A REMARK ON DEDEKIND SUMS AND PALINDROMIC CONTINUED FRACTIONS

CHANCE SANFORD

ABSTRACT. Using a classical theorem of Serret and a well-known property of Dedekind sums, we show that a Dedekind sum vanishes if and only if the quotient of its arguments possesses a palindromic continued fraction expansion of a particular form.

1. INTRODUCTION

The Dedekind sum s(p,q) for integral $p \ge 0$, q > 0 may be defined as

$$s(p,q) = \sum_{\mu \bmod q} \left(\left(\frac{\mu}{q} \right) \right) \left(\left(\frac{\mu p}{q} \right) \right), \qquad (1.1)$$

where we have set

$$((x)) = \begin{cases} x - \lfloor x \rfloor - \frac{1}{2}, & \text{if } x \notin \mathbb{Z}; \\ 0, & \text{if } x \in \mathbb{Z}; \end{cases}$$
(1.2)

with $\lfloor x \rfloor$ denoting the greatest integer less than or equal to x. A number of results related to special values of Dedekind sums are known, see for instance Apostol's textbook [1, pg. 73]. Interestingly, many explicit evaluations of Dedekind sums arise in connection with recurrence sequences [3, 4, 6, 8]. As a particular example, the following theorem appears as an exercise in Apostol [1, pg. 72].

Theorem 1. Let F_n be the nth Fibonacci number. Then

$$s(F_{2n}, F_{2n+1}) = 0. (1.3)$$

The above identity was generalized by two independent sets of authors in the same issue of the *Fibonacci Quarterly* [6, 8]. To state their result, we must first define the Lucas sequence $(U_n(a, b))_{n>0}$, which satisfies the recurrence

$$U_0(a,b) = 0, \quad U_1(a,b) = 1, \quad U_{n+1}(a,b) = aU_n(a,b) - bU_{n-1}(a,b) \quad (n \ge 1),$$
 (1.4)

where $ab \neq 0$ and $a^2 - 4b > 0$. In particular, when a = 1 and b = -1, $U_n(1, -1) = F_n$ are the Fibonacci numbers. The generalization of Theorem 1 is then given by

Theorem 2 (Zhao and Wang, Robbins). Let $U_n := U_n(a, -1)$. Then

$$s(U_{2n}, U_{2n+1}) = 0. (1.5)$$

The purpose of this note is to provide a characterization of those pairs of positive coprime integers (p,q) such that s(p,q) = 0. This characterization, given in terms of the continued fraction expansion of p/q, allows us to easily deduce Theorems 1 and 2 as special cases. Specifically, our main result is the following theorem, whose terminology shall be made clear in the next section.

NOVEMBER 2023

THE FIBONACCI QUARTERLY

Theorem 3. Let p, q be positive coprime integers. Then

$$s(p,q) = 0 \tag{1.6}$$

if and only if p/q possesses a continued fraction expansion whose fractional part is palindromic of even length.

2. Definitions

For our purposes, a continued fraction $\langle a_0, a_1, \ldots, a_n \rangle$ is a fraction of the form

$$\langle a_0, a_1, \dots, a_n \rangle = a_0 + \frac{1}{a_1 + \frac{1}{\ddots + \frac{1}{a_n}}},$$
 (2.1)

where the sequence of partial quotients $(a_k)_{k=0}^n$ are all positive integers except for a_0 , which may be 0. The continued fraction expansion of a positive rational number p/q is unique up to parity. That is, if

$$\frac{p}{q} = \langle a_0, a_1, \dots, a_n \rangle, \tag{2.2}$$

then p/q also possesses the expansion

$$\frac{p}{q} = \begin{cases} \langle a_0, a_1, \dots, a_{n-1} + 1 \rangle, & \text{if } a_n = 1; \\ \langle a_0, a_1, \dots, a_n - 1, 1 \rangle, & \text{if } a_n > 1. \end{cases}$$
(2.3)

Consequently, a positive rational number possesses two continued fraction expansions: one with an even number of partial quotients and the other with an odd number.

A string of N partial quotients is said to be *palindromic* of length N if it is identical whether read left-to-right or right-to-left, that is

$$(a_k, a_{k+1}, \dots, a_{k+N-1}) = (a_{k+N-1}, a_{k+N-2}, \dots, a_k).$$
(2.4)

If the string (a_0, a_1, \ldots, a_n) is palindromic, then the continued fraction expansion $\langle a_0, a_1, \ldots, a_n \rangle$ is said to be palindromic. Lastly, we say that the *fractional part* of a continued fraction expansion $\langle a_0, a_1, \ldots, a_n \rangle$ is the string of partial quotients (a_1, a_2, \ldots, a_n) .

3. Proof of Theorem 3

Our proof of Theorem 3 follows almost immediately from the next two theorems.

Theorem 4. The Dedekind sum s(p,q) = 0 if and only if $p^2 + 1 \equiv 0 \pmod{q}$.

Theorem 5 (Serret). Let x, y be coprime integers such that 1 < y < x. Then, x/y possesses a palindromic continued fraction expansion of even (respectively odd) length if and only if $y^2 + 1$ (respectively $y^2 - 1$) is divisible by x.

Theorem 4 is a well-known property of Dedekind sums and can be found in [1, pg. 65]. Theorem 5 is an old result of Serret [7], and can be found in Perron's treatise on continued fractions [5, p. 33], written in German. A recent proof of Serret's theorem in English is given in [2].

