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Abstract. By replacing the numerator in the nth term of the divergent p-series and the
reciprocals of primes series with the nth term of the Thue-Morse sequence, one can produce
a deletion of terms in the said series, which we show remains divergent. A connection is
also revealed, between the sequence (an)n≥1 defined as the largest power of two to divide an
integer n and the ordinary generating function for the Thue-Morse sequence. In addition, we
provide a new elementary proof that the sequence (an)n≥1 is square free in the context of
combinatorics on words.

1. Introduction

The harmonic series
∑∞

n=1
1
n is known to possess many intriguing properties. As an example,

given the divergence of the harmonic series, it is known that the partial sums SN =
∑N

n=1
1
n

grow unboundedly in such a way that SN is never an integer for N > 1. However, it is
when one is addressing the process of deleting terms that the truly counter-intuitive nature
of the harmonic series becomes apparent. Take for example the famous result of Euler, who
proved that if we delete all the reciprocals of the composite numbers, including unity, then the
resulting series,

∑∞
n=1

1
pn
, where pn is the nth prime number, remains divergent. Alternatively,

consider the sequence of perfect powers without repetition, in The On-Line Encyclopedia of
Integer Sequences (or OEIS) [8, A001597]. In particular, that sequence has terms of the form
mn with m, n ∈ N\{1}, where for example 16 = 24 = 42 would appear exactly once in the
sequence. Denote by P the infinite set whose elements consist only of the terms of the sequence
of perfect powers without repetition, that is P = {4, 8, 9, 16, 25, 27, 32, . . .}. Then it can be
shown [4, p. 66], that by deleting all terms of the harmonic series, not of the form 1

n−1 , where
n ∈ P, yields a convergent series and moreover, has a sum∑

n∈P

1

n− 1
= 1.

In this paper, we shall achieve a deletion of terms of the divergent p-series,
∑∞

n=1
1
np , where

0 < p ≤ 1, by replacing the numerator of the nth term with the nth term of the Thue-
Morse sequence [8, A010060]. Denoting the Thue-Morse sequence, that contains only 0s and
1s, and its corresponding ordinary generating function by (tn)n≥0 and T (x) =

∑∞
n=0 tnx

n,
respectively, our aim here will be to show that the resulting deleted p-series, namely

∑∞
n=1

tn
np

remains divergent for 0 < p ≤ 1. As will be seen, the divergence of this deleted p-series will
be arrived at by exploiting a well-known functional equation in (2.1) for T (x). In addition,
as a consequence of the prime number theorem, we shall also show that the deleted series of
reciprocals of primes, namely

∑∞
n=1

tn
pn
, also remains divergent. Continuing with the theme of

deleting the terms of a series, we will consider the convergent geometric series with all terms
deleted that are not of the form x2

n
for n = 0, 1, . . .. Using again the functional equation for
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T (x), one can relate the sum of the resulting deleted series to T (x) and a double infinite series
involving the terms of the Thue-Morse sequence via the infinite series identity as follows:

∞∑
r=0

x2
r
=

x

1− x
− x2T (x)−

∞∑
n=1

∞∑
i=0

ti(x
2n(i+2) + x2

n−1(2i+3) − x2
n(i+1)).

In addition, consider now the sequence (an)n≥1 defined as the largest power of two to divide
n, that is in the OEIS [8, A001511]. Again, as a consequence of the functional equation
for T (x), we shall uncover a connection between T (x) and the sequence (an)n≥1 via another
infinite series identity. In the final section of the paper, a new elementary proof of a result
of Guay-Paquet and Shallit [5] will be given. Their result states that the sequence (an)n≥1 is
square free, and that it does not contain two consecutive identical segments.

2. Deleted p-Series and Reciprocals of Primes Series

It is relatively simple matter to show that a binary sequence of length four or more contains
a square, that is, contains two consecutive identical segments. In view of this result, Thue
[9] and Morse [7] independently proposed the construction of an infinite binary sequence that
was free from cubes. That is, it does not contain three consecutive identical segments. The
initial fragment of the resulting cube free sequence, known today as the Thue-Morse sequence,
is given as follows:

(tn) = (0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, . . .).

The Thue-Morse sequence has many nontrivial properties that have found numerous applica-
tions in mathematics. There are also many equivalent ways to define the Thue-Morse sequence,
however we state the most commonly employed as follows.

Definition 2.1. If tn is the nth term in the Thue-Morse sequence, then tn is equal to the
number of ones in the base 2 expansion of n (mod 2).

The following result has appeared in numerous papers; interested readers can consult [1] for
a proof of the functional equation in (2.1) that the ordinary generating function T (x) satisfies.

