SUMS INVOLVING A FAMILY OF JACOBSTHAL POLYNOMIAL SQUARES

THOMAS KOSHY AND ZHENGUANG GAO

ABSTRACT. We explore the Jacobsthal version of an infinite sum involving gibonacci polynomial squares and its implications.

1. INTRODUCTION

Extended gibonacci polynomials $z_n(x)$ are defined by the recurrence $z_{n+2}(x) = a(x)z_{n+1}(x) + b(x)z_n(x)$, where x is an arbitrary integer variable; a(x), b(x), $z_0(x)$, and $z_1(x)$ are arbitrary integer polynomials; and $n \ge 0$.

Suppose a(x) = x and b(x) = 1. When $z_0(x) = 0$ and $z_1(x) = 1$, $z_n(x) = f_n(x)$, the *n*th *Fibonacci polynomial*; and when $z_0(x) = 2$ and $z_1(x) = x$, $z_n(x) = l_n(x)$, the *n*th *Lucas polynomial*. Clearly, $f_n(1) = F_n$, the *n*th Fibonacci number; and $l_n(1) = L_n$, the *n*th Lucas number [1, 3].

On the other hand, let a(x) = 1 and b(x) = x. When $z_0(x) = 0$ and $z_1(x) = 1$, $z_n(x) = J_n(x)$, the *n*th Jacobsthal polynomial; and when $z_0(x) = 2$ and $z_1(x) = 1$, $z_n(x) = j_n(x)$, the *n*th Jacobsthal-Lucas polynomial. Correspondingly, $J_n = J_n(2)$ and $j_n = j_n(2)$ are the *n*th Jacobsthal and Jacobsthal-Lucas numbers, respectively. Clearly, $J_n(1) = F_n$; and $j_n(1) = L_n$ [2, 3].

Gibonacci and Jacobsthal polynomials are linked by the relationships $J_n(x) = x^{(n-1)/2} f_n(1/\sqrt{x})$ and $j_n(x) = x^{n/2} l_n(1/\sqrt{x})$ [3, 4].

In the interest of brevity, clarity, and convenience, we omit the argument in the functional notation, when there is no ambiguity; so z_n will mean $z_n(x)$. In addition, we let $g_n = f_n$ or l_n , $c_n = J_n$ or j_n , $\Delta = \sqrt{x^2 + 4}$, $2\alpha = x + \Delta$, $D = \sqrt{4x + 1}$, and 2w = 1 + D. Then $\alpha(1/\sqrt{x}) = \frac{1+D}{2\sqrt{x}} = \frac{w}{\sqrt{x}}$.

2. GIBONACCI POLYNOMIAL SUM

Before presenting an interesting gibonacci sum, again in the interest of brevity and expediency, we now let [5, 6]

$$\mu = \begin{cases} 1, & \text{if } g_n = f_n; \\ \Delta^2, & \text{otherwise;} \end{cases} \quad \nu^* = \begin{cases} 1, & \text{if } g_n = f_n; \\ -1, & \text{otherwise;} \end{cases} \text{ and } D^* = \begin{cases} 1, & \text{if } c_n = J_n; \\ D^2, & \text{otherwise.} \end{cases}$$

Using these tools as building blocks, we established the following result in [5], the cornerstone of our discourse.

Theorem 2.1. Let k, p, r, and t be positive integers, where $t \leq 2p$. Then

$$\sum_{n=1}^{\infty} \frac{(-1)^{tk} \mu \nu^* f_r f_{2pk}}{g_{(2pn+t-p)k}^2 - (-1)^{tk} \mu \nu^* f_{pk}^2} = \frac{g_{tk+r}}{g_{tk}} - \alpha^r.$$
(2.1)

The goal of our discourse is to explore the Jacobsthal counterpart of this sum.

VOLUME 62, NUMBER 2

SUMS INVOLVING A FAMILY OF JACOBSTHAL POLYNOMIAL SQUARES

3. Jacobsthal Polynomial Sum

To realize our objective, we will employ the gibonacci-Jacobsthal relationships in Section 1. To this end, in the interest of brevity and clarity, we let A denote the fractional expression on the left side of the given gibonacci equation and B that on its right side, and LHS and RHS the left-hand side and right-hand side of the corresponding Jacobsthal equation, as in [5, 6].

