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Abstract. In a base phi representation, a natural number is written as a sum of powers of
the golden mean φ. There are many ways to do this. How many? Even if the number of
powers of φ is finite, then any number has infinitely many base phi representations. By not
allowing an expansion to end with the digits 0,1,1, the number of expansions becomes finite,
a solution proposed by Ron Knott. Our first result is a recursion to compute this number
of expansions. This recursion is closely related to the recursion given by Neville Robbins
to compute the number of Fibonacci representations of a number, also known as Fibonacci
partitions. We propose another way to obtain finitely many expansions, which we call the
natural base phi expansions. We prove that these are closely connected to the Fibonacci
partitions.

1. Introduction

A natural number N is written in base phi if N has the form

N =

∞∑
i=−∞

aiφ
i,

where ai = 0 or ai = 1, and where φ := (1 +
√
5)/2 is the golden mean.

There are infinitely many ways to do this. When the number of powers of φ in the sum is
finite, we write these representations (also called expansions) as

α(N) = aLaL−1 . . . a1a0 · a−1a−2 . . . aR+1aR,

where aL = aR = 1.

Because for all n, one has φn+1 = φn + φn−1, infinitely many expansions can be generated
in a rather trivial way from expansions with just a few powers of φ using the replacement
1(00) → 011 at the right end of the expansion. So, we use Knott’s truncation rule from [11],

aR+2aR+1aR ̸= 011. (1.1)

Let Totκ(N) be the number of base phi expansions of the number N satisfying equation (1.1).
That is,

Totκ = 1, 1, 2, 3, 3, 5, 5, 5, 8, 8, 8, 5, 10, 13, 12, 12, 13, 10, 7, 15, 18, 21, 16, 20, 20, 16, 21, 18, . . .1

In 1957, George Bergman ([1]) proposed restrictions on the digits ai, which entail that the
representation becomes unique (proofs of this are in [15, 17]) and finite. This is generally
accepted as the representation of the natural numbers in base phi. A natural number N is
written in the Bergman representation if N has the form

N =
∞∑

i=−∞
diφ

i,

1In OEIS ([14]): A289749 Number of ways not ending in 011 to write n in base phi.
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with digits di = 0 or di = 1, and where di+1di = 11 is not allowed. We write these
representations as

β(N) = dLdL−1 . . . d1d0 · d−1d−2 . . . dR+1dR.

A natural number N is written in base Fibonacci if N has the form

N =
∞∑
i=2

ciFi,

where ci = 0 or ci = 1, and (Fi)i≥0 = 0, 1, 1, 2, 3, . . . are the Fibonacci numbers (defined by
F0 = 0, F1 = 1 and Fn+1 = Fn + Fn−1 for n ≥ 1).

Let TotFIB(N) be the total number of Fibonacci expansions of the number N . Then,

TotFIB = 1, 1, 1, 2, 1, 2, 2, 1, 3, 2, 2, 3, 1, 3, 3, 2, 4, 2, 3, 3, 1, 4, 3, 3, 5, . . . 2

This sequence has received a lot of attention, see e.g., the papers [2, 5, 3, 4, 8, 9, 16, 19].
In 1952, the paper [12] proposed restrictions on the digits ci, which entail that the

representation becomes unique. This is known as the Zeckendorf expansion of the natural
numbers after the paper [20].

A natural number N is written in the Zeckendorf representation if N has the form

N =
∞∑
i=2

eiFi,

with digits ei = 0 or ei = 1, and where ei+1ei = 11 is not allowed.
The Fibonacci representation and the base phi representation are closely related. We make

a table.

Property Fibonacci Base phi

Fn : n ≥ 2 φn : n integer

Fundamental recursion Fn+1 = Fn + Fn−1 φn+1 = φn + φn−1

Golden mean flip 100 → 011 100 → 011
Unique expansion Zeckendorf Bergman

Condition on the digits no 11 no 11
Fundamental intervals [Fn, Fn+1 − 1] [L2n, L2n+1], [L2n+1 + 1, L2n+2 − 1]

Examples F5 = 5, L4 = 7 [5, 7] = [2 2 1] [7, 11] = [5 8 8 8 5]
Examples F6 = 8, L5 = 11 [8, 12] = [3 2 2 3 1] [12, 17] = [10 13 12 12 13 10]

Here, the Ln are the Lucas numbers defined by L0 = 2, L1 = 1, and Ln+1 = Ln + Ln−1 for
n ≥ 1.
The intervals Λ2n = [L2n, L2n+1], Λ2n+1 = [L2n+1 + 1, L2n+2 − 1] are called the even and odd
Lucas intervals.