Lemma 2.2. Suppose T (x) denotes the ordinary generating function of the Thue-Morse
sequence (tn)n≥0, that is, T (x) =

∑∞
n=0 tnx

n defined for |x| < 1. Then, T (x) satisfies the
functional equation as follows:

T (x)− (1− x)T (x2) =
x

1− x2
. (2.1)

By applying the functional equation in (2.1) for T (x), we can now establish the divergence
of the family of deleted p-series obtained using the Thue-Morse sequence. We should note that
the related family of the Thue-Morse Dirichlet series, defined as

∑∞
n=1

εn−1

ns , where εn = (−1)tn

and s a fixed complex number, has also been studied [2]. Moreover the convergence of such
a series for s = 1 has recently been established [3]. One can interpret the following result as
stating that for a fixed 0 < p ≤ 1, the p-series of positive integers having an exclusively odd
Hamming weight, when expressed in base 2, is divergent.

Theorem 2.3. For a fixed 0 < p ≤ 1, the deleted p-series using the Thue-Morse sequence,
that is, the series of the form

∞∑
n=1

tn
np

,

remains divergent.

340 VOLUME 61, NUMBER 4



DELETED P -SERIES

Proof. For a fixed 0 < p ≤ 1, we have tn
n ≤ tn

np for all n = 1, 2, 3, . . .. Thus, it suffices to

establish the divergence of the series
∑∞

n=1
tn
n . Recalling that the radius of convergence of

T (x) is one, consider for a fixed 0 < r < 1, the subset [0, r] of the interval of convergence of
T (x). Clearly (1− x)T (x2) > 0 for all x ∈ [0, r], and so from the functional equation in (2.1),
we deduce that T (x) > x

1−x2 for all x ∈ [0, r]. Thus, as t0 = 0, observe, after an interchange
of integration and summation, that

∞∑
n=1

tn
rn+1

n+ 1
=

∫ r

0
T (x) dx >

∫ r

0

x

1− x2
dx = ln

(
1√

1− r2

)
.

However, because tn
n ≥ tn

rn+1

n+1 , one can conclude, for any fixed 0 < r < 1, that

∞∑
n=1

tn
n

> ln

(
1√

1− r2

)
,

from which the result now readily follows upon taking the limit as r → 1−. □

If we define the complement of the Thue-Morse sequence as tn = 1 − tn for n ≥ 1, it is
straightforward to show that the corresponding generating function T (x) =

∑∞
n=1 tnx

n satisfies
the functional equation

T (x)− (1− x)T (x2) =
x3

1− x2
.

Thus, it is immediate, from the proof of Theorem 2.3, that for a fixed 0 < p ≤ 1, the p-series
of positive integers, having an exclusively even Hamming weight when expressed in base 2,
is also divergent. An analogous result can now be shown to hold for the divergent series of
reciprocals of primes by an application of the prime number theorem as follows.

Theorem 2.4. The deleted series of the reciprocals of primes using the Thue-Morse sequence,
that is, the series of the form

∞∑
n=1

tn
pn

,

remains divergent.

Proof. We begin by noting that the interval [1,∞) on which the set of positive integers n ≥ 1
are contained can be partitioned as follows:

[1,∞) =
∞⋃
i=0

[2i, 2i+1).

If for a positive integer m ≥ 1, we denote the 2m+1 − 1 partial sums of the deleted series of
reciprocals of primes by S2m+1−1, then

S2m+1−1 =
m∑
i=0

∑
n∈[2i,2i+1)

tn
pn

=
1

2
+

m∑
i=1

∑
n∈[2i,2i+1)

tn
pn

. (2.2)

Now for i ≥ 1, every integer n ∈ [2i, 2i+1) has a base 2 representation consisting of a single
1, concatenated on the right with a finite sequence of 0s and 1s of length i. Consequently, a
number n ∈ [2i, 2i+1) will have tn = 1 if and only if the said finite sequence of length i has an
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even number of 1s. Thus, the number of n ∈ [2i, 2i+1) having tn = 1 must be the finite sum of

even indexed binomial coefficients, i.e.,
∑

j≥0

(
i
2j

)
= 2i−1, and so,

∑
n∈[2i,2i+1)

tn
pn

>
2i−1

p2i+1

.

As a result, the partial sum in (2.2) for m ≥ 1 must satisfy the inequality

S2m+1−1 >
1

2
+

m∑
i=1

2i−1

p2i+1

. (2.3)

Now via the prime number theorem, it is well known [6] that the nth prime pn ∼ n ln(n) as
n → ∞, and so,

2i−1

p2i+1

∼ 2i−1

2i+1 ln(2i+1)
=

1

(i+ 1) ln(16)
,

as i → ∞. Clearly as
∑∞

i=1
1

(i+1) ln(16) is a divergent series, we deduce, from the limit form

of the comparison test for series, that
∑∞

i=1
2i−1

p2i+1
is also a divergent series of positive terms.