With this short background, we now begin our endeavor.

Proof. Case 1. Suppose $g_n = f_n$. We have $A = \frac{(-1)^{tk} f_r f_{2pk}}{f_{(2pn+t-p)k}^2 - (-1)^{tk} f_{pk}^2}$. Now, replace x with $1/\sqrt{x}$, and multiply the numerator and denominator with $x^{(2pn+t)k-2+r/2}$. We get

$$\begin{split} A &= \frac{(-1)^{tk} x^{(2pn+t-p)k-1} \left[x^{(r-1)/2} f_r \right] \left[x^{(2pk-1)/2} f_{2pk} \right]}{x^{pk-1+r/2} \left\{ x^{[(2pn+t-p)k-1]/2} f_{(2pn+t-p)k} \right\}^2 - (-1)^{tk} x^{(2pn+t-p)k-1+r/2} [x^{(pk-1)/2} f_{pk}]^2} \\ &= \frac{(-1)^{tk} x^{(2pn+t-2p)k-r/2} J_r J_{2pk}}{J_{(2pn+t-p)k}^2 - (-1)^{tk} x^{(2pn+t-2p)k} J_{pk}^2}; \\ \text{LHS} &= \sum_{n=1}^{\infty} \frac{(-1)^{tk} x^{(2pn+t-2p)k-r/2} J_r J_{2pk}}{J_{(2pn+t-p)k}^2 - (-1)^{tk} x^{(2pn+t-2p)k} J_{pk}^2}, \end{split}$$

where $g_n = g_n(1/\sqrt{x})$ and $c_n = c_n(x)$.

We now turn to $B = \frac{f_{tk+r}}{f_{tk}} - \alpha^r$. Replacing x with $1/\sqrt{x}$, and multiplying the numerator and denominator with $x^{(tk+r-1)/2}$ yields

$$B = \frac{x^{(tk+r-1)/2} f_{tk+r}}{x^{r/2} [x^{(tk-1)/2} f_{tk}]} - \frac{w^r}{x^{r/2}};$$

RHS = $\frac{J_{tk+r}}{x^{r/2} J_{tk}} - \frac{w^r}{x^{r/2}},$

where $g_n = g_n(1/\sqrt{x})$ and $c_n = c_n(x)$.

By equating the two sides, we get the Jacobsthal version of equation (2.1):

$$\sum_{n=1}^{\infty} \frac{(-1)^{tk} x^{(2pn+t-2p)k} J_r J_{2pk}}{J_{(2pn+t-p)k}^2 - (-1)^{tk} x^{(2pn+t-2p)k} J_{pk}^2} = \frac{J_{tk+r}}{J_{tk}} - w^r,$$
(3.1)

where $c_n = c_n(x)$.

Next, we pursue the Jacobsthal-Lucas version of Theorem 2.1. Case 2. With $g_n = l_n$, we have $A = \frac{(-1)^{tk+1}\Delta^2 f_r f_{2pk}}{l_{(2pn+t-p)k}^2 + (-1)^{tk}\Delta^2 f_{pk}^2}$. Again, replace x with $1/\sqrt{x}$, and multiply the numerator and denominator with $x^{(2pn+t-p)k}$, we have

$$\begin{split} A &= \frac{(-1)^{tk+1} \frac{D^2}{x} \cdot x^{[(2pn+t-2p)k+1-r/2]} \left[x^{(r-1)/2} f_r \right] \left[x^{(2pk-1)/2} f_{2pk} \right]}{\{x^{[(2pn+t-p)k]/2} l_{(2pn+t-p)k}\}^2 + (-1)^{tk} \frac{D^2}{x} x^{(2pn+t-2p)k+1} [x^{(pk-1)/2} f_{pk}]^2} \\ &= \frac{(-1)^{tk+1} D^2 x^{(2pn+t-2p)k-r/2} J_r J_{2pk}}{j_{(2pn+t-p)k}^2 + (-1)^{tk} D^2 x^{(2pn+t-2p)k} J_{pk}^2}; \\ \text{LHS} &= \sum_{n=1}^{\infty} \frac{(-1)^{tk+1} D^2 x^{(2pn+t-2p)k-r/2} J_r J_{2pk}}{j_{(2pn+t-p)k}^2 + (-1)^{tk} D^2 x^{(2pn+t-2p)k} J_{pk}^2}, \end{split}$$

