1)(D_{2^k(2m+1)} + D_{2^k(2m+1)-1})\\ &\equiv (2m+1)(D_{2(2^km+2^{k-1}-1)+1} + 1) \ (\text{mod } 8) \\ &\equiv \left\{ \begin{array}{ll} (2m+1)(D_{4m+1} + 1) \ (\text{mod } 8) & \text{for } k = 1, \\ (2m+1)(D_{2(4m+1)+1} + 1) \ (\text{mod } 8) & \text{for } k = 2, \\ (2m+1)(D_{2(2^{k-1}(2m+1)-1)+1} + 1) \ (\text{mod } 8) & \text{for } k \geq 3 \end{array} \right. \\ &\equiv \left\{ \begin{array}{ll} (2m+1)(4m+1) \ (\text{mod } 8) & \text{for } k = 1, \\ (2m+1)(2(4m+1) + 1) \ (\text{mod } 8) & \text{for } k = 2, \\ (2m+1)(2^k(2m+1) - 1) \ (\text{mod } 8) & \text{for } k \geq 3 \end{array} \right. \\ &\equiv \left\{ \begin{array}{ll} 1 - 2m \ (\text{mod } 8) & \text{for } k = 1, \\ 3 - 2m \ (\text{mod } 8) & \text{for } k = 2, \\ 7 - 2m \ (\text{mod } 8) & \text{for } k \geq 3; \end{array} \right. \end{split}$$

and the result follows.

AUGUST 2023

As a consequence, we get the following theorem.

Theorem 2.4. Let $n \in \mathbb{N}$. We have the following equivalence:

$$n \in S_0 \iff n = 32s + 21 \text{ or } n = 2^{2k+3}s + 2^{2k} + 1$$

for some $s \in \mathbb{N}$ and $k \in \mathbb{N}_{\geq 2}$.

result follows.

Proof. From Legendre's theorem, we know that $n \in S_0$ if and only if $\nu_2(D_n) = \nu_2(n-1) \equiv 0 \pmod{2}$ and $D_n/2^{\nu_2(n-1)} \equiv 7 \pmod{8}$. Thus, from Theorem 2.3, we get:

- (1) n = 4(2m + 1) + 1 and $3 2m \equiv 7 \pmod{8}$; or
- (2) $n = 2^{2k}(2m+1) + 1$ and $7 2m \equiv 7 \pmod{8}$.

In the first case, we get $m \equiv 2 \pmod{4}$; i.e., m = 4s + 2. Hence, n = 8m + 5 = 32s + 21. In the second case, we get $m \equiv 0 \pmod{4}$; i.e., m = 4s. Hence, $n = 2^{2k}(8s + 1) + 1$. Our

The above characterization allows us to get precise information concerning the behavior of $S_0(x)$. More precisely, we are able to prove the following result.

Corollary 2.5. We have the equality

$$S_0(x) = \frac{1}{24}x + O(\log_2 x).$$

In particular, the natural density of the set S_0 in \mathbb{N} is equal to

dens
$$(S_0) = \lim_{x \to +\infty} \frac{S_0(x)}{x} = \frac{1}{24}$$

Proof. Using the characterization of the set S_0 given in Theorem 2.4, we get the following chain of equalities:

$$S_{0}(x) = \#\{n \le x : n = 32s + 21, s \in \mathbb{N}\} + \#\{n \le x : n = 2^{2k}(8s + 1) + 1, s \in \mathbb{N}_{+}, k \in \mathbb{N}_{\ge 2}\} = \frac{x}{32} + O(1) + \sum_{k=2}^{\log_{2} x} \left(\frac{x}{2^{2k+3}} + O(1)\right) = \frac{x}{32} + \frac{x}{96} + O(\log_{2} x) = \frac{x}{24} + O(\log_{2} x).$$

The second property from the statement is immediate.

3. Characterization of the Elements of the Set S_v for v Odd

Let v = 2m + 1 for some $m \in \mathbb{N}$. We start with a lemma that shows it is enough to consider $D_n^{(v \pmod{8})}$. More precisely, we have the following lemma.

Lemma 3.1. For given $v \in \mathbb{N}$ and each $n \in \mathbb{N}$ we have

$$D_n^{(v+8)} \equiv D_n^{(v)} \pmod{8}.$$

If v is also an odd integer, then for each $n \in \mathbb{N}$, the number $D_n^{(v)}$ is odd. In this particular case, we have the equality of sets $S_v = S_{v \pmod{8}}$.

