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ABSTRACT. We explore two infinite sums involving gibonacci polynomial squares.

1. INTRODUCTION

Ezxtended gibonacci polynomials z,(x) are defined by the recurrence z,,12(z) = a(x)zp4+1(x)+
b(x)zn(x), where z is an arbitrary integer variable; a(x), b(x), zo(z), and z;(z) are arbitrary
integer polynomials; and n > 0.

Suppose a(z) = x and b(z) = 1. When zo(x) = 0 and zi(x) = 1, z,(z) = fun(x), the
nth Fibonacci polynomial; and when zp(x) = 2 and z1(z) = z, z,(x) = l,(x), the nth Lucas
polynomial. They can also be defined by the Binet-like formulas. Clearly, f,,(1) = F,, the nth
Fibonacci number; and 1, (1) = Ly, the nth Lucas number [1, 2].

In the interest of brevity, clarity, and convenience, we omit the argument in the functional
notation, when there is no ambiguity; so z, will mean z,(z). In addition, we let g, = f, or

ln, A=+vV22+4,2a =2+ A, and 20 = x — A.
It follows by the Binet-like formulas that lim =0 and lim Gontr _ .

m—00 gm—i-'r m—00 gm

1.1. Fundamental Gibonacci Identities. Gibonacci polynomials satisfy the following prop-
erties [2, 3, 4]:

(1.1)

In+kIn—k — g?%

{_<_1>n+kf]?7 if gn = fn§

(-1)"TRA2f2 otherwise;

In+k+19n—k — In+kGn—k+1 (_1)n+kA2f2k7 otherwise:

_ {_<_1)n+kf2k; if gn = fTLa (12>

1
+k : _ .
Intk+19n—k + In+kGn—k+1 = E[Ql%“ — (D" alal, i g = fos

(1.3)
on i1 + (1) iy, otherwise.

These properties can be confirmed using the Binet-like formulas. Identity (1.2) is a gibonacci
polynomial extension of d’Ocagne identity [2].
It follows by identities (1.2) and (1.3) that

—ﬂ[ﬂ _ (—1)n+kxl 1f if gn = fu:
A2 2n+1 2k|J2k> In = Jn; (1.4)

2 2 2 2 _
In+k+19n—k — In+kIn—k+1 =
(*1)n+kA2 20241 + (*1)”+kxl2k}f2k, otherwise.

2. A TELESCOPING GIBONACCI SUM

Using recursion, we will now explore a telescoping gibonacci sum.

334 VOLUME 61, NUMBER 4



ADDITIONAL SUMS INVOLVING GIBONACCI POLYNOMIAL SQUARES REVISITED

Lemma 2.1. Let k and A are positive integers. Then

00 by A A
Yonk+2 P2t Dk+2 | Yoo A
> = S o, (2.1)
n=1 [92nk+1  92(n+1)k+1 92k+1
Proof. Using recursion [2], we will first confirm that
m >\ A
Z 192nk+2 o (n+1k+2] . 9ok+2 _ 92(m+1)k+2 (2 2)
== .
n—1 ank-‘rl g?(n—l—l)k—i—l 92k+1 92(m+1)k+1

To this end, we let A,, denote the left-hand side of this equation and B,, its right-hand
side. Then

By — Bpo1 = Am - Amfl'
With recursion, this implies

Ay — B, = An1—-Bh_1=--=A4; —
= 0.

This confirms the validity of equation (2.2).

. Im+1
Because lim 2%
m—0o0 gm

= a, equation (2.2) yields the desired result. O

3. GIBONACCI SUMS

The above lemma, coupled with identities (1.1), (1.2), and (1.4), plays a major role in our
explorations. In the interest of brevity, we now let

u o= 1, it g, = fu; B -1, if gn = fus
A%, otherwise; 1, otherwise;
1 .
= A2’ if gn = fu;
1, otherwise.
The next result invokes Lemma 2.1 twice with A = 1.
Theorem 3.1. Let k be a positive integer. Then
- v fok _ Gky2

2 2
o1 Yot k1 — M9k 92k+1
Proof. Suppose g, = fp. Using identities (1.1) and (1.2), Lemma 2.1 yields

Jor  Jamavyk+2fonkr1 — for 1)k fonk+2
f(22n+1)k+1 +F fen+)k+1fonkr1 ’
- — fox _ i [ank+2 _ famtree
— f(QQnH)kH + f2 Jonk+1  Jo(nt1)k+1
e
Jort1
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On the other hand, let g, = I,.
Lemma 2.1 that