Thus from (2.3), S2m+1−1 → ∞ as m → ∞. □

As the sum of the even indexed binomial coefficients
∑

j≥0

(
i

2j+1

)
= 2i−1, it is immedi-

ate, from the proof of Theorem 2.4, that the deleted series
∑∞

n=1
tn
pn

must also be divergent,

where tn = 1 − tn is again the complement of the Thue-Morse sequence. We now derive an
infinite series identity, relating the deleted geometric series

∑∞
r=0 x

2r to the ordinary generating
function T (x).

Theorem 2.5. If T (x) is the ordinary generating function for the Thue-Morse sequence
(tn)n≥0, then for |x| < 1,

∞∑
r=0

x2
r
=

x

1− x
− x2T (x)−

∞∑
n=1

∞∑
i=0

ti(x
2n(i+2) + x2

n−1(2i+3) − x2
n(i+1)). (2.4)

Proof. We first note for |x| < 1,
∑∞

n=1 x
2n+1 = x3

1−x2 . By definition, the infinite series on the

left side of (2.4) is obtained by deleting all terms of the form x(2n+1)2k−1
, where n = 1, 2, . . .

for each fixed k = 1, 2, . . . from the infinite series

x+ x2 + x3 + x4 + · · · = x

1− x
.

Consequently, we deduce that

∞∑
r=0

x2
r
=

x

1− x
−

∞∑
k=1

x3·2
k−1

1− x2k
,

however, by replacing x by x2
k−1

in the functional equation for T (x) in (2.1), we also find that

x2
k
(T (x2

k−1
)− (1− x2

k−1
)T (x2

k
)) =

x3·2
k−1

1− x2k
.
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Thus,

∞∑
r=0

x2
r
=

x

1− x
−

∞∑
k=1

x2
k
T (x2

k−1
)−

∞∑
k=1

x2
k
(1− x2

k−1
)T (x2

k
)

=
x

1− x
− x2T (x)−

∞∑
k=2

x2
k
T (x2

k−1
)−

∞∑
k=1

x2
k
(1− x2

k−1
)T (x2

k
)

=
x

1− x
− x2T (x)−

∞∑
k=1

x2
k+1

T (x2
k
)−

∞∑
k=1

x2
k
(1− x2

k−1
)T (x2

k
)

=
x

1− x
− x2T (x)−

∞∑
k=1

(x2
k+1

+ x3·2
k−1 − x2

k
)T (x2

k
). (2.5)

The result now follows upon substituting the series T (x2
n
) =

∑∞
i=0 tix

2ni into the right side
of (2.5). □

By again applying the functional equation in (2.1), we can demonstrate a link between T (x)
and the sequence (an)n≥1 defined as the largest power of two to divide n [8, A001511].

Theorem 2.6. Let (an)n≥1 denote the sequence defined as largest power of two to divide
n. Then, the ordinary generating function for the Thue-Morse sequence (tn)n≥0 satisfies the
infinite series identity as follows:

T (x) =

∞∑
n=1

2an−1∑
i=0

(−1)tixi+n.

Proof. Let P0(x) = 1 and for integers n = 1, 2 . . ., define the partial product

Pn(x) =
∏n

i=1(1 − x2
i−1

). After repeated application of the functional equation in (2.1), one
finds that

T (x) =

N∑
n=0

Pn(x)x
2n

1− x2n+1 + PN+1(x)T (x
2N+1

)

for all integers N ≥ 0. Now for each fixed integer N ≥ 0, observe that

0 ≤ |T (x2N+1
)| ≤

∞∑
n=1

|x|n2N+1
= |x|2N+1

∞∑
n=1

|x|(n−1)2N+1

≤ |x|2N+1 1

1− |x|
,

noting here the last inequality follows because for each fixed integer N ≥ 0, the set

{(n − 1)2N+1 : n ∈ N} ⊆ N ∪ {0} and |x| < 1. Thus, T (x2
N+1

) = o(1) as N → ∞, and as
0 < PN+1(x) < 2 for |x| < 1, one concludes that

T (x) =

∞∑
m=0

Pm(x)x2
m

1− x2m+1 .
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Expanding 1

(1−x2m+1 )
as a geometric series, with common ratio x2

m+1
, we further see that

T (x) =
∞∑

m=0

∞∑
k=0

Pm(x)x2
m
xk2

m+1

=
∞∑

m=0

∞∑
k=0

Pm(x)x2
m(2k+1). (2.6)

