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Abstract. Euclid is a Nim-type combinatorial game in which the game moves can be thought
of as traversing branches of the Calkin–Wilf tree. In this paper, we show that the P-positions
of Euclid exhibit a self-similar structure within the tree, and we relate these P-positions to the
Fibonacci numbers. Additionally, we identify the game positions that require the maximum
number of moves in optimal play, locate the vertices corresponding to these moves in the
Calkin–Wilf tree, and relate them to the integer pairs that require the maximum number of
steps in the Euclidean algorithm.

1. Introduction

Cole and Davie [5] introduced the game Euclid, an alternating two-player token-removal
game like Nim except that there are exactly two piles of tokens. When faced with positive
integer piles of m and n tokens (represented by (m,n) and called a position), a player’s
turn consists of removing a positive multiple of the smaller number from the larger pile.
When initially introduced, a valid move required leaving a nonnegative number of tokens.
A subsequent version of the game, proposed by Grossman [6] in the problems section of
Mathematics Magazine and analyzed here, requires a positive number of tokens to remain.
Specifically, if m > n, then the player can remove any positive integer multiple k of n from
m such that m − nk > 0, resulting in the position (m − nk, n). A player loses when there is
no valid move for the player to make. Euclid gets its name because subtracting the maximum
number of the smaller value from the larger is a repeated step of the Euclidean algorithm,
which is used to find the greatest common divisor of the two integers. A consequence of the
Euclidean algorithm is that the game ends with the two piles each having gcd(m,n) tokens.

In [5], Cole and Davie solve Euclid by determining which positions (m,n) are winning for
the next player to move (the N -positions, in combinatorial game theory parlance) and which
are winning for the previous player who just moved (the P-positions). Cole and Davie’s
P-positions are the same as those from Grossman’s variation of Euclid, which was solved
by Straffin [13]. Deciding whether (m,n) is an N - or P-position is achieved by comparing
m/n to the golden ratio. By thinking of positions (m,n) in the plane, Lengyel [9] provided a
proof of which (m,n) are N - and P-positions and showed that the P-positions form a cone.
Hofmann, Schuster, and Steuding [7] showed how Euclid game play may be viewed as moves
along branches in the Calkin–Wilf tree [4].

In this paper, we build on these previous results after first reviewing the relationship between
N - and P-positions and the golden ratio (Section 2) and recalling how game play of Euclid re-
lates to the Calkin–Wilf tree (Section 3). Then, in Section 4, we show that P-positions of Euclid
have self-similar structure within the Calkin–Wilf tree and count the types of P-positions in
each row of the tree. The P-positions form arches in the Calkin–Wilf tree and, in Section 5,
we determine the number of tokens in every P-position writing them as a linear combination
of Fibonacci numbers. Positions (Fn, Fn+1) all require a maximum number of possible moves
in Euclid. In Section 6, we determine all N - and P-positions that require a maximum number
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of moves in optimal play and show that these positions are also part of cones in the plane,
which in part refines the cone picture of Lengyel [9].

2. Optimal Play

Suppose the game starts with board position (7, 2). Then, the first player to go can leave
piles (5, 2), (3, 2) or (1, 2). Is there a best move? And, if so, which is it? Cole and Davie [5]
proved that the next player to play from position (m,n) with m > n has a winning strategy if
and only if m/n > (1+

√
5)/2 = φ ≈ 1.61803, the golden ratio. In combinatorial game theory,

such a position is called an N -position, because the next player to move wins under optimal
play. If the next player to move cannot win under optimal play from (m,n), then (m,n) is
referred to as a P-position, because the previous player wins under optimal play. The position
(7, 2) is an N -position, as evidenced by 7/2 > φ. The optimal play is to take 4 tokens away
from the 7, leaving (3, 2). The position (3, 2) is a P-position because 3/2 < φ. Taking away 2
or 6 tokens is not optimal because (5, 2) and (1, 2) are N -positions, as 5/2 > φ and 2/1 > φ,
respectively.

Lengyel [9] used a cone to visualize the N -and P-positions and to prove the Cole and
Davie result. The P-positions are in the interior of the cone between the rays y = φx and
y = φ̄x = (1/φ)x and the N -positions are outside the cone; these are the white regions in
Figure 1. To understand the geometry behind Lengyel’s proof, note that (7, 2) is an N -position
outside the cone, but can be reduced to (3, 2), inside the cone; this is the yellow region in
Figure 1. Such a move from outside to inside the cone is always possible because the length
of the segment between (aφ, a) and (aφ̄, a) is a(φ− φ̄) = a; this follows because φ is a root of
x2 − x− 1 = 0. Similarly, once inside the cone, the next player to move must leave the cone;
for example, (5, 4) is a P-position and the only move is to leave the cone to (1, 4). Again, this
is because the portion of y = 4 in the cone has length 4, as in Figure 1. The same logic, but
with vertical movement, holds for positions (m,n) with n > m.