VOLUME 61, NUMBER 3

Proof. The first statement is true for n = 0 because $D_0^{(v)} = 1$ for each v. For n = 1, we have $D_1^{(v+8)} - D_1^{(v)} = v + 8 - v = 8 \equiv 0 \pmod{8}$. Let us assume that it is true for n - 1 and n - 2. Then, from the recurrence relation satisfied by $D_n^{(v)}$ and the induction hypothesis, we get

$$D_n^{(v+8)} - D_n^{(v)} \equiv (n+v-1)(D_{n-1}^{(v+8)} - D_{n-1}^{(v)}) + (n-1)(D_{n-2}^{(v+8)} - D_{n-2}^{(v)}) \equiv 0 \pmod{8},$$

and our result follows.

Assume that v is odd and recall that $D_0^{(v)} = 1$ and $D_1^{(v)} = v$. It is clear that these integers are odd. Next, for $n \ge 2$ we have $D_n^{(v)} = (n+v-1)D_{n-1}^{(v)} + (n-1)D_{n-2}^{(v)}$ and assuming that our statement is true for n-1 and n-2 and using induction on n, we have

$$D_n^{(v)} \equiv nD_{n-1}^{(v)} + (n-1)D_{n-2}^{(v)} \equiv 2n - 1 \equiv 1 \pmod{2},$$

and our result follows.

Having the above properties at our disposal, we prove the following theorem.

Theorem 3.2. For a given $m \in \mathbb{N}$ and $n \in \mathbb{N}$ the following congruences are true:

$$D_n^{(8m+1)} \equiv 2 \left\lfloor \frac{n}{2} \right\rfloor + 1 \pmod{8};$$

$$D_n^{(8m+3)} \equiv D_{2n}^{(8m+1)} \equiv 2n + 1 \pmod{8};$$

$$D_n^{(8m+5)} \equiv \begin{cases} 1 & \text{for } n \equiv 0, 5 \pmod{8}, \\ 3 & \text{for } n \equiv 3, 6 \pmod{8}, \\ 5 & \text{for } n \equiv 1, 4 \pmod{8}, \\ 7 & \text{for } n \equiv 2, 7 \pmod{8}; \end{cases}$$

$$D_n^{(8m+7)} \equiv 6(n \pmod{2}) + 1 \pmod{8}.$$

Proof. In each case, the proof of the expression for $D_n^{(v)} \pmod{8}$ given in the statement is a simple application of Theorem 3.1 and induction on n. Because the proofs go in exactly the same way, we present the details only in the case when $v \equiv 1 \pmod{8}$.

If $v \equiv 1 \pmod{8}$, then from Theorem 3.1, we get that for each *n* the congruence $D_n^{(v)} \equiv D_n^{(1)} \pmod{8}$ is true. Next, using induction on *n*, we easily get $D_n^{(1)} \equiv 2 \lfloor \frac{n}{2} \rfloor + 1 \pmod{8}$ and hence, the result.

As an immediate application of Theorem 3.2, we get the following corollary.

Corollary 3.3. For an odd integer v, we have $S_v = S_{v \pmod{8}}$. Moreover, we have the following equalities of sets:

$$S_{1} = \{n \in \mathbb{N} : n \equiv 6, 7 \pmod{8}\},\$$

$$S_{3} = \{n \in \mathbb{N} : n \equiv 3 \pmod{4}\},\$$

$$S_{5} = \{n \in \mathbb{N} : n \equiv 2, 7 \pmod{8}\},\$$

$$S_{7} = \{n \in \mathbb{N} : n \equiv 1 \pmod{2}\},\$$

and the densities

dens
$$(S_v) = \lim_{x \to +\infty} \frac{S_v(x)}{x} = \begin{cases} 1/4 & \text{for } v \equiv 1, 3, 5 \pmod{8}; \\ 1/2 & \text{for } v \equiv 7 \pmod{8}. \end{cases}$$

AUGUST 2023

235

Proof. Because for an odd value of v, the number $D_n^{(v)}$ is odd, the equality of sets follow from the congruence $D_n^{(v+8)} \equiv D_n^{(v)} \pmod{8}$ (Lemma 3.1).

