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Abstract. Using a classical theorem of Serret and a well-known property of Dedekind sums,
we show that a Dedekind sum vanishes if and only if the quotient of its arguments possesses
a palindromic continued fraction expansion of a particular form.

1. Introduction

The Dedekind sum s(p, q) for integral p ≥ 0, q > 0 may be defined as

s(p, q) =
∑

µmod q

((
µ

q

))((
µp

q

))
, (1.1)

where we have set

((x)) =

{
x− ⌊x⌋ − 1

2 , if x /∈ Z;
0, if x ∈ Z;

(1.2)

with ⌊x⌋ denoting the greatest integer less than or equal to x. A number of results related
to special values of Dedekind sums are known, see for instance Apostol’s textbook [1, pg. 73].
Interestingly, many explicit evaluations of Dedekind sums arise in connection with recurrence
sequences [3, 4, 6, 8]. As a particular example, the following theorem appears as an exercise
in Apostol [1, pg. 72].

Theorem 1. Let Fn be the nth Fibonacci number. Then

s(F2n, F2n+1) = 0. (1.3)

The above identity was generalized by two independent sets of authors in the same issue of
the Fibonacci Quarterly [6, 8]. To state their result, we must first define the Lucas sequence
(Un(a, b))n≥0, which satisfies the recurrence

U0(a, b) = 0, U1(a, b) = 1, Un+1(a, b) = aUn(a, b)− bUn−1(a, b) (n ≥ 1), (1.4)

where ab ̸= 0 and a2 − 4b > 0. In particular, when a = 1 and b = −1, Un(1,−1) = Fn are the
Fibonacci numbers. The generalization of Theorem 1 is then given by

Theorem 2 (Zhao and Wang, Robbins). Let Un := Un(a,−1). Then

s(U2n, U2n+1) = 0. (1.5)

The purpose of this note is to provide a characterization of those pairs of positive coprime
integers (p, q) such that s(p, q) = 0. This characterization, given in terms of the continued
fraction expansion of p/q, allows us to easily deduce Theorems 1 and 2 as special cases.
Specifically, our main result is the following theorem, whose terminology shall be made clear
in the next section.
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Theorem 3. Let p, q be positive coprime integers. Then

s(p, q) = 0 (1.6)

if and only if p/q possesses a continued fraction expansion whose fractional part is palindromic
of even length.

2. Definitions

For our purposes, a continued fraction ⟨a0, a1, . . . , an⟩ is a fraction of the form

⟨a0, a1, . . . , an⟩ = a0 +
1

a1 +
1

. . . +
1

an

, (2.1)

where the sequence of partial quotients (ak)
n
k=0 are all positive integers except for a0, which

may be 0. The continued fraction expansion of a positive rational number p/q is unique up to
parity. That is, if

p

q
= ⟨a0, a1, . . . , an⟩, (2.2)

then p/q also possesses the expansion

p

q
=

{
⟨a0, a1, . . . , an−1 + 1⟩, if an = 1;

⟨a0, a1, . . . , an − 1, 1⟩, if an > 1.
(2.3)

Consequently, a positive rational number possesses two continued fraction expansions: one
with an even number of partial quotients and the other with an odd number.

A string of N partial quotients is said to be palindromic of length N if it is identical whether
read left-to-right or right-to-left, that is

(ak, ak+1, . . . , ak+N−1) = (ak+N−1, ak+N−2, . . . , ak). (2.4)

If the string (a0, a1, . . . , an) is palindromic, then the continued fraction expansion
⟨a0, a1, . . . , an⟩ is said to be palindromic. Lastly, we say that the fractional part of a con-
tinued fraction expansion ⟨a0, a1, . . . , an⟩ is the string of partial quotients (a1, a2, . . . , an).

3. Proof of Theorem 3

Our proof of Theorem 3 follows almost immediately from the next two theorems.

Theorem 4. The Dedekind sum s(p, q) = 0 if and only if p2 + 1 ≡ 0 (mod q).

Theorem 5 (Serret). Let x, y be coprime integers such that 1 < y < x. Then, x/y possesses a
palindromic continued fraction expansion of even (respectively odd) length if and only if y2+1
(respectively y2 − 1) is divisible by x.