There are three possible moves from (14, 4), leading to (10, 4), (6, 4) or (2, 4). These are all
just twice the possible pile sizes from starting with (7, 2). Without loss of generality, we can
restrict our attention to positions (m,n) with m and n relatively prime.

3. The Calkin–Wilf Tree

In [4], Calkin and Wilf used a simple rule to generate a binary tree that contains all positive
rational numbers. Hofmann, Schuster, and Steuding [7] explained how play in Euclid can be
represented on the Calkin–Wilf tree. We review how to generate the Calkin–Wilf tree and how
play of Euclid can be described on the tree, before proving a self-similar relationship between
the P-positions of Euclid in the Calkin–Wilf tree in the next section.

The Calkin–Wilf tree is a binary tree with initial vertex 1 = 1/1. All subsequent vertices in
the tree are labeled with a positive rational number given by the parent-child vertex-generating
operation in Figure 2. In general, the parent vertex a/b has two children vertices: a/(a+ b)
and (a+ b)/b. We will view left children as males and right children as females. Hence,
a/(a+ b) is a son and (a+ b)/b is a daughter of a/b. Repeated use of the operation yields the
Calkin–Wilf tree; the first five levels of the tree appear in Figure 3. Notice that right/female
vertices are always greater than one and left/male vertices are always less than one. We extend
the familial relationship of parent-child to other vertices in the tree, viewing the Calkin–Wilf
tree as a genealogical tree. Referring to the relative position of vertices in Figure 3, vertices
8/5 and 5/7 are cousins and are two of the grandchildren of vertex 3/2. Further, vertex 4/3
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Figure 1. The set of P-positions for the game Euclid are the integer pairs in
the (yellow-colored) cone between y = φ̄x and y = φx.
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Figure 2. The operation to generate the Calkin–Wilf tree.

is the niece of 3/2 and 4/3 is the aunt of 5/4. These relationships will be highlighted later in
the paper to describe the self-similar structure of P-positions in the Calkin–Wilf tree.

Importantly, Calkin and Wilf [4] proved that every positive rational number appears exactly
once in the tree and appears in reduced form; they also explain how to construct an explicit
bijection between the positive integers and positive rational numbers. A position (m,n) in
Euclid may be represented by either m/n or n/m in the Calkin–Wilf tree; both are equivalent
in the tree, related by symmetry. Because the Calkin–Wilf tree only has rational numbers in
reduced form, it further supports the assumption that pile sizes be relatively prime. A move
in Euclid can be viewed as traversing up the tree along consecutive left or consecutive right
branches. For example, from the position (7, 2) or 7/2 in the Calkin–Wilf tree, notice that the
possible moves (5, 2), (3, 2), and (1, 2) have corresponding fractions 5/2, 3/2, and 1/2 that are
all related to one another along right branches in the tree. Because we identify the position
(m,n) with rational number m/n, then m/n is referred to as a P-position when (m,n) is a
P-position. More details about play on the Calkin–Wilf tree may be found in [7]. Because m
and n are relatively prime, play ends in Euclid when (1, 1) is reached. Consequently, 1/1, the
top of the tree, is a P-position.
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Figure 3. The first five levels of the Calkin–Wilf tree. Rational numbers a/b
in yellow are P-positions (a, b) in Euclid.
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Figure 4. The left side of levels 5 through 7 of the Calkin–Wilf tree. Rational
numbers a/b in yellow are P-positions (a, b) in Euclid.

4. P-positions in the Calkin–Wilf Tree

In Figure 3, the P-positions appear in yellow (lighter color) and the N -positions are boxed
in green (darker color). With only five rows of the tree in Figure 3, patterns of the P-positions
may not be obvious. Figure 4 shows the left side of rows 5 through 7 of the Calkin–Wilf tree.
Further, the P- and N -positions for the first seven rows of the Calkin–Wilf tree are given in
Figure 5. In this figure, the vertices of each row divide the length of row n into 2n−1 equal-
sized rectangles. A parent’s children in this representation are apparent because the children
appear in the two rectangles beneath the parent’s rectangle.