The description of the set S_v for v = 1, 3, 5, 7 is equivalent with the study of solutions (in variable n) of the congruence $D_n^{(v)} \equiv 7 \pmod{8}$. This form is an immediate consequence of Theorem 3.2. Finally, having the characterization of elements of the set S_v , we easily obtain that $S_v(x) = x/4 + O(1)$ for $v \equiv 1, 3, 5 \pmod{8}$ and $S_v(x) = x/2 + O(1)$ for $v \equiv 7 \pmod{8}$. Applying these equalities, we get the values of the corresponding densities.

4. Computational Observations, Questions, and A Conjecture

From our investigations in the previous section, the following problem is the most interesting.

Problem 4.1. Let v be even. Characterize the elements of the set $S_v = \{n \in \mathbb{N} : D_n^{(v)} \text{ is not the sum of three squares}\}.$

It is not difficult to prove that for each even v, the set S_v is infinite. More precisely, we have the following congruences

$$D_{8n+2}^{(8m+2)} \equiv D_{8n+6}^{(8m+6)} \equiv 7 \pmod{8}.$$

Thus, $8n + 2 \in S_{8m+2}$ and $8n + 6 \in S_{8m+6}$. We thus see that if $v \equiv 2 \pmod{4}$ and S_v has a density, then dens $(S_v) \ge 1/8$. Similarly, we have

$$D_{32n+p_i}^{(4m)} \equiv 28 \pmod{32},$$

where $m \equiv i \pmod{8}$ and

$$(p_0, \ldots, p_7) = (21, 9, 29, 17, 5, 25, 13, 1).$$

These congruences imply that if $v \equiv 0 \pmod{4}$ and S_v has a density, then dens $(S_v) \ge 1/32$. One can also check that for v = 2m, and for each $n \in \mathbb{N}$ and $i \in \{0, 2, 3\}$, the following noncongruence holds:

$$D_{4n+2(m \pmod{2})+i}^{(2m)} \not\equiv 0 \pmod{4}.$$

Performing analysis similar to the one presented in Section 3, it is possible to obtain those values of n such that $D_{4n+2(m \pmod{2})+i}^{(2m)} \equiv 7 \pmod{8}$; i.e., we have $4n + 2(m \pmod{2}) + i \in S_v$. However, we were unable to compute the 2-adic valuation of the number $D_{4n+2(m \pmod{2})+1}^{(2m)}$ and numeric computations suggest that for each m, we have $\nu_2(D_{4n+2(m \pmod{2})+1}^{(2m)}) \to +\infty$ with n. This suggests the following problem.

Problem 4.2. Let $m \in \mathbb{N}$ and $n \in \mathbb{N}$. Compute the value of $\nu_2(D_{4n+2(m \pmod{2})+1}^{(2m)})$.

For v = 0 or v odd, we obtained the existence (and the value) of dens (S_v) . A natural question arises whether it is possible to prove the existence of the density of S_v for v even without characterizing the elements of the set S_v . We thus formulate the following question.

Question 4.3. Let v be even positive integer. Does the natural density of S_v exist?

In light of a result obtained in Section 2, one can ask related questions about the existence of representations of $D_n = D_n^{(0)}$ by sums of even powers. It is clear that the same type of questions can be asked for any $v \in \mathbb{N}_+$.

First, let

 $T := \{ n \in \mathbb{N} : D_n \text{ is a sum of two squares of integers} \}.$

It is clear that $T \subset \mathbb{N} \setminus S_0$. Recall that a positive integer m can be written as a sum of two squares if and only if prime numbers p such that p|m and $p \equiv 3 \pmod{4}$ appear in the factorization of m with even powers. However, as we know, the number D_n grows quickly with n. Indeed, the number of digits of D_n is around $n \log n$ and it is a nontrivial problem to check whether $n \in T$. We checked that there are at least 22 elements of the set T that are ≤ 200 . They are the following:

$$1, 2, 3, 4, 6, 10, 11, 12, 13, 14, 18, 26, 30, 34, 38, 62, 66, 74, 89, 118, 131, 138.$$

In the range under consideration, there are five values of n for which we have not been able to check whether n is in T or not. They are the following: 147, 177, 184, 188, 193. The reason is simple. There is no quick way to check whether a large composite integer is the sum of two squares without factoring it (in the case of a prime number, the situation is better - see for example [9]). In each of the problematic cases, the number D_n contains a composite co-factor with more than 200 digits, which we have not been able to factor. This explains the difficulty in obtaining larger elements of T. For example, we know that $74 \in T$ and this follows from the factorization $D_{74} = 73pq$, where

$$p = 532202503414385269441033, \quad q = 30384550713083856285289293474527653.$$

Here, p and q are primes with 24 and 35 digits respectively. Moreover, to show that $144 \notin T$, a 30 digit prime factor p = 262818855883805693639763176627 of the 232 digit number $D_{144}/(11 \cdot 143 \cdot 848804537899393)$ was found.