Replacing the digits 100 in an expansion by 011 will be called a golden mean flip. Our
Theorem 2.1 shows that any finite base phi expansion can be obtained from the Bergman
expansion by a finite number of such golden mean flips. There is a special case that needs
attention, which we illustrate with an example. Let N = 4. Then, β(4) = 101 · 01. Applying
the golden mean flip at the right gives the expansion 101 · 0011, which is not an allowed

2In OEIS ([14]): A000119 Number of representations of n as a sum of distinct Fibonacci numbers.
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expansion. However, if we apply a second golden mean flip, we can obtain 100 · 1111, which is
an allowed expansion. We call this operation a double golden mean flip.

In Section 2, we determine a formula for Totκ(N). In Section 3, we give simple formulas
for N = Fn, and for N = Ln. In Section 4, we introduce a new way to count expansions,
by defining natural expansions, and give a formula for Totν(N), the number of natural base
phi expansions of N . We also show that (Totν(N)) is a subsequence of the sequence of total
numbers of Fibonacci representations. Section 5 gives important information on the different
behavior of phi expansions on the odd and the even Lucas intervals.

We finally mention that our results have been recently reproved by Shallit in the paper [18],
using the Walnut software.

2. A Recursive Formula for the Number of Knott Expansions

In this section, we determine a formula for Totκ(N) for each natural number N .

The emphasis will be on the manipulation of 0-1-words, not on base phi expansions of num-
bers.
Let α(N) = aLaL−1 . . . a1a0 · a−1a−2 . . . aR+1aR be a base phi representation of N . By remov-
ing the radix point, we obtain a 0-1-word A(N) := aLaL−1 . . . a1a0a−1a−2 . . . aR+1aR. Such
a word will be called a base phi word. Similarly, the Bergman word B(N) will be the unique
0-1-word obtained by removing the radix point from the Bergman expansion β(N) of N .

We keep the indexing with L and R, and in decreasing order, to facilitate the connection
with base phi expansions.

We apply golden mean flips to these 0-1-words. Such a golden mean flip may change the
length of the word, and the property aL = aR = 1. To cope with this, it is useful to consider
the three companion words 0A(N), A(N)00, and 0A(N)00 of a base phi word A(N). In
particular, we will identify the Bergman 0-1-word B(N) with its three companion words in
the proof of Theorem 2.1.

We map any base phi word A(N) = aLaL−1 . . . aR+1aR with ai+1aiai−1 = 100 for some i
with R+ 1 ≤ i ≤ L− 1 to another 0-1-word, by the map

Ti : . . . ai+1aiai−1 . . . → . . . [ai+1 − 1][ai + 1][ai−1 + 1] . . . .

This is the golden mean flip. We also allow TR−1 on the companion word A(N)00 of A(N).
The map Ti has an inverse denoted Ui for R+ 1 ≤ i ≤ L− 1 given by

Ui : . . . ai+1aiai−1 . . . → . . . [ai+1 + 1][ai − 1][ai−1 − 1] . . . ,

as soon as ai+1aiai−1 = 011. We also allow UL on the companion word 0A(N) of A(N).
We call the maps Ui reverse golden mean flips.

Example 1. Suppose N = 11. Then β(N) = 10101 · 0101, so B(N) = 101010101. Let
α(N) = 10101 · 001111, so L = 4, R = −6, and A(N) = 10101001111.

Then U−3(A(N)) = 10101010011, and U−5U−3(A(N)) = 10101010100, which is a
companion of the Bergman word B(N).