Patterns are more noticeable in the representation in Figure 5. In particular, the
P-positions appear to exhibit self-similarity: every P-position and its descendants have the
same P/N -relationship as the vertex 1/1 and its descendants (the whole Calkin–Wilf tree). To
prove self-similarity, we begin by showing that every P-position (other than 1/1) is part of an
arch (in the yellow/light color) as either one of the top two vertices of an arch (these vertices
are cousins to one another) or as part of the branch of an arch. Further, we explain where
the tops of arches start in the tree. The relationships between P-positions can be described
based on the image of general vertices of the Calkin–Wilf tree in Figure 6. If vertex 1 is a

P-position, then vertices 4 and 5 are the top of an arch. The top three rows of an arch

appear as vertices 4 – 9 . The left branch of an arch consists of right/female vertices and
their nieces, grand nieces, great-grand nieces, etc. The right branch of an arch consists of
left/male vertices and their nephews, grand nephews, great-grand nephews, etc.

Below we prove how P-positions are related to one another in the Calkin–Wilf tree and how
all P-positions except 1/1 are part of an arch. We start by proving where arches start: for
every P-position in row k, there exists the top of an arch in row k + 2.
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Figure 5. A representation of P-positions (yellow/light) and N -positions
(green/dark) in the Calkin–Wilf tree.
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Figure 6. Using the positioning of general vertices in the Calkin–Wilf tree to
prove the self-similar relationship.

Proposition 4.1. (Distinguishing the tops of arches.) If a vertex V is a P-position, then V ’s
son’s daughter and V ’s daughter’s son are P-positions, too. (Using the notation in Figure 6,
if 1 is a P-position, then 4 and 5 are P-positions, as well.)

Proof. We will use game play to explain why this proposition holds by showing that if 1 is

a P-position, then so is 4 . The proof that 5 is a P-position is analogous.

If m
n is a P-position, denoted by 1 in Figure 6, then m

m+n at vertex 2 is an N -position.
This follows because a player can take one m away from m+ n and leave the opponent with
pile sizes of m and n, which is a P-position. It follows that 2m+n

m+n is a P-position, denoted by

4 in Figure 6, because the only move, which is to subtract m+ n from the pile with 2m+ n
in it, results in an N -position. □

The implication of Proposition 4.1 is that two rows below every P-position is the top of a
new arch. The next result proves that every P-position except 1/1 is part of a branch of an
arch with an infinite number of P-positions below it.
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Proposition 4.2. (Establishing branches.) If vertex V is a P-position and

• V is a right/female vertex, then its niece is also a P-position (in Figure 6, if 6 is a

P-position, then so is 8 );

• V is a left/male vertex, then its nephew is also a P-position (in Figure 6, if 7 is a

P-position, then so is 9 ).

Proof. Because the right/female vertex 6 is a P-position, then 1 < 3m+n
2m+n < φ. However,

1 < 4m+n
3m+n < 3m+n

2m+n implies that 8 is a P-position, too. An analogous proof proves that if a

left/male vertex 7 is a P-position, then 9 is a P-position, too. □

The following proposition shows that every P-position, other than 1/1, is either part of the
top of an arch or part of the branch of an arch.

Proposition 4.3. If vertex V is a P-position and

• V is a right/female vertex, then either its aunt or its male cousin is a P-position, but
not both (in Figure 6, if 4 is a P-position, then either 3 or 5 is a P-position, but
not both).

• V is a left/male vertex, then either its uncle or its female cousin is a P-position, but
not both (in Figure 6, if 5 is a P-position, then either 2 or 4 is a P-position, but
not both).

Proof. We will use game play to prove the proposition when V is a right/female vertex. The
case for V a left/male vertex is analogous. Interestingly, the implication that one and only
one of 3 or 5 is a P-position holds independently of whether or not 4 is a P-position.

From game play, there is only one move from 5 to 3 . This follows because there is only
one move from piles with sizes m+ n and m+ 2n, and that is to remove m+ n from m+ 2n,
traversing the tree from 5 to 3 . Hence, if 3 is a P-position, then the only move from 5

results in a win so that 5 is an N -position. Similarly, if 3 is an N -position, then the only

move from 5 has to result in a loss and 5 is a P-position. It follows only one of 3 and 5

is a P-position. □

Because every P-position, besides 1/1, is part of an arch, then the arch structure allows for
a way to describe or to navigate to any P-position according to how it is related positionally
to the top vertex 1/1. The branch structure from Figure 6 forms a type of nomenclature, just
like a sequence of left-right branches describes a vertex in a binary tree from the root vertex.
The nomenclature requires some additional notation. For a P-position m

n , let LB
k
(
m
n

)
be the

vertex that is at the kth level in the left branch of the arch that begins two levels below m
n .