MAY 2024

THE FIBONACCI QUARTERLY

where $g_n = g_n(1/\sqrt{x})$ and $c_n = c_n(x)$.

This time, we have $B = \frac{l_{tk+r}}{l_{tk}} - \alpha^r$. Now, replace x with $1/\sqrt{x}$, and multiply the numerator and denominator with $x^{(tk+r)/2}$. This yields

$$B = \frac{x^{(tk+r)/2}l_{tk+r}}{x^{r/2}[x^{tk/2}l_{tk}]} - \frac{w^r}{x^{r/2}};$$

RHS = $\frac{j_{tk+r}}{x^{r/2}j_{tk}} - \frac{w^r}{x^{r/2}},$

where $g_n = g_n(1/\sqrt{x})$ and $c_n = c_n(x)$.

Equating the two sides yields the corresponding Jacobsthal-Lucas version:

$$\sum_{n=1}^{\infty} \frac{(-1)^{tk+1} D^2 x^{(2pn+t-2p)k} J_r J_{2pk}}{j_{(2pn+t-p)k}^2 + (-1)^{tk} D^2 x^{(2pn+t-2p)k} J_{pk}^2} = \frac{j_{tk+r}}{j_{tk}} - w^r, \tag{3.2}$$

where $c_n = c_n(x)$.

Using equations (3.1) and (3.2), we get the Jacobsthal version of Theorem 2.1, as the following theorem features.

Theorem 3.1. Let k, p, r, and t be positive integers, where $t \leq 2p$. Then

$$\sum_{n=1}^{\infty} \frac{(-1)^{tk} D^* \nu^* x^{(2pn+t-2p)k} J_r J_{2pk}}{c_{(2pn+t-p)k}^2 - (-1)^{tk} D^* \nu^* x^{(2pn+t-2p)k} J_{pk}^2} = \frac{c_{tk+r}}{c_{tk}} - w^r.$$
(3.3)

By employing the gibonacci-Jacobsthal relationships in a compact way, we showcase an alternate proof of this theorem.

3.1. A Sophisticated Method. To begin with, we let

$$d = \frac{1+\nu^*}{4} = \begin{cases} 1/2, & \text{if } g_n = f_n; \\ 0, & \text{otherwise.} \end{cases}$$

It follows, from the gibonacci-Jacobsthal links, that

$$f_n(1/\sqrt{x}) = \frac{J_n(x)}{x^{(n-1)/2}};$$
 $l_n(1/\sqrt{x}) = \frac{j_n(x)}{x^{n/2}};$ $g_n(1/\sqrt{x}) = \frac{c_n(x)}{x^{n/2-d}}$

With these new tools at our disposal, we are ready for the alternate proof. *Proof.* Replacing x with $1/\sqrt{x}$ in the rational expression on the left side of equation (2.1) and using the above substitutions, we get