In light of our computations, we formulate the following question.

Question 4.4. Is the set T infinite?

We believe that the answer to this question is YES, but it seems that proving such a result is difficult. On the other hand, it is not difficult to prove that the set $\mathbb{N} \setminus T$ is infinite. Let $p \equiv 3 \pmod{4}$ be a prime and suppose that p||n-1. If additionally $p \nmid D_{n-1} + D_{n+1}$, then $\nu_p(D_n) = 1$ and the number D_n cannot be a sum of two squares. Equivalently, because p|n-1and $D_{n-1} \equiv (-1)^{n-1}D_0 \pmod{n-1}$, we get that $D_{n-1} \equiv (-1)^{n-1} \pmod{p}$. Similar reasoning reveals that $D_{n-2} \equiv (-1)^{n-2-(p-1)}D_{p-1} \pmod{n-2-(p-1)}$ and thus, $D_{n-2} \equiv (-1)^n \pmod{p}$. We thus see that our n satisfies $n \notin T$ provided p does not divide $D_{p-1}-1$. Let p_m be the mth prime. We checked that the congruence $D_{p_m-1} \equiv 1 \pmod{p_m}$ has only two solutions $p_2 = 3$ and $p_5 = 11$ for $m \leq 20000$, and we can produce many arithmetic progression of numbers not in T. Although limited, our computations strongly suggest that the natural density of the set $\mathbb{N} \setminus T$ is 1. To show that $\mathbb{N} \setminus T$ is infinite, we take p = 7. Then, for each $k \in \mathbb{N}$ and $i \in \{1, \ldots, 6\}$, the number n = 49k + 7i + 1 has the property that $\nu_7(D_n) = 1$ and hence, $n \notin T$.

However, here is a heuristic reasoning provided by the referee that supports the belief that the set T is infinite. It is known, by Landau's result, that the number of integers n such that $n \leq x$ and n is a sum of two squares of integers is $\sim c_0 x / \sqrt{\log x}$, with some positive constant c_0 . So, one can say that "the probability" that a positive integer n is a sum of two squares is around $c_1 / \sqrt{\log n}$ for some constant c_1 . Because

$$D_n = n! \sum_{i=0}^n \frac{(-1)^i}{i!},$$

AUGUST 2023

we can apply Stirling's formula for n! and get that $\sqrt{\log D_n} = (1 + o(1))\sqrt{n \log n}$. Thus, one can expect that the expectation that D_n is a sum of two squares is $c_1/\sqrt{n \log n}$. However, this expectation is probably smaller because $n - 1|D_n$ and the $gcd(n - 1, D_{n-1} + D_{n-2})$ is not divisible by a prime $p \equiv 3 \pmod{4}$. So, if D_n is a sum of two squares, then n - 1 and $D_{n-1} + D_{n-2}$ should be almost sums of two squares in the sense that there is a small squarefree number d, divisible only by primes $q \equiv 3 \pmod{4}$, such that $D_{q-1} \equiv 1 \pmod{q}$ and that $n-1 = d(x_1^2 + x_2^2)$ and $D_{n-1} + D_{n-2} = d(y_1^2 + y_2^2)$. Assuming that these events are independent, one may expect the probability that D_n is a sum of two squares is equal to $c_2/(\sqrt{n}\log n)$ for some positive constant c_2 . As a consequence, we would get that the number of $n \in T$ up to xis

$$\sum_{n \le x} \frac{1}{\sqrt{n} \log n} \asymp (2 + o(1)) \frac{\sqrt{x}}{\log x}.$$

This means that T is likely to be infinite and contains $x^{1/2-o(1)}$ integers $n \leq x$ as x tends to infinity.

We preformed some additional computations that suggest the expectation that D_n behaves like a random integer of the same size is a bit too optimistic. More precisely, in the discussed context, one can also ask what is the distribution of $D_n \pmod{p}$ for a given prime number p. Let us recall that for any given odd number m, the sequence $(D_n \pmod{m})_{n \in \mathbb{N}}$ is periodic of period 2m [4, Proposition 1]. Due to the periodicity modulo p, it is enough to consider D_n for $n \leq 2p - 1$. It seems that the sequence $(D_n \pmod{p})$ tends to avoid many residue classes. Let $p \leq 93179 = p_{9000}$. We computed the number r(p) of elements of the set

$$R(p) := \{ D_n \pmod{p} : n \in \{0, \dots, 2p - 1\} \}.$$

In Figure 1, we can see the graphs of the functions $f(k) = p_k$ and $g(k) = r(p_k)$ for $k \leq 9000$. The figure strongly suggest that $p_k - r(p_k)$ tends to infinity with k.