Theorem 2.1. Any finite base phi expansion α(N) with digits 0 and 1 of a natural number
N can be obtained from the Bergman expansion β(N) of N by a finite number of applications
of the golden mean flip.
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Proof. We prove this by showing that any base phi word A(N) will be mapped to the Bergman
word B(N) or one of its companions by a finite number of applications of the reverse golden
mean flip. Let A(N) = aLaL−1 . . . aR+1aR be a base phi word associated to the expansion of
N with digits 0 and 1. When 11 does not occur in A(N), then A(N) = B(N) or one of its
companions, and there is nothing to do. Otherwise, let m := max{i : aiai−1 = 11}. First,
suppose m ≤ L− 2. Then, by the definition of m, we have ai+1 = 0 if i = m. So, for the two
possibilities ai+2 = 0 and ai+2 = 1,

Ui(. . . 0ai+1aiai−1 . . .) = Ui(. . . 0011 . . .) = . . . 0100 . . . ,

Ui(. . . 1ai+1aiai−1 . . .) = Ui(. . . 1011 . . .) = . . . 1100 . . . .

Note that in the first case, the total number of 11 occurring in A(N) has decreased by 1, and
in the second case, it remained constant. However, in the second case, the m of Ui(A(N)) has
increased by 2. If we keep iterating the reverse golden mean flip on the left most occurrence of
11, then 0011 will occur, or if not, then A(N) = 1101 . . . . This is the case m = L, where there
is a decrease in the number of 11, because UL(0A(N) . . . ) = 10001 . . . . The conclusion in all
cases is that the number of 11 will decrease by at least 1 after a finite number of applications
of the reverse golden mean flip. So after a finite number of applications of the reverse golden
mean flip, we reach a 0-1-word with no occurrences of 11. By definition, this is the Bergman
word B(N) or one of its companions.

The case m = L has already been considered above; the case m = L − 1 corresponds to
A(N) = 011 . . . , where an application of the reverse golden mean flip leads also to a decrease
in the number of 11. □

Our proof for Totκ resembles the work of Neville Robbins [16] on Fibonacci representations,
but we have to incorporate the double golden mean flip defined in the Introduction. It then
will appear that the two recursions for Fibonacci representations and golden mean (Knott)
representations are the same, but that there is a difference in the initial conditions.

Let β(N) = dLdL−1 . . . d1d0 · d−1d−2 . . . dR+1dR. As before, by removing the radix point,
we obtain a 0-1-word B(N) = dLdL−1 . . . d1d0d−1d−2 . . . dR+1dR. Let us denote

r(B(N)) := Totκ(N).

Remark 2.2. Before we continue with the determination of r(B(N)), we remark that in
general, the representations that we obtain by golden mean flips are not representations of a
natural number—not for any choice of the radix point. An example is w = 100001, which
represents φ5 + 1, and its multiplications by φ and φ−1. Nevertheless, these words represent
numbers a+ bφ with nonnegative natural numbers a and b in the ring Z(φ).

For example, w = 100001 represents 5φ + 4, which is a direct consequence of the relation
φ2 = φ+ 1. This is the justification for continuing with the terminology of representations.

A 0-1-word that plays an important role in the analysis that follows is the word 10s for
s > 1. Although 10s is not a base phi representation, it is convenient to call the word 10s

and its golden mean flip iterates representations of 10s. Let q(10s) be the number of such
representations. Then,

q(10s) =

{
1
2s+ 1, if s is even;
1
2(s+ 1), if s is odd.

(2.1)

This follows by making golden mean flips from left to right.
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Suppose a 0-1-word is of the form 10s1. Then we have

r(10s1) =

{
1
2s+ 1, if s is even;
1
2(s+ 1) + 1, if s is odd.

(2.2)

This follows because 10s1 has the same number of representations q(10s) as 10s when s is
even, but there is one extra representation generated by the double golden mean flip when s
is odd.

Suppose the Bergman representation β(N) of a number N contains n + 1 ones. Then, we
can write for some numbers s1, s2, . . ., sn,

B(N) = 10sn . . . 10s2 10s1 1.

We start with the case n = 2, so

B(N) = 10s210s11.

Let us call I2 := 10s2 the initial segment of B(N), and T1 := 10s11 the terminal segment of
B(N).
We want to deduce r(B(N)) = r(I2T1) from the number of representations q(I2) and r(T1).
There are two cases to consider.

Type 1: Arbitrary combinations of representations of I2 and T1.
Type 2: Arbitrary combinations of representations of I2 and T1 plus an ‘overlap’ combination.

Type 1 typically occurs if s2 is even. For example for the case s2 = 4, we have the three
representations 10000, 01100, 01011. Note that in general, these representations always end
in 00 or 11.