$$\begin{split} A &= \frac{(-1)^{tk} \mu \nu^* J_r / x^{(r-1)/2} \cdot J_{2pk} / x^{(2pk-1)/2}}{\left[c_{(2pn+t-p)k} / x^{\frac{(2pn+t-p)k}{2} - d}\right]^2 - (-1)^{tk} \mu \nu^* \left[\frac{J_{pk}}{x^{(pk-1)/2}}\right]^2} \\ &= \frac{(-1)^{tk} \mu \nu^* J_r J_{2pk} \cdot x^{(2pn+t-p)k-2d - \frac{2pk+r-2}{2}}}{c_{(2pn+t-p)k}^2 - (-1)^{tk} \mu \nu^* J_{pk}^2 \cdot x^{[(2pn+t-p)k-2d - (pk-1)]}} \\ &= \frac{(-1)^{tk} \mu \nu^* J_r J_{2pk} \cdot x^{(2pn+t-2p)k-\frac{\nu^*+r-1}{2}}}{c_{(2pn+t-p)k}^2 - (-1)^{tk} \mu \nu^* J_{pk}^2 \cdot x^{(2pn+t-2p)k+\frac{1-\nu^*}{2}}}; \\ \text{LHS} &= \sum_{n=1}^{\infty} \frac{(-1)^{tk} D^* \nu^* x^{(2pn+t-2p)k-r/2} J_r J_{2pk}}{c_{(2pn+t-p)k}^2 - (-1)^{tk} D^* \nu^* x^{(2pn+t-2p)k-r/2} J_{pk}^2}, \end{split}$$

where $c_n = c_n(x)$.

VOLUME 62, NUMBER 2

The right side of equation (2.1) yields

$$B = \frac{g_{tk+r}}{g_{tk}} - \alpha^r$$

= $\frac{c_{tk+r}/x^{\frac{tk+r}{2}} - d}{c_{tk}/x^{\frac{tk}{2}} - d} - \frac{w^r}{x^{r/2}};$
RHS = $\frac{c_{tk+r}}{x^{r/2}c_{tk}} - \frac{w^r}{x^{r/2}},$

where $g_n = g_n(1/\sqrt{x})$ and $c_n = c_n(x)$.

Combining the two sides yields the same Jacobsthal version, as expected:

$$\sum_{n=1}^{\infty} \frac{(-1)^{tk} D^* \nu^* x^{(2pn+t-2p)k} J_r J_{2pk}}{c_{(2pn+t-p)k}^2 - (-1)^{tk} D^* \nu^* x^{(2pn+t-2p)k} J_{pk}^2} = \frac{c_{tk+r}}{c_{tk}} - w^r,$$
(x).

where $c_n = c_n(x)$.

We now explore a host of gibonacci and Jacobsthal implications of Theorem 3.1.

3.2. Gibonacci and Jacobsthal Implications. With $J_n(1) = F_n$ and $j_n(1) = L_n$, Theorem 3.1 yields

$$\sum_{n=1}^{\infty} \frac{(-1)^{tk} F_r F_{2pk}}{F_{(2pn+t-p)k}^2 - (-1)^{tk} F_{pk}^2} = \frac{F_{tk+r}}{F_{tk}} - \alpha^r; \qquad (3.4)$$

$$\sum_{n=1}^{\infty} \frac{(-1)^{tk+1} 5F_r F_{2pk}}{L_{(2pn+t-p)k}^2 + (-1)^{tk} 5F_{pk}^2} = \frac{L_{tk+r}}{L_{tk}} - \alpha^r;$$
(3.5)

$$\sum_{n=1}^{\infty} \frac{(-1)^{tk} 2^{(2pn+t-2p)k} J_r J_{2pk}}{J_{(2pn+t-p)k}^2 - (-1)^{tk} 2^{(2pn+t-2p)k} J_{pk}^2} = \frac{J_{tk+r}}{J_{tk}} - 2^r;$$
(3.6)

$$\sum_{n=1}^{\infty} \frac{(-1)^{tk+1}9 \cdot 2^{(2pn+t-2p)k} J_r J_{2pk}}{j_{(2pn+t-p)k}^2 + (-1)^{tk}9 \cdot 2^{(2pn+t-2p)k} J_{pk}^2} = \frac{j_{tk+r}}{j_{tk}} - 2^r.$$
(3.7)