FIGURE 1. Plot of the functions $f(k) = p_k$ and $g(k) = r(p_k)$ (left) and the function $h(k) = (p_k - r(p_k))/r(p_k)$ (right) for $k \leq 9000$.

One can also speculate whether the sequence of quotients $(r(p_k)/p_k)_{k\in\mathbb{N}}$ is convergent. Numeric calculations in the considered range confirmed that $r(p_k) > \frac{7}{11}p_k$. Moreover, it seems that for $k \geq 20$ we have $r(p_k) < \frac{23}{25}p_k$.

It seems that the set of values of the quotients $(p_k - r(p_k))/r(p_k)$ cluster around the horizontal line y = 0.135997237.

Now, let

 $Q := \{n \in \mathbb{N} : D_n \text{ is a sum of two squares and a fourth power}\}$

GENERALIZED DERANGEMENTS AS SUMS OF THREE SQUARES

It is clear that $T \subset Q$ and thus, $Q \subset \mathbb{N} \setminus S_0$. The problem whether $n \in Q$ is also a difficult one. Indeed, no characterization of integers that can be represented in the form $x^2 + y^2 + z^4$ without computing the representation somehow is known. On the other hand, we checked that for $n \in \mathbb{N} \setminus S_0$, $n \leq 50$, and $n \neq 5,37$, we have $n \in Q$. More precisely, for each $n \neq 5,37$, we were able to find a small value of z such that $D_n - z^4$ is a sum of two squares. The only representation of $D_5 = 44$ as a sum of three squares is $D_5 = 2^2 + 2^2 + 6^2$ and thus, D_5 is not a sum of two squares and a fourth power. We were unable to check whether D_{37} is a sum of two squares and a fourth power. We know that there is no $z \leq 10^6$ such that $D_{37} - z^4$ is a sum of two squares. Therefore, in the light of our computations, we formulate the following conjecture.

Conjecture 4.5. The set Q is infinite and has a positive natural density in the set $\mathbb{N} \setminus S_0$.

Acknowledgments

The author is grateful to an anonymous referee for several useful remarks, which led to improving the presentation.

References

- J.-M. Deshouillers and F. Luca, How often is n! a sum of three squares? In: The Legacy of Alladi Ramakrishnan in the Mathematical Sciences, pages 243–251. Springer New York, 2010.
- [2] A. Granville and Y. Zhu, Representing binomial coefficients as sums of squares, Amer. Math. Monthly, 97.6 (1990), 486–493.
- [3] L. Hajdu and A. Papp, On asymptotic density properties of the sequence n!, Acta Arith., 184.4 (2018), 317–340.
- [4] P. Miska, Arithmetic properties of the sequence of derangements, J. Number Theory, 163.6 (2016), 114–145.
- [5] P. R. de Montmort, Essai d'analyse sur les jeux de hasard, Paris, 1708. Second edition published 1713–1714. Third edition reprinted in New York: Chelsea, pp. 131–138, 1980.
- [6] E. Munarini, Callan-like identities, Online J. Anal. Comb., 14 (2019).
- [7] N. Robbins, Representing $\binom{2n}{n}$ as a sum of squares, The Fibonacci Quarterly, **25.1** (1987), 29–33.
- [8] N. J. A. Sloane, The on-line encyclopedia of integer sequences. Available at: http://www.research.att. com/njas/sequences/
- [9] S. Wagon, Editor's Corner: The Euclidean algorithm strikes again, Amer. Math. Monthly, 97.2 (1990), 125–129.
- [10] F.-Z. Zhao, The log-balancedness of generalized derangement numbers, Ramanujan Journal, 58 (2022), 121–129.

MSC2020: 11D09, 11D85

FACULTY OF MATHEMATICS AND COMPUTER SCIENCE, INSTITUTE OF MATHEMATICS, JAGIELLONIAN UNI-VERSITY, ŁOJASIEWICZA 6, 30 - 348 KRAKÓW, POLAND

Email address: maciej.ulas@uj.edu.pl