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Abstract. We explore the Jacobsthal version of an infinite sum involving gibonacci polyno-
mial squares and its implications.

1. Introduction

Extended gibonacci polynomials zn(x) are defined by the recurrence zn+2(x) = a(x)zn+1(x)+
b(x)zn(x), where x is an arbitrary integer variable; a(x), b(x), z0(x), and z1(x) are arbitrary
integer polynomials; and n ≥ 0.

Suppose a(x) = x and b(x) = 1. When z0(x) = 0 and z1(x) = 1, zn(x) = fn(x), the
nth Fibonacci polynomial ; and when z0(x) = 2 and z1(x) = x, zn(x) = ln(x), the nth Lucas
polynomial. Clearly, fn(1) = Fn, the nth Fibonacci number; and ln(1) = Ln, the nth Lucas
number [1, 3].

On the other hand, let a(x) = 1 and b(x) = x. When z0(x) = 0 and z1(x) = 1, zn(x) =
Jn(x), the nth Jacobsthal polynomial ; and when z0(x) = 2 and z1(x) = 1, zn(x) = jn(x), the
nth Jacobsthal-Lucas polynomial. Correspondingly, Jn = Jn(2) and jn = jn(2) are the nth
Jacobsthal and Jacobsthal-Lucas numbers, respectively. Clearly, Jn(1) = Fn; and jn(1) = Ln

[2, 3].
Gibonacci and Jacobsthal polynomials are linked by the relationships Jn(x) =

x(n−1)/2fn(1/
√
x) and jn(x) = xn/2ln(1/

√
x) [3, 4].

In the interest of brevity, clarity, and convenience, we omit the argument in the functional
notation, when there is no ambiguity; so zn will mean zn(x). In addition, we let gn = fn
or ln, cn = Jn or jn, ∆ =

√
x2 + 4, 2α = x + ∆, D =

√
4x+ 1, and 2w = 1 + D. Then

α(1/
√
x) =

1 +D

2
√
x

=
w√
x
.

2. Gibonacci Polynomial Sum

Before presenting an interesting gibonacci sum, again in the interest of brevity and
expediency, we now let [5, 6]

µ =

{
1, if gn = fn;

∆2, otherwise;
ν∗ =

{
1, if gn = fn;

−1, otherwise;
and D∗ =

{
1, if cn = Jn;

D2, otherwise.

Using these tools as building blocks, we established the following result in [5], the cornerstone
of our discourse.

Theorem 2.1. Let k, p, r, and t be positive integers, where t ≤ 2p. Then

∞∑
n=1

(−1)tkµν∗frf2pk
g2(2pn+t−p)k − (−1)tkµν∗f2

pk

=
gtk+r

gtk
− αr. (2.1)

The goal of our discourse is to explore the Jacobsthal counterpart of this sum.
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3. Jacobsthal Polynomial Sum

To realize our objective, we will employ the gibonacci-Jacobsthal relationships in Section 1.
To this end, in the interest of brevity and clarity, we let A denote the fractional expression on
the left side of the given gibonacci equation and B that on its right side, and LHS and RHS
the left-hand side and right-hand side of the corresponding Jacobsthal equation, as in [5, 6].

With this short background, we now begin our endeavor.

Proof. Case 1. Suppose gn = fn. We have A =
(−1)tkfrf2pk

f2
(2pn+t−p)k − (−1)tkf2

pk

. Now, replace x with

1/
√
x, and multiply the numerator and denominator with x(2pn+t)k−2+r/2. We get

A =
(−1)tkx(2pn+t−p)k−1

[
x(r−1)/2fr

] [
x(2pk−1)/2f2pk

]
xpk−1+r/2

{
x[(2pn+t−p)k−1]/2f(2pn+t−p)k

}2 − (−1)tkx(2pn+t−p)k−1+r/2[x(pk−1)/2fpk]2

=
(−1)tkx(2pn+t−2p)k−r/2JrJ2pk

J2
(2pn+t−p)k − (−1)tkx(2pn+t−2p)kJ2

pk

;

LHS =
∞∑
n=1

(−1)tkx(2pn+t−2p)k−r/2JrJ2pk

J2
(2pn+t−p)k − (−1)tkx(2pn+t−2p)kJ2

pk

,

where gn = gn(1/
√
x) and cn = cn(x).

We now turn to B =
ftk+r

ftk
− αr. Replacing x with 1/

√
x, and multiplying the numerator

and denominator with x(tk+r−1)/2 yields

B =
x(tk+r−1)/2ftk+r

xr/2[x(tk−1)/2ftk]
− wr

xr/2
;

RHS =
Jtk+r

xr/2Jtk
− wr

xr/2
,

where gn = gn(1/
√
x) and cn = cn(x).