Let p = 3, r = 1, and $t \le 6$. With k = 1, equations (3.4) and (3.5) yield

$$\begin{split} \sum_{n=1}^{\infty} \frac{1}{F_{6n-2}^2 + 4} &= -\frac{1}{16} + \frac{\sqrt{5}}{16}; \quad \sum_{n=1}^{\infty} \frac{1}{L_{6n-2}^2 - 20} &= -\frac{1}{16} - \frac{\sqrt{5}}{80}; \\ \sum_{n=1}^{\infty} \frac{1}{F_{6n-1}^2 - 4} &= -\frac{3}{16} - \frac{\sqrt{5}}{16}; \quad \sum_{n=1}^{\infty} \frac{1}{L_{6n-1}^2 + 20} &= -\frac{1}{48} + \frac{\sqrt{5}}{80}; \\ \sum_{n=1}^{\infty} \frac{1}{F_{6n}^2 + 4} &= -\frac{1}{8} + \frac{\sqrt{5}}{16}; \quad \sum_{n=1}^{\infty} \frac{1}{L_{6n-1}^2 - 20} &= -\frac{1}{32} - \frac{\sqrt{5}}{80}; \\ \sum_{n=1}^{\infty} \frac{1}{F_{6n+1}^2 - 4} &= -\frac{7}{48} - \frac{\sqrt{5}}{16}; \quad \sum_{n=1}^{\infty} \frac{1}{L_{6n+1}^2 + 20} &= -\frac{3}{112} + \frac{\sqrt{5}}{80}; \\ \sum_{n=1}^{\infty} \frac{1}{F_{6n+2}^2 + 4} &= -\frac{11}{80} + \frac{\sqrt{5}}{16}; \quad \sum_{n=1}^{\infty} \frac{1}{L_{6n+2}^2 - 20} &= -\frac{5}{176} - \frac{\sqrt{5}}{80}; \\ \sum_{n=1}^{\infty} \frac{1}{F_{6n+3}^2 - 4} &= -\frac{9}{64} - \frac{\sqrt{5}}{16}; \quad \sum_{n=1}^{\infty} \frac{1}{L_{6n+3}^2 + 20} &= -\frac{1}{36} + \frac{\sqrt{5}}{80}. \end{split}$$

With k = 2, we get

MAY 2024

THE FIBONACCI QUARTERLY

$$\begin{split} &\sum_{n=1}^{\infty} \frac{1}{F_{2(6n-2)}^{2}-64} &= \frac{1}{96} - \frac{\sqrt{5}}{288}; &\sum_{n=1}^{\infty} \frac{1}{L_{2(6n-2)}^{2}+320} &= -\frac{1}{864} + \frac{\sqrt{5}}{1,440}; \\ &\sum_{n=1}^{\infty} \frac{1}{F_{2(6n-1)}^{2}-64} &= \frac{7}{864} - \frac{\sqrt{5}}{288}; &\sum_{n=1}^{\infty} \frac{1}{L_{2(6n-1)}^{2}+320} &= -\frac{1}{672} + \frac{\sqrt{5}}{1,440}; \\ &\sum_{n=1}^{\infty} \frac{1}{F_{2(6n)}^{2}-64} &= \frac{1}{128} - \frac{\sqrt{5}}{288}; &\sum_{n=1}^{\infty} \frac{1}{L_{2(6n-1)}^{2}+320} &= -\frac{1}{648} + \frac{\sqrt{5}}{1,440}; \\ &\sum_{n=1}^{\infty} \frac{1}{F_{2(6n+1)}^{2}-64} &= \frac{47}{6,048} - \frac{\sqrt{5}}{288}; &\sum_{n=1}^{\infty} \frac{1}{L_{2(6n+1)}^{2}+320} &= -\frac{7}{4,512} + \frac{\sqrt{5}}{1,440}; \\ &\sum_{n=1}^{\infty} \frac{1}{F_{2(6n+2)}^{2}-64} &= \frac{41}{5,280} - \frac{\sqrt{5}}{288}; &\sum_{n=1}^{\infty} \frac{1}{L_{2(6n+2)}^{2}+320} &= -\frac{55}{35,424} + \frac{\sqrt{5}}{1,440}; \\ &\sum_{n=1}^{\infty} \frac{1}{F_{2(6n+3)}^{2}-64} &= \frac{161}{20,736} - \frac{\sqrt{5}}{288}; &\sum_{n=1}^{\infty} \frac{1}{L_{2(6n+3)}^{2}+320} &= -\frac{1}{644} + \frac{\sqrt{5}}{1,440}. \end{split}$$