So for Type 1, one has simply

r(B(N)) = r(I2T1) = q(I2)r(T1). (2.3)

But for s2 odd, for example when s2 = 5, then 100000, 011000, 010110 are the three
representations of I2. Note that in general, these representations always end in 00 or 10.
So if a representation of the segment I2 is of the form w10, and a representation of T1 is of the
form 0v, then the representation w10 0v of I2T1 generates an ‘overlap’ representation w01 1v
via the golden mean flip.
Obviously, it is true in general that an I2 word with s2 odd will have exactly one representation
that ends in 10. It is also important to note that there is no representation that ends in 01.
Therefore, if r(i)(T1) denotes the number of representations of T1 starting with i for i = 0, 1,
then we obtain for Type 2,

r(B(N)) = r(I2T1) = q(I2)r(T1) + r(0)(T1). (2.4)

When we combine equation (2.4), the trivial equation r(0)(T1) + r(1)(T1) = r(T1), and the
fact that the segment T1 = 10s11 has just one representation that starts with a 1, we obtain

r(B(N)) = q(I2)r(T1)+r(T1)−r(1)(T1) = r(T1)[q(I2)+1]−r(1)(T1) = r(T1)[q(I2)+1]−1. (2.5)

We continue with the case n = 3, so

B(N) = 10s310s210s11.

Now I3 := 10s3 is the initial segment, and T2 := 10s210s1 1 is the terminal segment.
As before, there are two cases to consider to compute r(B(N)) = r(I3T2).
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Type 1: Arbitrary combinations of representations of I3 and T2.
Type 2: Arbitrary combinations of representations of I3 and T2 plus an ‘overlap’ combination.

For Type 1, one has simply

r(B(N)) = r(I3T2) = q(I3)r(T2). (2.6)

For Type 2, one has

r(B(N)) = r(I3T2) = q(I3)r(T2) + r(0)(T2). (2.7)

Next, we split T2 = I2T1, where I2 := 10s2 . Then we have, because I2 has just one
representation that starts with a 1, that r(1)(T2) = r(T1). It thus follows from equation (2.7)

and r(0)(T2) + r(1)(T2) = r(T2) that

r(B(N)) = q(I3)r(T2)+r(T2)−r(1)(T2) = r(T2)[q(I3)+1]−r(1)(T2) = r(T2)[q(I3)+1]−r(T1).
(2.8)

For general n, we split B(N) = 10sn . . . 10s2 10s11 in an initial segment In = 10sn and a
terminal segment Tn−1 = 10sn−1 . . . 10s11. We then find, in the same way as for the case n = 3,
that for sn even,

r(Tn) = r(B(N)) = q(In)r(Tn−1), (2.9)

and for sn odd,

r(Tn) = r(B(N)) = r(Tn−1)[q(In) + 1]− r(Tn−2). (2.10)

Defining rn := r(B(N)), rk := r(Tk) for k = 1, . . . , n− 1 and r0 = 1 (cf. equation (2.5)), we
have obtained a recursion that computes r(B(N)).

Theorem 2.3. For any integer N ≥ 2, let the Bergman expansion β(N) = dL . . . d0 ·d−1 . . . dR
of N have n + 1 digits 1. Let Totκ(N) = rn be the number of Knott representations of N .
Define the initial conditions: r0 = 1 and r1 = 1

2s1 + 1 if s1 is even, r1 = 1
2(s1+1) + 1 if s1 is

odd. Then for n ≥ 2,

rn =

{
[12sn+1] rn−1, if sn is even;

[12(sn+1) + 1]rn−1 − rn−2, if sn is odd.

The initial condition for r1 (given by equation (2.2)) is different from the Fibonacci case;
if s1 is odd, then the base phi expansion has an extra representation that is generated by the
double golden mean flip.

3. Expansions of the Fibonacci Numbers and the Lucas Numbers

Let (Fn) = 0, 1, 1, 2, 3, 5, . . . be the Fibonacci numbers. We will determine the number of
Knott representations of these numbers. First, we have to find a formula for the Bergman
expansions of the Fibonacci numbers. Let B(N) be β(N) without the radix point in the
expansion.