Define RBk
(
m
n

)
similarly. Consequently, LB1

(
m
n

)
(vertex 4 ) and RB1

(
m
n

)
(vertex 5 ) are

the tops of the arch below m
n (vertex 1 ). Extending the pattern from Figure 6, it follows

that

LBk
(m
n

)
=

(k + 1)m+ n

km+ n
and RBk

(m
n

)
=

m+ kn

m+ (k + 1)n
.

Any P-position in the tree can be described recursively from the vertex 1/1 in terms of these
new functions.

Example 4.4. As an example of navigating along the arch branches, we describe a path along
branches to a particular P-position and then compute its value recursively. The path begins at
1/1 and then goes to the third level of the left branch of the arch below 1/1. From this vertex,
we go to the second level vertex of the right branch of the arch below it. Now, we go to the
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arch that stems from this vertex and go to the third vertex on the right branch. A new arch
starts two levels below this vertex and we are interested in the vertex at the fifth level of the
left branch of this new arch. We find the value of this P-position recursively by

LB5

(
RB3

(
RB2

(
LB3

(
1

1

))))
= LB5

(
RB3

(
RB2

(
5

4

)))
= LB5

(
RB3

(
13

17

))
= LB5

(
64

81

)
=

465

401
.

Taken together, the three propositions, Propositions 4.1, 4.2, and 4.3, prove the following
theorem. An implication is that the descendants below any P-position vertex have the same
familial structure to P-position descendants of 1/1. This means that the same nomenclature
can be used to navigate from a P-position to one of its descendants.

Theorem 4.5. The P-positions for the game Euclid are self-similar in the Calkin–Wilf tree.

The self-similar relationship between P-position vertices in the tree leads to a recursive
enumeration of the P-positions in row k and an enumeration of the number of arches that
have their top two positions in row k.

Corollary 4.6. Let Lk be the number of P-positions in row k. Then, L0 = 1, L1 = 0, and
Lk+2 = Lk+1 + 2Lk for k ≥ 0. That is, Lk = 2k/3 + 2(−1)k/3.
Proof. By Proposition 4.1, each P-position in row k contributes two P-positions to row k+2.
By Proposition 4.2, each P-position in row k + 1 contributes one P-position to row k + 2.
Thus, the number of P-positions in row k satisfies the recurrence relation Lk+2 = Lk+1 +2Lk

for k ≥ 0.
The corresponding characteristic equation, x2 − x − 2 = 0, of this linear, homogeneous

recurrence relation has solutions x = 2 and x = −1. So, the general solution has the form
Lk = c02

k + c1(−1)k. Using the initial conditions, L0 = c0 + c1 = 1 and L1 = 2c0 − c1 = 0, to
solve for c0 and c1 yields c0 = 1/3 and c1 = 2/3. Thus, Lk = 2k/3 + 2(−1)k/3 is the explicit
formula. □

The sequence generated by Lk+2 = Lk+1 + 2Lk with initial conditions L0 = 1 and L1 = 0
appears as A078008 in [12].

Corollary 4.7. The number of arches whose tops are on row k is Tk = 2k−2/3 + 2(−1)k/3.
Proof. It is an immediate consequence of Proposition 4.1 that a P-position in row k − 2
generates the top of a new arch in row k. That is, Tk = Lk−2. By Corollary 4.6, Lk−2 =
2k−2/3 + 2(−1)k/3 as desired. □

5. Fibonacci Numbers and the Calkin–Wilf Tree

Every row of the Calkin–Wilf tree contains a position that is a pair of consecutive Fibonacci
numbers. Specifically, in the left half of the tree, F2n+1/F2n+2 appears in row 2n + 1 as an
N -position and F2n+1/F2n appears in row 2n as the top left of a P-position arch. These pairs
with the P-position structure as described in Section 4 enable us to write every position in
the corresponding arch as a linear combination of those Fibonacci numbers. First, we write
the branch positions as a linear combination of the top positions.