By equating the two sides, we get the Jacobsthal version of equation (2.1):

∞∑
n=1

(−1)tkx(2pn+t−2p)kJrJ2pk

J2
(2pn+t−p)k − (−1)tkx(2pn+t−2p)kJ2

pk

=
Jtk+r

Jtk
− wr, (3.1)

where cn = cn(x).
Next, we pursue the Jacobsthal-Lucas version of Theorem 2.1.

Case 2. With gn = ln, we have A =
(−1)tk+1∆2frf2pk

l2(2pn+t−p)k + (−1)tk∆2f2
pk

. Again, replace x with 1/
√
x,

and multiply the numerator and denominator with x(2pn+t−p)k, we have

A =
(−1)tk+1D2

x · x[(2pn+t−2p)k+1−r/2]
[
x(r−1)/2fr

] [
x(2pk−1)/2f2pk

]
{x[(2pn+t−p)k]/2l(2pn+t−p)k}2 + (−1)tk D2

x x(2pn+t−2p)k+1[x(pk−1)/2fpk]2

=
(−1)tk+1D2x(2pn+t−2p)k−r/2JrJ2pk

j2(2pn+t−p)k + (−1)tkD2x(2pn+t−2p)kJ2
pk

;

LHS =

∞∑
n=1

(−1)tk+1D2x(2pn+t−2p)k−r/2JrJ2pk

j2(2pn+t−p)k + (−1)tkD2x(2pn+t−2p)kJ2
pk

,

MAY 2024 131



THE FIBONACCI QUARTERLY

where gn = gn(1/
√
x) and cn = cn(x).

This time, we have B =
ltk+r

ltk
−αr. Now, replace x with 1/

√
x, and multiply the numerator

and denominator with x(tk+r)/2. This yields

B =
x(tk+r)/2ltk+r

xr/2[xtk/2ltk]
− wr

xr/2
;

RHS =
jtk+r

xr/2jtk
− wr

xr/2
,

where gn = gn(1/
√
x) and cn = cn(x).

Equating the two sides yields the corresponding Jacobsthal-Lucas version:
∞∑
n=1

(−1)tk+1D2x(2pn+t−2p)kJrJ2pk

j2(2pn+t−p)k + (−1)tkD2x(2pn+t−2p)kJ2
pk

=
jtk+r

jtk
− wr, (3.2)

where cn = cn(x). □

Using equations (3.1) and (3.2), we get the Jacobsthal version of Theorem 2.1, as the
following theorem features.

Theorem 3.1. Let k, p, r, and t be positive integers, where t ≤ 2p. Then
∞∑
n=1

(−1)tkD∗ν∗x(2pn+t−2p)kJrJ2pk

c2(2pn+t−p)k − (−1)tkD∗ν∗x(2pn+t−2p)kJ2
pk

=
ctk+r

ctk
− wr. (3.3)

By employing the gibonacci-Jacobsthal relationships in a compact way, we showcase an
alternate proof of this theorem.
3.1. A Sophisticated Method. To begin with, we let

d =
1 + ν∗

4
=

{
1/2, if gn = fn;

0, otherwise.

It follows, from the gibonacci-Jacobsthal links, that

fn(1/
√
x) =

Jn(x)

x(n−1)/2
; ln(1/

√
x) =

jn(x)

xn/2
; gn(1/

√
x) =

cn(x)

xn/2−d
.

With these new tools at our disposal, we are ready for the alternate proof.
Proof. Replacing x with 1/

√
x in the rational expression on the left side of equation (2.1) and

using the above substitutions, we get

A =
(−1)tkµν∗Jr/x

(r−1)/2 · J2pk/x(2pk−1)/2[
c(2pn+t−p)k/x

(2pn+t−p)k
2

−d
]2

− (−1)tkµν∗
[

Jpk
x(pk−1)/2

]2
=

(−1)tkµν∗JrJ2pk · x(2pn+t−p)k−2d− 2pk+r−2
2

c2(2pn+t−p)k − (−1)tkµν∗J2
pk · x[(2pn+t−p)k−2d−(pk−1)

=
(−1)tkµν∗JrJ2pk · x(2pn+t−2p)k− ν∗+r−1

2

c2(2pn+t−p)k − (−1)tkµν∗J2
pk · x

(2pn+t−2p)k+ 1−ν∗
2

;

LHS =
∞∑
n=1

(−1)tkD∗ν∗x(2pn+t−2p)k−r/2JrJ2pk

c2(2pn+t−p)k − (−1)tkD∗ν∗x(2pn+t−2p)kJ2
pk

,

where cn = cn(x).
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The right side of equation (2.1) yields

B =
gtk+r

gtk
− αr

=
ctk+r/x

tk+r
2

−d

ctk/x
tk
2
−d

− wr

xr/2
;

RHS =
ctk+r

xr/2ctk
− wr

xr/2
,

where gn = gn(1/
√
x) and cn = cn(x).