Proposition 3.1. For n ≥ 1, one has

a) B(F2n) = (1000)n−11.

b) B(F2n+1) = (1000)n−11001.
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Proof. This will be proved by induction. We note that β(F2) = β(1) = 1, β(F3) = β(2) =
10 · 01, β(F4) = β(3) = 100 · 01, and β(F5) = β(5) = 1000 · 1001. So the statements hold for
n = 1, 2.

The induction step is based on adding β(Fm−1) and β(Fm) for all m ≥ 4. We therefore
need the position of the radix point in these expansions. This is determined by giving L(Fm),
which we claim is equal to L(Fm) = m−2. The validity of this claim can be readily seen from
the expansions for m = 4, 5 above, and will follow for m ≥ 6 directly from the induction proof
that we give below.

We illustrate the induction step by giving the case n = 3. Because F6 = F4 + F5, we have

β(F4) = 100 · 01,
β(F5) = 1000 · 1001,

β(F4) + β(F5) = 1100 · 1101,
β(F4) + β(F5) = 10001 · 0001 ⇒ B(F6) = (1000)21.

Here, we applied the reverse golden mean flip twice in the last step, and because the last
expansion does not have any 11, we could conclude that β(F6) = 10001 · 0001. Next, we show
what happens at F7 = F5 + F6.

β(F5) = 1000 · 1001,
β(F6) = 10001 · 0001,

β(F5) + β(F6) = 11001 · 1002 ⇒ β(F5) + β(F6) = 11001 · 101001,
β(F5) + β(F6) = 100010 · 001001 ⇒ B(F7) = (1000)21001.

Here, we used a shifted version of β(2) = 10 · 01, and we applied the reverse golden mean flip
twice in the last step. Because the last expansion does not have any 11, we can conclude that
β(F7) = 100010 · 001001.

Suppose the formulas hold for the numbers 1, . . . , 2n−1. Then, β(F2n) is determined by
first obtaining a base phi representation α(F2n) of F2n by way of

α(F2n) := β(F2n−2) + β(F2n−1).

We see that the corresponding 0-1 base phi word is equal to A(F2n) = (1100)n−21101.
Next, n−1 reverse golden mean flips transform A(F2n) to another base phi word A′(F2n) =

(1000)n−11. But then, the Bergman word B(F2n) = A′(F2n) = (1000)n−11 because 11 does
not occur in A′(F2n).

Then, β(F2n+1) is determined by first obtaining a base phi representation α(F2n+1) of F2n+1

by way of

α(F2n+1) := β(F2n−1) + β(F2n).

This time, the addition gives the word (1100)n−12, which represents F2n+1, but is not a 0-1-
word. We get rid of the 2 by replacing 02 by 1001 in the companion word (0110)n−102 of this
word, resulting in the companion base phi word 0A(F2n+1) := (0110)n−11001.

Next, n− 1 reverse golden mean flips transform 0A(F2n+1) to a base phi word A′(F2n+1) =
(1000)n−11001. But then the Bergman word B(F2n+1) = A′(F2n+1) = (1000)n−11001, because
11 does not occur in A′(F2n+1).

This finishes the induction proof. □

Theorem 3.2. For all n ≥ 1, one has Totκ(Fn) = Fn.
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Proof. It can be checked that the proposition holds for n = 1 and n = 2. So, let n ≥ 3. From
Proposition 3.1, the number of ones in β(Fn) is p+ 2, where p is defined by p+ 2 = (n+ 1)/2
if n is odd, and p + 2 = n/2 if n is even. Also, β(Fn) = 10sp+1 . . . 10sk . . . 10s1 1, with sk = 3
for k = 2, . . . , p+ 1, and s1 = 2 for n odd, s1 = 3 for n even.

We apply Theorem 2.3. This yields that Totκ(Fn) = rp+1, the number of Knott
representations of the Bergman representation of Fn satisfies

rp+1 = 3rp − rp−1.

Here, the initial conditions are r0 = 1, r1 = s1/2+1 = 2 for n even, and r1 = (s1+1)/2+1 = 3
for n odd.
The same recurrence relation holds for the subsequences of even and odd Fibonacci numbers,

Fn+1 = Fn + Fn−1 = 2Fn−1 + Fn−2 = 3Fn−1 − Fn−1 + Fn−2 = 3Fn−1 − Fn−3. (3.1)

(I) Suppose n = 2m+ 1 is odd. Then p = m− 1, so Totκ(F2m+1) = rm.
We claim that rm = F2m+1 for all m ≥ 0.
For m = 0, we have r0 = 1 = F1, and for m = 1, we have r1 = 2 = F3.
For m ≥ 2,

rm = 3rm−1 − rm−2 = 3F2m−1 − F2m−3 = F2m+1,

by the induction hypothesis and equation (3.1).
(II) Suppose n = 2m+ 2 is even. Then p = m− 1, so Totκ(F2m+2) = rm.