Theorem 4 is a well-known property of Dedekind sums and can be found in [1, pg. 65].
Theorem 5 is an old result of Serret [7], and can be found in Perron’s treatise on continued
fractions [5, p. 33], written in German. A recent proof of Serret’s theorem in English is given
in [2].
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Proof of Theorem 3. Let us first note that, without loss of generality, we may assume that
1 < p < q. Indeed, if p > q, then we may instead consider the pair (p′, q), where p′ is taken
to be the least positive residue of p mod q. This follows because if p ≡ p′ (mod q), then
s(p, q) = s(p′, q), which can be established directly from definition (1.1). Moreover, if p′/q
possesses a continued fraction expansion whose fractional part is palindromic of even length,
then so does p/q because p/q = k + p′/q for some integer k > 0.

To begin our proof, let us assume that s(p, q) = 0 for positive, coprime integers p, q with
1 < p < q. By Theorem 4, we know that p2 + 1 ≡ 0 (mod q). As a result, Serret’s theorem
guarantees that the fraction q/p possesses a palindromic continued fraction expansion of even
length. That is,

q

p
= ⟨a0, . . . , an, an, . . . , a0⟩. (3.1)

By the construction of continued fractions, we find that the reciprocal is given by
p

q
= ⟨0, a0, . . . , an, an, . . . , a0⟩. (3.2)

Therefore, p/q does indeed possess a continued fraction expansion whose fractional part is
palindromic of even length. To prove the opposite direction, let us assume that p/q possesses a
continued fraction expansion whose fractional part is palindromic of even length. Once again,
using our assumption that 1 < p < q, we may write

p

q
= ⟨0, a0, . . . , an, an, . . . , a0⟩, (3.3)

and therefore,
q

p
= ⟨a0, . . . , an, an, . . . , a0⟩ (3.4)

is completely palindromic of even length. Thus, by Theorem 5, we know that
p2 + 1 ≡ 0 (mod q), which in turn implies that s(p, q) = 0 by Theorem 4. This completes
our proof of Theorem 3. □

4. Closing Remarks

Because the Lucas sequences Un := Un(a,−1) are defined by the recurrence

Un+1 = aUn + Un−1, (4.1)

the ratio of consecutive terms satisfies the identity

Un

Un+1
=

1

a+
Un−1

Un

. (4.2)

Noting that U0/U1 = 0 leads to the continued fraction expansion

Un

Un+1
= ⟨0,

n︷ ︸︸ ︷
a, . . . , a⟩. (4.3)

Thus, when n is even, the expansion has a palindromic fractional part of even length, which
shows that Theorem 2 is indeed a special case of Theorem 3. A case that does not fall under
Theorem 2, but is covered under Theorem 3, is the Fibonacci quotient F2n+1/F2n+3. It can
be shown to possess, for n ≥ 1, the continued fraction expansion

F2n+1

F2n+3
= ⟨0,

2n︷ ︸︸ ︷
2, 1, . . . , 1, 2⟩. (4.4)
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Moreover, the reciprocal can be written as

F2n+3

F2n+1
= ⟨2,

2n−1︷ ︸︸ ︷
1, . . . , 1, 2⟩ = ⟨2,

2n︷ ︸︸ ︷
1, . . . , 1, 1, 1⟩. (4.5)

Therefore, F2n+1/F2n+3 and F2n+3/F2n+1 possess continued fraction expansions with palin-
dromic fractional parts of even length. Indeed, it can be shown that {F2n+1, F2n+3} are the
only such pairs of positive integers {p, q} such that p/q and q/p both possess such expansions.
By Theorem 3, the pairs {F2n+1, F2n+3} are then the only such positive integers {p, q} such
that s(p, q) = 0 and s(q, p) = 0. Because s(p, q) = s(q, p) implies s(p, q) = 0 [4, Thm. 2], one
can give a new proof of a result of Meyer [4, Thm. 4], which states that s(p, q) = s(q, p) if and
only if p = F2n+1 and q = F2n+3.
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