However, as the set {2m(2k+1) : m, k ∈ N∪{0}} = N, the double infinite series in (2.6) must

be equal to
∑∞

n=1 Panx
n. The result now follows, after substituting Pan(x) =

∑2an−1
i=0 (−1)Tixi

into the previous infinite series. □

3. A New Proof the OEIS Sequence A001511 Is Square Free

As stated earlier, the Thue-Morse sequence was constructed to show the existence of an
infinite binary sequence that was cube free; that is, it does not contain three consecutive
identical blocks. The so-called ruler sequence (an)n≥1 defined as the largest power of two to
divide an integer n ≥ 1 [8, A001511] was shown to be similarly square free [5]. This was
achieved by first concatenating all terms of the sequence (an)n≥1 to construct the following
infinite word

w2 = 01020103 · · ·
over the alphabet of natural numbers N. By applying a no-backtracking algorithm, the infinite
word w2 was shown to be square free, thus, establishing that the sequence (an)n≥1 could
never exhibit two consecutive segments that are identical. In this section, we shall provide
an elementary number-theoretic proof that employs nothing more than the partitioning of
the odd integers into residue classes modulo a fixed even integer to establish the square free
property of the sequence (an)n≥1.

Theorem 3.1. The OEIS sequence A001511 is square free, in the context of combinatorics
on words.

Proof. We begin with a simple observation, namely that for a segment of the sequence (an)n≥1

to be repeated by a consecutive segment, the initial left segment must necessarily have an even
number of terms. In what follows, let N and E denote the number of terms and the smallest
even integer, respectively within an arbitrary segment of the sequence (an)n≥1. In addition,
let E = 2c1q1 and N = 2c2q2, where c1 and c2 are positive integers, and q1 and q2 are positive
odd integers. To show the sequence (an)n≥1 is square free, we shall examine the largest power
of two to divide an even number e in an arbitrary segment of (an)n≥1 having N terms, with
the largest power of two to divide its translation e+N , in the following three cases:

Case 1 (c1 = c2). In this instance aE = c1, but because E +N = 2c1(q1 + q2) and q1 + q2
is an even integer, we have that aE+N > aE . Thus, aE ̸= aE+N .

Case 2 (c1 > c2). Again aE = c1, but because E+N = 2c2(2c1−c2q1+q2) and (2c1−c2q1+q2)
is an odd integer, we have aE+N = c2 and so, aE > aE+N . Thus, aE ̸= aE+N .

Case 3 (c1 < c2). Recall that E = 2c1q1 is the smallest even integer within an arbitrary
segment of the sequence (an)n≥1, and so, N = 2c2q2 ≥ 4. Note that one can always find
a positive odd integer j such that 2c1j ≤ N − 2 because, upon simplifying the previous
inequality, we find j ≤ 2c2−c1q2 − 1

2c1−1 , and because c2 ≥ c1 + 1 with q2 ≥ 1, one has that

2c2−c1q2 − 1
2c1−1 ≥ 2 − 1 = 1. Thus, if we let Ej = E + 2c1j, then Ej will be an even integer

within the arbitrary left segment of the sequence (an)n≥1 having N terms. Furthermore,

344 VOLUME 61, NUMBER 4



DELETED P -SERIES

because j ≤ 2c2−c1q2 − 1
2c1−1 with 1 ≤ c1 < c2, observe that the largest odd integer j is

2c2−c1q2 − 1.
We now consider the integer pairs (Ej , Ej +N) for j = 1, 3, . . . , 2c2−c1q2− 1, and the values

of aEj and aEj+N . Observe that

Ej = 2c1(q1 + j), (3.1)

Ej +N = 2c1(q1 + j + 2c2−c1q2), (3.2)

with c2 − c1 ≥ 1, and so, q1 + j and q1 + j +2c2−c1q2 are positive even integers. Consider now
a partition of the odd positive integers q1 into the following residue classes modulo 2c2−c1q2,
that is q1 ≡ r (mod 2c2−c1q2) for one and only one r = 1, 3, 5, . . . , 2c2−c1q2 − 1. If
q1 ≡ r (mod 2c2−c1q2), then q1 = r+(i−1)2c2−c1q2 for some i ∈ N, and so, for j = 2c2−c1q2−r,
observe from (3.1) and (3.2) that

Ej = 2c1((r + (i− 1)2c2−c1q2) + (2c2−c1q2 − r)) = i2c2q2,

Ej +N = 2c1((r + (i− 1)2c2−c1q2) + (2c2−c1q2 − r) + 2c2−c1q2) = (i+ 1)2c2q2.

Because i and i+ 1 are of opposite parity, we can conclude aEj ̸= aEj+N . □
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