We claim that rm = F2m+2 for all m ≥ 0.
For m = 0, we have r0 = 1 = F2, and for m = 1, we have r1 = 3 = F4.
For m ≥ 2,

rm = 3rm−1 − rm−2 = 3F2m − F2m−2 = F2m+2,

by the induction hypothesis and equation (3.1).
Combining (I) and (II) yields the conclusion, Totκ(Fn) = Fn for all n ≥ 1. □

At the Fibonacci numbers, the total number of expansions is very large, but here, we show
that it is rather small at the Lucas numbers (Ln).

Theorem 3.3. For all n ≥ 1, one has Totκ(L2n) = Totκ(L2n+1) = 2n+ 1.

Proof. The Lucas numbers have simple representations: β(L2n) = 102n · 02n−11, β(L2n+1) =
1(01)n · (01)n. For a proof, see Example 3 in Section 4.

So, the representation of L2n has only two ones. It follows, from Theorem 2.3, that
Totκ(L2n) = r1 = (s1 + 1)/2 + 1 = 2n+ 1, because s1 = 4n− 1 is odd.

The representation of L2n+1 has 2n + 1 ones, and each sk of the blocks 10sk is equal to 1,
which is odd. It follows, from Theorem 2.3, that Totκ(L2n+1) = rn = 2rn−1 − rn−2. And,
induction gives that rn = 2(2n− 1)− (2n− 3) = 2n+ 1. □

4. Natural Base Phi Expansions

A consequence of the application of the double golden mean flip is that the length of the
negative part of the Knott expansions may take two different values.

To obtain what we will call the natural expansions, let us delete all expansions that have a
length of the negative part that is not equal to the length of the negative part of the Bergman
expansion.

For example, in the case N = 4, Knott proposes the three expansions 101 · 01, 100 · 1111,
and 11.1111. However, there is only one natural expansion, the Bergman expansion 101 · 01.
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Let Totν(N) denote the number of natural base phi expansions. Then we have

(Totν(N)) = 1, 1, 2, 2, 1, 5, 5, 4, 5, 4, 3, 1, 10, 13, 12, 12, 13, 10, 6, 11, 12, . . .

instead of

(Totκ(N)) = 1, 1, 2, 3, 3, 5, 5, 5, 8, 8, 8, 5, 10, 13, 12, 12, 13, 10, 7, 15, 18, . . .

The number of natural base phi expansions can be determined in a way that is similar to
the Knott expansion case.

Theorem 4.1. For a natural number N , let the Bergman expansion of N have n + 1 digits
1. Suppose β(N) = 10sn . . . 10s1 1. Let Totν(N) = rn be the number of natural base phi
representations of N . Define the initial conditions: r0 = 1 and r1 = 1

2s1 + 1 if s1 is even,

r1 =
1
2(s1+1) if s1 is odd. Then, for n ≥ 2,

rn =

{
[12sn+1] rn−1, if sn is even;

[12(sn+1) + 1]rn−1 − rn−2, if sn is odd.

Proof. This follows directly from Theorem 2.3 and its proof. The only difference between
the process of generating all Knott expansions and all natural expansions is the double golden
mean flip, which is performed in the Knott expansion at the segment 10s11, and only when s1 is
odd. So, Totν(N) = rn satisfies the same recursion as TotFIB(N), except that r1 =

1
2(s1+1)+1

has to be replaced by r1 =
1
2(s1+1) in the case that s1 is odd. □

We will determine the total number of natural expansions of the Fibonacci numbers. First,
we present a lemma that emphasizes the interconnection between the Fibonacci and the Lucas
numbers. Recall the even and odd Lucas intervals, Λ2n = [L2n, L2n+1], Λ2n+1 = [L2n+1 +
1, L2n+2 − 1] (cf. [6]).

Lemma 4.2. For all n = 1, 2, . . ., one has F2n+2 ∈ Λ2n, F2n+3 ∈ Λ2n+1.