Lemma 5.1. If vertices a
b and c

d are the left and right positions, respectively, at the top of an

arch, then level k of the left branch of the arch is (k+1)a−kb
ka−(k−1)b and level k of the right branch is

kd−(k−1)c
(k+1)d−kc .
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Proof. The vertex on level k of the left branch of the arch is the niece of the vertex on level
k−1. Similarly, the vertex on level k of the right branch of the arch is the nephew of the vertex
on level k− 1. Thus, repeated application of the operation that generates the tree starting at
a−b
b (the parent of a

b ) reveals the kth left-branch vertex to be (k+1)a−kb
ka−(k−1)b . Repeated application

of the operation starting at c
d−c (the parent of c

d) yields
kd−(k−1)c
(k+1)d−kc on the right branch. □

The vertex F2n+1/F2n in row 2n is a right/female vertex because it is greater than one.
Thus, it is the top of the left branch of a new arch. The corresponding top of the right branch
is then F2n/(F2n + F2n−2). Each of the P-positions in this arch can be written in terms of
these Fibonacci numbers as shown in the following proposition.

Proposition 5.2. The arch of P-positions whose top left and right positions are F2n+1/F2n

and F2n/(F2n + F2n−2), respectively, is comprised of the positions

F2n+1 + kF2n−1

F2n+1 + (k − 1)F2n−1

on level k of the left branch and
F2n + kF2n−2

F2n + (k + 1)F2n−2

on level k of the right branch.

Proof. Lemma 5.1 with a = F2n+1, b = c = F2n, and d = (F2n + F2n−2) implies that level k is
comprised of

(k + 1)F2n+1 − kF2n

kF2n+1 − (k − 1)F2n
and

k(F2n + F2n−2)− (k − 1)F2n

(k + 1)(F2n + F2n−2)− kF2n
(5.1)

on the left and right, respectively. By the definition of the Fibonacci numbers, F2n+1 −F2n =
F2n−1. Substituting this into equation (5.1) yields the desired result. □

By symmetry (F2n + F2n−2)/F2n and F2n/F2n+1 form the top of an arch in the right half
of the tree on row 2n and the positions in the remainder of the arch can also be written in
terms of these Fibonacci numbers. Because the two positions in an arch top are among the
grandchildren of a P-position two rows above, Proposition 5.2 can be used to write every
arch-top position as a linear combination of Fibonacci numbers. This is explicitly stated in
the following corollary.

Corollary 5.3. The P-position

F2n+1 + kF2n−1

F2n+1 + (k − 1)F2n−1

generates the left and right positions at the top of the arch as, respectively,

3F2n+1 + (3k − 1)F2n−1

2F2n+1 + (2k − 1)F2n−1
and

2F2n+1 + (2k − 1)F2n−1

3F2n+1 + (3k − 2)F2n−1
.

Similarly, the P-position
F2n + kF2n−2

F2n + (k + 1)F2n−2

generates the left and right positions at the top of an arch as, respectively,

3F2n + (3k + 1)F2n−2

2F2n + (2k + 1)F2n−2
and

2F2n + (2k + 1)F2n−2

3F2n + (3k + 2)F2n−2
.

Using these tops and the left/right branch formulas in Lemma 5.1, we can describe the
branches of all arches in terms of Fibonacci numbers.
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6. Maximum Length Game of Optimal Play

The maximum number of moves from any starting position in row k of the Calkin–Wilf tree
to the terminal position of 1/1 in row 0 is k. Thus, optimal play from such a position takes
k or fewer moves. Figure 7 shows the number of moves necessary in optimal play from each
of the positions in the first five levels of the Calkin–Wilf tree. For example, from a starting
position of 4/3 (the second vertex from the left in row 3 in Figure 3), optimal play takes two
moves. Whereas, optimal play from a starting position of 3/5 (the third vertex from the left
in row 3 in Figure 3) takes the maximum number of three moves.

0

1 1

1 2 2 1

1 2 3 3 3 3 2 1

1 2 3 3 3 4 4 3 3 4 4 3 3 3 2 1

Figure 7. The number of moves in optimal play from each of the positions in
the first five levels of the Calkin–Wilf tree.

The number of possible moves from the position (m,n) in Euclid is equal to the quotient
in the corresponding step of the Euclidean algorithm. For consecutive Fibonacci numbers,
given by F0 = 1 = F1, Fn = Fn−1 + Fn−2 for n ≥ 2, necessarily Fk+1 = 1 · Fk + r where
0 < r < Fk. It follows that from the position (Fk, Fk+1) in Euclid there is exactly one valid
move. Thus, a game with initial position (Fk, Fk+1), which appears on row k of the tree,
requires the maximum number of moves for optimal play. However, these are not the only
pairs that require the maximum number of moves.