Proof of Theorem 3. Let us first note that, without loss of generality, we may assume that 1 . Indeed, if <math>p > q, then we may instead consider the pair (p',q), where p' is taken to be the least positive residue of $p \mod q$. This follows because if $p \equiv p' \pmod{q}$, then s(p,q) = s(p',q), which can be established directly from definition (1.1). Moreover, if p'/q possesses a continued fraction expansion whose fractional part is palindromic of even length, then so does p/q because p/q = k + p'/q for some integer k > 0.

To begin our proof, let us assume that s(p,q) = 0 for positive, coprime integers p, q with $1 . By Theorem 4, we know that <math>p^2 + 1 \equiv 0 \pmod{q}$. As a result, Serret's theorem guarantees that the fraction q/p possesses a palindromic continued fraction expansion of even length. That is,

$$\frac{q}{p} = \langle a_0, \dots, a_n, a_n, \dots, a_0 \rangle.$$
(3.1)

By the construction of continued fractions, we find that the reciprocal is given by

$$\frac{p}{q} = \langle 0, a_0, \dots, a_n, a_n, \dots, a_0 \rangle.$$
(3.2)

Therefore, p/q does indeed possess a continued fraction expansion whose fractional part is palindromic of even length. To prove the opposite direction, let us assume that p/q possesses a continued fraction expansion whose fractional part is palindromic of even length. Once again, using our assumption that 1 , we may write

$$\frac{p}{q} = \langle 0, a_0, \dots, a_n, a_n, \dots, a_0 \rangle, \tag{3.3}$$

and therefore,

$$\frac{q}{p} = \langle a_0, \dots, a_n, a_n, \dots, a_0 \rangle \tag{3.4}$$

is completely palindromic of even length. Thus, by Theorem 5, we know that $p^2 + 1 \equiv 0 \pmod{q}$, which in turn implies that s(p,q) = 0 by Theorem 4. This completes our proof of Theorem 3.

4. CLOSING REMARKS

Because the Lucas sequences $U_n := U_n(a, -1)$ are defined by the recurrence

$$U_{n+1} = aU_n + U_{n-1}, (4.1)$$

the ratio of consecutive terms satisfies the identity

$$\frac{U_n}{U_{n+1}} = \frac{1}{a + \frac{U_{n-1}}{U_n}}.$$
(4.2)

Noting that $U_0/U_1 = 0$ leads to the continued fraction expansion

$$\frac{U_n}{U_{n+1}} = \langle 0, \widehat{a, \dots, a} \rangle. \tag{4.3}$$

Thus, when n is even, the expansion has a palindromic fractional part of even length, which shows that Theorem 2 is indeed a special case of Theorem 3. A case that does not fall under Theorem 2, but is covered under Theorem 3, is the Fibonacci quotient F_{2n+1}/F_{2n+3} . It can be shown to possess, for $n \ge 1$, the continued fraction expansion

$$\frac{F_{2n+1}}{F_{2n+3}} = \langle 0, \overline{2, 1, \dots, 1, 2} \rangle.$$
(4.4)

NOVEMBER 2023

359

THE FIBONACCI QUARTERLY

Moreover, the reciprocal can be written as

$$\frac{F_{2n+3}}{F_{2n+1}} = \langle 2, \overbrace{1, \dots, 1, 2}^{2n-1} \rangle = \langle 2, \overbrace{1, \dots, 1, 1, 1}^{2n} \rangle.$$
(4.5)

Therefore, F_{2n+1}/F_{2n+3} and F_{2n+3}/F_{2n+1} possess continued fraction expansions with palindromic fractional parts of even length. Indeed, it can be shown that $\{F_{2n+1}, F_{2n+3}\}$ are the only such pairs of positive integers $\{p, q\}$ such that p/q and q/p both possess such expansions. By Theorem 3, the pairs $\{F_{2n+1}, F_{2n+3}\}$ are then the only such positive integers $\{p, q\}$ such that s(p,q) = 0 and s(q,p) = 0. Because s(p,q) = s(q,p) implies s(p,q) = 0 [4, Thm. 2], one can give a new proof of a result of Meyer [4, Thm. 4], which states that s(p,q) = s(q,p) if and only if $p = F_{2n+1}$ and $q = F_{2n+3}$.

5. Acknowledgements

The author thanks the anonymous referee, whose suggestions improved the presentation of this note.

References

- [1] T. M. Apostol, Modular Functions and Dirichlet Series in Number Theory, Springer-Verlag, 1990.
- [2] M. Derevyagin, A. Minenkova, and N. Sun, A theorem of Joseph-Alfred Serret and its relation to perfect quantum state transfer, Expositiones Mathematicae, 39.3 (2021), 480–499.
- K. Dilcher and J. L. Meyer, Dedekind sums and some generalized Fibonacci and Lucas sequences, The Fibonacci Quarterly, 48.3 (2010), 260–264.
- [4] J. L. Meyer, Symmetric arguments in the Dedekind sum, The Fibonacci Quarterly, 43.2 (2005), 122–123.
- [5] O. Perron, Die Lehre von den Kettenbrüchen, Teubner, 1923.
- [6] N. Robbins, On Dedekind sums and linear recurrences of order two, The Fibonacci Quarterly, 42.3 (2004), 274–276.
- [7] J. A. Serret, Sur un théorme relatif aux nombres entiers, Journal de Mathematiques, 1.3 (1848), 12-14.
- [8] F.-Z. Zhao and T. Wang, Some results on generalized Fibonacci and Lucas numbers and Dedekind sums, The Fibonacci Quarterly, 42.3 (2004), 250–255.

MSC2020: 11F20, 11A55, 11B39

Email address: sanfordchance@gmail.com