Proof. By induction. For n = 1, we have F4 = 3 ∈ Λ2 = [3, 4], and F5 = 5 ∈ Λ3 = [5, 6].
For n = 2, we have F6 = 8 ∈ Λ4 = [7, 11], and F7 = 13 ∈ Λ5 = [12, 17].

Suppose the statement of the lemma has been proved for F2n+1 and F2n+2. So. we know

F2n+1 ∈ [L2n−1 + 1, L2n − 1] = Λ2n−1,

F2n+2 ∈ [L2n, L2n+1] = Λ2n.

Adding the numbers in these two equations vertically, we obtain

F2n+3 ∈ [L2n+1 + 1, L2n+2 − 1] = Λ2n+1.

We can then write
F2n+2 ∈ [L2n, L2n+1] = Λ2n,

F2n+3 ∈ [L2n+1 + 1, L2n+2 − 1] = Λ2n+1.

This time, adding gives

F2n+4 ∈ [L2n+2 + 1, L2n+3 − 1] ⊂ [L2n+2, L2n+3] = Λ2n+2.

□

Theorem 4.3. For all n = 0, 1, 2, . . ., one has Totν(F2n+2) = F2n+1 and Totν(F2n+3) = F2n+3.
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Proof. We use the result from Proposition 5.1, which gives that for all N from Λ2n+1, if
β(N) = ...10s11, then s1 is even. So for all N from Λ2n+1, we have that the total number of
natural expansions is equal to the total number of Knott expansions. In particular, we obtain
from Lemma 4.2, using Theorem 3.2, that

Totν(F2n+3) = Totκ(F2n+3) = F2n+3.

From Proposition 3.1, we have that B(F2n+2) = (1000)n1. Therefore, Theorem 4.1 gives that
(rn) satisfies the recurrence relation rn = 3rn−1−rn−2, with r1 =

1
2(3+1) = 2 = F3. This is the

recurrence relation for the Fibonacci numbers with odd indices, cf. equation (3.1). Therefore,
Totν(F2n+2) = rn = F2n+1. □

There is a direct connection between the total number of natural expansions and the total
number of Fibonacci expansions.

Theorem 4.4. For every N > 3, let β(N) = dL(N) . . . dR(N) be the Bergman expansion of N .
Then

Totν(N) = TotFIB(F−R(N)+2N).

Proof. Suppose that β(N) = dL . . . dR, so N =
∑L

R diφ
i.

Multiplying by φ−R+2, we get

φ−R+2N =

L∑
i=R

diφ
i−R+2 =

L−R+2∑
j=2

dj+R−2φ
j =

L−R+2∑
j=2

ejφ
j ,

where we substituted j = i−R+ 2, and defined ej := dj+R−2.
Next, we use the well known equation φj = Fjφ+ Fj−1 to obtain

[F−R+2φ+ F−R+1]N =
L−R+2∑
j=2

ej [Fjφ+ Fj−1].

This implies that

F−R+2N =
L−R+2∑
j=2

ejFj .

We conclude that the number F−R+2N has a Zeckendorf expansion given by the sum on the
right side.

But the manipulations above can be made for any 0-1-word of length L−R+1, so the golden
mean flips of dL . . . dR are in 1-to-1 correspondence with golden mean flips of e2 . . . eL−R+2.
This implies that Totν(N) = TotFIB(F−R(N)+2N). □

Example 2. The Bergman expansion of 4 is 101·01, and F4 = 3. So Totν(4) = TotFIB(12) = 1.

Example 3. The Bergman expansion of 14 is 100100 · 001001, and F8 = 21. So, Totν(14) =
TotFIB(294) = 12.
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Example 4. Consider the Lucas numbers. From L2n = φ2n+φ−2n, and L2n+1 = L2n+L2n−1,
β(L2n) = 102n · 02n−11, β(L2n+1) = 1(01)n · (01)n.

We read off that R(L2n) = −2n, R(L2n+1) = −2n.
It is also clear that Totν(L2n) = 2n, and Totν(L2n+1) = 1.

So, Theorem 4.4 gives the total number of Fibonacci representations of F2n+2L2n and
F2n+2L2n+1, i.e.,

TotFIB(F2n+2L2n) = 2n, TotFIB(F2n+2L2n+1) = 1 for all n ≥ 1.
We find in [14], from Miklos Kristof, the following result.