Proposition 6.1. For k ≥ 0, the number of positions in row k of the Calkin–Wilf tree that
require k moves in optimal play is 2k/2 if k is even and 2(k+1)/2 if k is odd.

Proof. Moves in maximal optimal play of a combinatorial game alternate between P-positions
and N -positions. Because 1/1 is a P-position, a position in row k in which optimal play
requires k moves is a P-position if k is even and an N -position if k is odd.

Because the single position 1/1 in row 0 is a P-position, both positions, 1/2 and 2/1 in row

1 are N -positions. Thus, the claim holds for k = 0 and k = 1 as 20/2 = 1 and 2(1+1)/2 = 2.
Suppose k is even and 2k/2 positions in row k require k moves in optimal play. Let vertex

V be such a position, which is necessarily a P-position. Both its children are N -positions and
take k+1 moves in optimal play. Thus, 2(2k/2) = 2(k+2)/2 positions in row k+1 require k+1
moves in optimal play.

Now suppose k is odd and 2(k+1)/2 positions in row k require k moves in optimal play. Let
vertex V be such a position, which is necessarily an N -position. If V is a left/male vertex,
then its parent is a P-position and the only valid move from V ’s daughter is to V . So V ’s
daughter in row k + 1 requires k + 1 moves in optimal play. Furthermore, moving from V ’s
son to V ’s parent is valid, making V ’s son an N -position in row k + 1 requiring only k moves
in optimal play.
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If V is a right/female vertex, then its parent is a P-position and the only valid move from
V ’s son is to V . So V ’s son in row k + 1 requires k + 1 moves in optimal play. Furthermore,
moving from V ’s daughter to V ’s parent is valid, making V ’s daughter an N -position in row
k + 1 requiring only k moves in optimal play. Thus, there are 2(k+1)/2 positions in row k + 1
that require k + 1 moves in optimal play. □

The vertices in the Calkin–Wilf tree that require the maximum number of moves in optimal
play can be located by following paths in which every odd numbered move is followed by a
move in the opposite direction. The following proposition formalizes this idea.

Proposition 6.2. Every Euclid position that requires the maximum number of moves in op-
timal play can be found in the Calkin–Wilf tree starting at the 1/1 position and walking along
paths such that the 2n − 1 and 2n steps, starting with n = 1, are either LR or RL. For
example, LRLR and LRRL lead to maximum-optimal-play positions, but LRLL does not.

Proof. The 2n− 1 step on a walk, starting from 1/1, is a step from an even numbered row to
an odd numbered row in the tree. Thus, in a path to a position that requires the maximum
number of moves in optimal play, this step from an even numbered row to an odd numbered
row is a step from a P-position, say vertex U , to an N -position, say vertex V . Similarly, the
2n step on a walk is from an N -position, vertex V , to a P-position, vertex W . If both the
steps have the same direction, LL or RR, then a step from vertex U to vertex W is possible.
However, this contradicts vertexW being a P-position. Thus, to require the maximum number
of moves in optimal play, the 2n− 1 and 2n steps must have opposite direction. □

Similar to the description that N -positions (m,n) with m > n satisfy m/n > (1 +
√
5)/2 =

φ, we show that a winning strategy requires the maximum number of moves in optimal play
if and only if (φ+ 1) > m/n > φ.

Proposition 6.3. The next player to play from position (m,n) with m > n has a winning
strategy that requires the maximum number of moves only if (φ+ 1) > m/n > φ.

Proof. If (m,n) with (φ+1)n < m is an N -position requiring the maximum number of moves
in optimal play, then (m−n, n) must be a P-position. But, (φ+1)n < m implies φn < m−n.
Thus, (m− n, n) is outside of the P-position cone. □

By symmetry, Proposition 6.3 implies the following corollary.

Corollary 6.4. The next player to play from position (m,n) with n > m has a winning
strategy that requires the maximum number of moves only if 1/(φ+ 1) < m/n < 1/φ.

Proposition 6.5. The P-positions (m,n) that require the maximum number of moves in
optimal play satisfy

φ+ 2

φ+ 1
<

m

n
< φ or

1

φ
<

m

n
<

φ+ 1

φ+ 2
.