Next, we showcase the Jacobs thal counterparts of these gibonacci sums. With k=1, equations (3.6) and (3.7) yield

$$\begin{split} &\sum_{n=1}^{\infty} \frac{2^{6n-5}}{J_{6n-2}^2 + 9 \cdot 2^{6n-5}} &= \frac{1}{21}; \\ &\sum_{n=1}^{\infty} \frac{2^{6n-4}}{j_{6n-1}^2 - 9 \cdot 2^{6n-4}} &= \frac{1}{21}; \\ &\sum_{n=1}^{\infty} \frac{2^{6n-4}}{j_{6n-1}^2 - 9 \cdot 2^{6n-4}} &= \frac{1}{21}; \\ &\sum_{n=1}^{\infty} \frac{2^{6n-3}}{j_{6n-1}^2 + 9 \cdot 2^{6n-3}} &= \frac{1}{63}; \\ &\sum_{n=1}^{\infty} \frac{2^{6n-3}}{j_{6n+1}^2 - 9 \cdot 2^{6n-3}} &= \frac{1}{63}; \\ &\sum_{n=1}^{\infty} \frac{2^{6n-2}}{j_{6n+1}^2 - 9 \cdot 2^{6n-2}} &= \frac{1}{105}; \\ &\sum_{n=1}^{\infty} \frac{2^{6n-2}}{j_{6n+1}^2 + 9 \cdot 2^{6n-1}} &= \frac{1}{231}; \\ &\sum_{n=1}^{\infty} \frac{2^{6n-1}}{j_{6n+2}^2 - 81 \cdot 2^{6n-1}} &= \frac{1}{1,071}; \\ &\sum_{n=1}^{\infty} \frac{2^{6n}}{j_{6n+2}^2 - 81 \cdot 2^{6n-1}} &= \frac{1}{1,071}; \\ &\sum_{n=1}^{\infty} \frac{2^{6n}}{j_{6n+2}^2 - 81 \cdot 2^{6n-1}} &= \frac{1}{1,953}; \\ &\sum_{n=1}^{\infty} \frac{2^{6n}}{j_{6n+3}^2 - 9 \cdot 2^{6n}} &= \frac{1}{441}; \\ &\sum_{n=1}^{\infty} \frac{2^{6n}}{j_{6n+3}^2 - 81 \cdot 2^{6n-1}} &= \frac{1}{4,095}. \end{split}$$

Using k = 2, we get

$$\begin{split} &\sum_{n=1}^{\infty} \frac{2^{2(6n-5)}}{J_{2(6n-2)}^2 - 441 \cdot 2^{6n-5}} &= \frac{1}{1,365}; \\ &\sum_{n=1}^{\infty} \frac{2^{2(6n-5)}}{j_{2(6n-2)}^2 + 3,969 \cdot 2^{6n-5}} &= \frac{1}{20,475}; \\ &\sum_{n=1}^{\infty} \frac{2^{2(6n-4)}}{J_{2(6n-1)}^2 - 441 \cdot 2^{6n-4}} &= \frac{1}{6,825}; \\ &\sum_{n=1}^{\infty} \frac{2^{2(6n-4)}}{j_{2(6n-1)}^2 + 3,969 \cdot 2^{6n-4}} &= \frac{1}{69,615}; \\ &\sum_{n=1}^{\infty} \frac{2^{2(6n-3)}}{J_{2(6n)}^2 - 441 \cdot 2^{6n-3}} &= \frac{1}{28,665}; \\ &\sum_{n=1}^{\infty} \frac{2^{2(6n-3)}}{j_{2(6n)}^2 + 3,969 \cdot 2^{6n-3}} &= \frac{1}{266,175}; \\ &\sum_{n=1}^{\infty} \frac{2^{2(6n-2)}}{J_{2(6n+1)}^2 - 441 \cdot 2^{6n-2}} &= \frac{1}{116,025}; \\ &\sum_{n=1}^{\infty} \frac{2^{2(6n-2)}}{j_{2(6n+1)}^2 + 3,969 \cdot 2^{6n-2}} &= \frac{1}{1,052,415}; \end{split}$$