Let L(n) = A000032(n) = Lucas numbers. Then, for a ≤ b and odd b, F (a+b)−F (a−b) =
F (a) ∗ L(b).
So, F2n+2L2n+1 = F4n+3 −F1 = F4n+3 − 1. But, TotFIB(Fn − 1) = 1 is a well-known formula.

5. Comparing Knott Expansions and Natural Expansions

It is not hard to see that the double golden mean flip—in general, combined with more
golden mean flips—can be applied if and only if the expansion ends in 10s1, where s is odd.
So, the difference between the Knott expansions and the natural expansions is made more
explicit by part a) of the following result.

Proposition 5.1.
a) A number N ≥ 2 is in Λ2n for some integer n if and only if β(N) = ...10s1, where s is
odd, and N ≥ 2 is in Λ2n+1 for some integer n if and only if β(N) = ...10s1, where s is even.
b) Let β(N) = L(N)...R(N). A number N in Λ2n has −R(N) = 2n, a number N in Λ2n+1

has −R(N) = 2n+ 2.

Proposition 5.1 will be proved by induction. Thus, we need recursions to let the proof work.
These are given in the paper [7], from which we repeat the following.

To obtain recursive relations, the interval Λ2n+1 = [L2n+1 + 1, L2n+2 − 1] has to be divided
into three subintervals. These three intervals are

In :=[L2n+1 + 1, L2n+1 + L2n−2 − 1],

Jn :=[L2n+1 + L2n−2, L2n+1 + L2n−1],

Kn :=[L2n+1 + L2n−1 + 1, L2n+2 − 1].

It will be convenient to extend the monoid of words of 0’s and 1’s to the corresponding free
group. So, for example, 1000(10)−11001 = 100001.

Theorem 5.2. [Recursive Structure Theorem, [7]]
I) For all n ≥ 1 and k = 0, . . . , L2n−1, one has

β(L2n + k) = β(L2n) + β(k) = 10 . . . 0β(k) 0 . . . 01.

II) For all n ≥ 2 and k = 1, . . . , L2n−2 − 1,

In : β(L2n+1 + k) = 1000(10)−1β(L2n−1 + k)(01)−11001,

Kn : β(L2n+1 + L2n−1 + k) = 1010(10)−1β(L2n−1 + k)(01)−10001.

Moreover, for all n ≥ 2 and k = 0, . . . , L2n−3,

Jn : β(L2n+1 + L2n−2 + k) = 10010(10)−1β(L2n−2 + k)(01)−1001001.
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Proof of Proposition 5.1. To start the induction, we note that

Λ2 = [3, 4]; β(3) = 100 · 01, β(4) = 101 · 01,
Λ3 = [5, 6]; β(5) = 1000 · 1001, β(6) = 1010 · 0001.

For the even intervals, we have that β(L2n) = 102n · 02n−11, so the expansion of the first
element ends in 10s1, where s is odd. Note also that R(L2n) = 2n, and this property will hold
for all L2n + k, k = 0, . . . , L2n−1 because the sum β(L2n) + β(k) in I) does not change the
length of the negative part. Moreover, because the length of the negative part of each β(k) in
the sum β(L2n) + β(k) is even (by the induction hypothesis for part b)), the expansion must
end in 10s1 with s odd, simply because the difference of two even numbers is even.

For the odd intervals, we have to consider the three cases from II).
For In, we know that β(L2n−1 + k) ends in 01, so β(L2n+1 + k) ends in 1001. For part b),

the length of the negative part is increased by 2.

For Kn, L2n−1 + k is from an odd interval, so the expansion ends in 102t1 from some t > 0.
But then, the expansion of L2n+1+L2n−1+k ends in 102t1 (01)−10001 = 102t−10001 = 102t+21.
For part b), the length of the negative part is increased by 2.

For Jn, β(L2n+1 + L2n−2 + k) ends in 1001. For part b), the length of the negative part is
2n− 2 + 4 = 2n+ 2. □
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[20] E. Zeckendorf, Réprésentation des nombres naturels par une somme de nombres de Fibonacci ou de nombres

de Lucas, Bull. Soc. Roy. Sci. Liège, 41 (1972), 179–182.
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