Proof. Suppose (m,n) is a P-position that requires the maximum number of moves in optimal
play and satisfies (φ+ 1)/(φ+ 2) < m/n < (φ+ 2)/(φ+ 1).

If m < n < [(φ+ 2)/(φ+ 1)]m, then the only valid move is to (m,n − m). But, n <
[(φ+ 2)/(φ+ 1)]m implies n−m < [1/(φ+ 1)]m, which means by Proposition 6.3, (m,n−m)
is an N -position that does not require the maximum number of moves in optimal play. This
is a contradiction.

If [(φ+ 1)/(φ+ 2)]m < n < m, then the only valid move is to (m− n, n). But multiplying
[(φ+ 1)/(φ+ 2)]m < n by φ+2 yields (φ+1)m < (φ+2)n. That is, (φ+1)(m−n) < n. Thus,
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by Corollary 6.4, (m − n, n) is an N -position that does not require the maximum number of
moves in optimal play. This is a contradiction. □

Paralleling Lengyel’s approach [10] to visualizing the Sprague–Grundy values for Euclid,
the positions that require the maximum number of moves in optimal play correspond to cones
in the plane. The N -positions that require the maximum number of moves in optimal play
are located in the cone between y = [1/(φ+ 1)]x and y = (1/φ)x or the cone between y = φx
and y = (φ+ 1)x; see Figure 8. The P-positions that require the maximum number of moves
in optimal play are located in the cone between y = (1/φ)x and y = [(φ+ 1)/(φ+ 2)]x or the
cone between y = [(φ+2)/(φ+1)]x and y = φx. For example, (5, 3) is an N -position requiring
the maximum number of moves in optimal play as φ < 5/3 < φ + 1. Furthermore, the only
valid move from (5, 3) is to (2, 3), which is a P-position satisfying φ̄ < 2/3 < (φ+ 1)/(φ+ 2).
This too has a single valid move to (2, 1), which in turn also leaves one valid move to the
final position (1, 1). Similarly, (7, 5) is a P-position requiring the maximum number of moves
in optimal play as (φ+ 2)/(φ+ 1) < 7/5 < φ. The only valid move is to (2, 5), which is an
N -position satisfying 1/(φ+ 1) < 2/5 < φ̄.

y

x

1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

8

y =
x

ϕ+
1

y
=
(ϕ
+
1)
x

ϕ+
2

y
=

(ϕ
+
2)
x

ϕ
+
1

y
=
(ϕ

+
1)
x

•

•

Figure 8. As in Figure 1, P-positions are in the yellow cone and N -positions
are outside the cone. The integer pairs in the plane between y = φ̄x and y =
[(φ+ 1)/(φ+ 2)]x, as well as the integer pairs between y = [(φ+ 2)/(φ+ 1)]x
and y = φx are the set of P-positions for which optimal play of the game Euclid
requires the maximum number of moves; these cones are yellow with diagonal
lines in gray. The integer pairs in the plane between y = x/(φ+ 1) and y = φ̄x,
as well as the integer pairs between y = φx and y = (φ + 1)x are the set of
N -positions for which optimal play requires the maximum number of moves;
these cones have a white background with gray lines.
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It is well known that determining the greatest common divisor of consecutive Fibonacci
numbers, gcd(Fn, Fn+1), requires n steps in the Euclidean algorithm, cf. [2]. Thus, as men-
tioned previously, the corresponding positions in the game Euclid require n moves in optimal
play. However, not every pair of integers that requires the maximum number of steps in the
algorithm also requires the maximum number of moves in optimal play.

Hopkins and Tangboonduangjit [8] prove that for n > 0, there are n positive integer pairs
(u, v) where Fn+1 ≤ u < Fn+2 and v ≤ u such that the Euclidean algorithm requires n steps
to determine gcd(u, v). It should be noted that this result is restated here in terms of the
Fibonacci sequence starting with F0 = 1, F1 = 1, whereas in [8] the result was stated in terms
of F0 = 0, F1 = 1. The corresponding pairs (u, v) for n = 1 to 7 are listed in Table 1. Hopkins
and Tangboonduangjit [8] further show that for a given n, the continued fraction expansions
of these u/v are [1n−1, 2], [1, 2, 1n−3, 2], [1, 1, 2, 1n−4, 2], . . . , [1n−2, 2, 2], [1n−1, 3], where 1k

represents k consecutive 1s. Notice that the first pair corresponds to Fn+1/Fn and the others
are derived from adding 1 to one of the coefficients of the continued fraction from the second to
the nth entries in the list notation. That is, the continued fraction expansions corresponding
to the integer pairs that take the maximum number of steps in the Euclidean algorithm are
[1n−1, 2], [1i, 2, 1n−2−i, 2] for i = 1 to n− 2, and [1n−1, 3].