VOLUME 62, NUMBER 2

$$\sum_{n=1}^{\infty} \frac{2^{2(6n-1)}}{J_{2(6n+2)}^2 - 441 \cdot 2^{6n-1}} = \frac{1}{465, 465}; \qquad \sum_{n=1}^{\infty} \frac{2^{2(6n-1)}}{j_{2(6n+2)}^2 + 3, 969 \cdot 2^{6n-1}} = \frac{1}{4, 197, 375};$$
$$\sum_{n=1}^{\infty} \frac{2^{2(6n)}}{J_{2(6n+3)}^2 - 441 \cdot 2^{6n}} = \frac{1}{1, 863, 225}; \qquad \sum_{n=1}^{\infty} \frac{2^{2(6n)}}{j_{2(6n+3)}^2 + 3, 969 \cdot 2^{6n}} = \frac{1}{16, 777, 215}.$$

3.3. Gibonacci Delights. Using the above gibonacci sums, we can extract dividends.

$$\sum_{n=2}^{\infty} \frac{1}{F_{2n}^2 + 4} = \sum_{n=1}^{\infty} \left(\sum_{i=-1}^{1} \frac{1}{F_{6n+2i}^2 + 4} \right) = -\frac{13}{40} + \frac{3\sqrt{5}}{16};$$

$$\sum_{n=2}^{\infty} \frac{1}{L_{2n}^2 - 20} = \sum_{n=1}^{\infty} \left(\sum_{i=-1}^{1} \frac{1}{L_{6n+2i}^2 - 20} \right) = \frac{43}{352} - \frac{3\sqrt{5}}{80};$$

$$\sum_{n=2}^{\infty} \frac{1}{F_{2n+1}^2 - 4} = \sum_{n=1}^{\infty} \left(\sum_{i=-1}^{1} \frac{1}{F_{6n+2i+1}^2 - 4} \right) = \frac{91}{192} - \frac{3\sqrt{5}}{16};$$

$$\sum_{n=2}^{\infty} \frac{1}{L_{2n+1}^2 + 20} = \sum_{n=1}^{\infty} \left(\sum_{i=-1}^{1} \frac{1}{L_{6n+2i+1}^2 + 20} \right) = -\frac{19}{252} + \frac{3\sqrt{5}}{80}.$$

Finally, we encourage the gibonacci enthusiasts to explore the gibonacci and Jacobsthal sums with p = 5, k = 1 = r; p = 5, k = 2, r = 1; and p = 5, k = 2 = r.

4. Acknowledgment

The authors are grateful to the reviewer for a careful reading of the article, and for his/her extraordinary patience, encouraging words, and constructive suggestions.

References

- [1] M. Bicknell, A primer for the Fibonacci numbers: Part VII, The Fibonacci Quarterly, 8.4 (1970), 407–420.
- [2] A. F. Horadam, Jacobsthal representation polynomials, The Fibonacci Quarterly, 35.2 (1997), 137–148.
- [3] T. Koshy, Fibonacci and Lucas Numbers with Applications, Volume II, Wiley, Hoboken, New Jersey, 2019.
- [4] T. Koshy, Infinite sums involving Jacobsthal polynomials: Generalizations, The Fibonacci Quarterly, 61.4 (2023), 305–311.
- [5] T. Koshy and Z. Gao, Sums involving a class of Jacobsthal polynomial squares, The Fibonacci Quarterly, 62.1 (2024), 40–44.
- [6] T. Koshy, Sums involving a family of gibonacci polynomial squares: Generalizations, The Fibonacci Quarterly, 62.1 (2024), 75–83.

MSC2020: Primary 11B37, 11B39, 11C08.

DEPARTMENT OF MATHEMATICS, FRAMINGHAM STATE UNIVERSITY, FRAMINGHAM, MA 01701 Email address: tkoshy@emeriti.framingham.edu

DEPARTMENT OF COMPUTER SCIENCE, FRAMINGHAM STATE UNIVERSITY, FRAMINGHAM, MA 01701 Email address: zgao@framingham.edu