It then follows by the two aforementioned identities and

A? foy, b nkrilonk+2 — o )kt2lonk 1
Z?Zn—i—l)k—l—l —AafE Lont)k+1lonk+1 ’
.- AZ foy, i [lznk+2 ke
= Bokrnar — A7 = Llnk+1r otk
o ogge
Tl

By combining the two cases, we get the

Using the identity FZ2,; + F2 = Fopt1 [2,

o0

Foy,

2 2
=0 Fonsinm T Fk

Likewise, with the identities L2 4
equation (3.1) yields

o0

5Fyy,

desired result.

p. 57, it follows from equation (3.1) that
Foy,

F2,, +F?

Foy,
Fopq

-B.

Fopqo

+ «
" Forna

~ Iopyo

+ «
Foq

— 5F? = Loyy1 [2, p. 59] and Lyyo + 5F, = 3Ly,

2 2
=0 L(2n+1)k+1 B 5Fk;

For clarity, we combine the two formula
oo

Fo _ .
F2 F2 _57
n=o Lentrrr T Lk
In particular, we then get
[e.e]
1 1 )
S
FR L, t1 2 2
- 1 _1 V5
= F42n+3 +1 6 6’
1 _ 1.
—~ FZ . +4 6 16’
. 1 . V5
F Snas T 9 42 427

_ OFy Lokya
I%—E)Fk2 Lojpt1
5Fp  Lokto
Lok+1 Lokt
_ Lopyo +5F
Lokt
= 2+44.
s into one line:
[e o]
oF:
2 T 2+ 8.
n=0 (2n+1)kz+1_5 k
- 1 1 V5
L5, —5 2 10’
=] 1 1 V5
135 5 6 30
S 11
L2, 20 16 80
& 1 1 W5
12,05 — 45 2 210

The next theorem employs Lemma 2.1 with A = 2.
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Theorem 3.2. Let k be a positive integer. Then

i 1 2laon ks — VIR ok Giys

x = (3.2)
=1 M [g(22n+1)k+1 — p P 93i1
Proof. Let g, = fn. With identities (1.1) and (1.4), Lemma 2.1 yields

2l@ns ks + @lok] for f22(n+1)k+2f22nk+1 - f22(n+1)k+1f22nk+2'
N Foonsryhs1 Finks 7
—[2ly@niiyrrs + 2loklfar | o [sznk;-i-Q B f22(n+1)k:+2]
n=1 Az[f(22n+1)k+1 + il - n=1 f22nk+1 f22(n+1)k:+1
_ Fohia — o2
foorr

On the other hand, let g, = [,,. It then follows by the same identities and Lemma 2.1 that

2 2 2 2
A22lyoni1ykes — Tlorl for BmaryesrBnkrz — Barnrrolank i
[l(2n+1 k+1 — A2 fk] l%(n—i—l)k—l—ll%nk—kl ’
2
i A2[2l2 @2n+1)k+3 — wlak] for B d [l%an l2(n+1)k+2]
= 2
n=1 [l(2n+l k+1 — A2 fR]? = | Bk l2(n+1)k+1
l§k+2 2
_= 12 — y
2k-+1
By merging the two cases, we get the desired result. O
This theorem yields
00 2 00 2
Z 7 (2L4nk+2k+3 + Lgk)ng _ F2k+2 . a2' Z 5 2L4nk+2k+3 - LQk)FQk _ L2k+2 —
n—1 5(F22nk+k+1 + Flg)Q F2k+1 n=1 2nk+k+1 - 5Fk) L2k+1
It then follows that
2L4p45+3 E+5\/5_ s 2Lap45 —3 5 @
= (F 1) 4 2 = (L3,42—5)° 1610
2Lgnyr+7 53 5VB — 2Lgni7—7 19 V5
ot (Ff, 15 +1)2 30 6 ot (L35 —b)? 242 30
- 2Liznsg +18 1,875 5V5 — 2Lign9—18 379 V5
= (FZ, 4 +4)? 2,704 16 ’ ot (L4 — 20)? 13,456 80’
i 2L16n+11 +47 6,455 N 5V5 i 2Lign —47 431 V5
ot F2, . 5+9)? 24,276 42 7 ot (LZ,.5—45)? 40,432  210°
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