n (u, v)
1 (2, 1)
2 (3, 2), (4, 3)
3 (5, 3), (7, 4), (7, 5)
4 (8, 5), (11, 7), (11, 8), (12, 7)
5 (13, 8), (18, 11), (18, 13), (19, 11), (19, 12)
6 (21, 13), (29, 18), (29, 21), (30, 19), (31, 18), (31, 19)
7 (34, 21), (47, 29), (47, 34), (49, 30), (49, 31), (50, 29), (50, 31)

Table 1. The pairs (u, v) with Fn+1 ≤ u < Fn+2 and v ≤ u such that the
Euclidean algorithm requires n steps for n = 1 to 7.

Lengyel [9] and Hofmann, Schuster, and Steuding [7] relate positions in Euclid by their con-
tinued fraction representations. In the context of the Calkin–Wilf tree, Hofmann, Schuster, and
Steuding [7] explain that a reduced fraction with continued fraction expansion [a0, a1, . . . , am]
can be located in the tree following from left to right the path

Lam−1Ram−1 · · ·La1Ra0 if m is odd, and

Ram−1Lam−1 · · ·La1Ra0 if m is even,

where Lk represents k steps to the left and Rk represents k steps to the right. Thus, the
continued fraction expansion [1n−1, 2] corresponds to the path LR · · ·LR if n is even and
RL · · ·RL if n is odd. In either case, the path satisfies the conditions in Proposition 6.2 and
the corresponding position in Euclid requires the maximum number of moves in optimal play.
The continued fraction expansion [1n−1, 3] corresponds to the path LLRL · · ·R if n is even and
RRLR · · ·R if n is odd. In either case, the path does not satisfy the conditions in Proposition
6.2 and the corresponding position in Euclid does not require the maximum number of moves
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in optimal play. If n is even, then [1i, 2, 1n−2−i, 2] for i = 1 to n− 2 corresponds to the path

LRL · · ·RL︸ ︷︷ ︸
n−2−i

RRLR · · ·LR︸ ︷︷ ︸
i

if i is even, and

LRL · · ·R︸ ︷︷ ︸
n−2−i

LLRL · · ·R︸ ︷︷ ︸
i

if i is odd.

The latter does not satisfy the conditions of Proposition 6.2, whereas the former does because
n− 2− i is odd when i is odd and n− 2− i is even when i is even. Similarly, if n is odd, then
the corresponding path is

RLR · · ·L︸ ︷︷ ︸
n−2−i

RRLR · · ·LR︸ ︷︷ ︸
i

if i is even, and

RLR · · ·LR︸ ︷︷ ︸
n−2−i

LLRL · · ·R︸ ︷︷ ︸
i

if i is odd.

Here, the latter satisfies the conditions of Proposition 6.2, whereas the former does not because
n− 2− i is even when i is odd and n− 2− i is odd when i is even.

The above discussion is summarized as the following proposition.

Proposition 6.6. The continued fraction expansions [1n−1, 2] and [1i, 2, 1n−2−i, 2], where n
and i have the same parity, correspond to the integer pairs that take the maximum number of
steps in the Euclidean algorithm and the maximum number of moves in optimal play.

The continued fraction expansions [1n−1, 3] and [1i, 2, 1n−2−i, 2], where n and i have opposite
parity, correspond to integer pairs that take the maximum number of steps in the Euclidean
algorithm, but do not require the maximum number of moves in optimal play.

7. A Further Extension for Future Work

For the game Euclid, we determined the location of all of the P-positions in the Calkin–
Wilf tree. A natural follow-up question is to consider the location in the tree of N -positions
with different Sprague–Grundy values. Nivasch [11] determined the Sprague–Grundy values
for Grossman’s variation of Euclid, whereas Cairns, Bao, and Lengyel [3] did the same for the
Cole–Davie variation of Euclid, comparing it to the value for the Grossman variation. From
their work, the N -positions with a fixed Sprague–Grundy value also are contained in cones; see
Nivasch [11, Figure 1] for Grossman’s variation and Lengyel [10] for the Cole–Davie version.
This suggests that describing the location of N -positions with a particular Sprague–Grundy
value in the Calkin–Wilf tree may also be interesting. We leave this for future work.
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