Combining the two sides yields the same Jacobsthal version, as expected:
∞∑
n=1

(−1)tkD∗ν∗x(2pn+t−2p)kJrJ2pk

c2(2pn+t−p)k − (−1)tkD∗ν∗x(2pn+t−2p)kJ2
pk

=
ctk+r

ctk
− wr,

where cn = cn(x). □

We now explore a host of gibonacci and Jacobsthal implications of Theorem 3.1.

3.2. Gibonacci and Jacobsthal Implications. With Jn(1) = Fn and jn(1) = Ln,
Theorem 3.1 yields

∞∑
n=1

(−1)tkFrF2pk

F 2
(2pn+t−p)k − (−1)tkF 2

pk

=
Ftk+r

Ftk
− αr; (3.4)

∞∑
n=1

(−1)tk+15FrF2pk

L2
(2pn+t−p)k + (−1)tk5F 2

pk

=
Ltk+r

Ltk
− αr; (3.5)

∞∑
n=1

(−1)tk2(2pn+t−2p)kJrJ2pk

J2
(2pn+t−p)k − (−1)tk2(2pn+t−2p)kJ2

pk

=
Jtk+r

Jtk
− 2r; (3.6)

∞∑
n=1

(−1)tk+19 · 2(2pn+t−2p)kJrJ2pk

j2(2pn+t−p)k + (−1)tk9 · 2(2pn+t−2p)kJ2
pk

=
jtk+r

jtk
− 2r. (3.7)

Let p = 3, r = 1, and t ≤ 6. With k = 1, equations (3.4) and (3.5) yield
∞∑
n=1

1

F 2
6n−2 + 4

= − 1

16
+

√
5

16
;

∞∑
n=1

1

L2
6n−2 − 20

=
1

16
−

√
5

80
;

∞∑
n=1

1

F 2
6n−1 − 4

=
3

16
−

√
5

16
;

∞∑
n=1

1

L2
6n−1 + 20

= − 1

48
+

√
5

80
;

∞∑
n=1

1

F 2
6n + 4

= −1
8
+

√
5

16
;

∞∑
n=1

1

L2
6n − 20

=
1

32
−

√
5

80
;

∞∑
n=1

1

F 2
6n+1 − 4

=
7

48
−

√
5

16
;

∞∑
n=1

1

L2
6n+1 + 20

= − 3

112
+

√
5

80
;

∞∑
n=1

1

F 2
6n+2 + 4

= −11
80

+

√
5

16
;

∞∑
n=1

1

L2
6n+2 − 20

=
5

176
−

√
5

80
;

∞∑
n=1

1

F 2
6n+3 − 4

=
9

64
−

√
5

16
;

∞∑
n=1

1

L2
6n+3 + 20

= − 1

36
+

√
5

80
.

With k = 2, we get
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∞∑
n=1

1

F 2
2(6n−2) − 64

=
1

96
−

√
5

288
;

∞∑
n=1

1

L2
2(6n−2) + 320

= − 1

864
+

√
5

1, 440
;

∞∑
n=1

1

F 2
2(6n−1) − 64

=
7

864
−

√
5

288
;

∞∑
n=1

1

L2
2(6n−1) + 320

= − 1

672
+

√
5

1, 440
;

∞∑
n=1

1

F 2
2(6n) − 64

=
1

128
−

√
5

288
;

∞∑
n=1

1

L2
2(6n) + 320

= − 1

648
+

√
5

1, 440
;

∞∑
n=1

1

F 2
2(6n+1) − 64

=
47

6, 048
−

√
5

288
;

∞∑
n=1

1

L2
2(6n+1) + 320

= − 7

4, 512
+

√
5

1, 440
;

∞∑
n=1

1

F 2
2(6n+2) − 64

=
41

5, 280
−

√
5

288
;

∞∑
n=1

1

L2
2(6n+2) + 320

= − 55

35, 424
+

√
5

1, 440
;

∞∑
n=1

1

F 2
2(6n+3) − 64

=
161

20, 736
−

√
5

288
;

∞∑
n=1

1

L2
2(6n+3) + 320

= − 1

644
+

√
5

1, 440
.

Next, we showcase the Jacobsthal counterparts of these gibonacci sums.
With k = 1, equations (3.6) and (3.7) yield

∞∑
n=1

26n−5

J2
6n−2 + 9 · 26n−5

=
1

21
;

∞∑
n=1

26n−5

j26n−2 − 81 · 26n−5
=

1

63
;

∞∑
n=1

26n−4

J2
6n−1 − 9 · 26n−4

=
1

21
;

∞∑
n=1

26n−4

j26n−1 + 81 · 26n−4
=

1

315
;

∞∑
n=1

26n−3

J2
6n + 9 · 26n−3

=
1

63
;

∞∑
n=1

26n−3

j26n − 81 · 26n−3
=

1

441
;

∞∑
n=1

26n−2

J2
6n+1 − 9 · 26n−2

=
1

105
;

∞∑
n=1

26n−2

j26n+1 + 81 · 26n−2
=

1

1, 071
;

∞∑
n=1

26n−1

J2
6n+2 + 9 · 26n−1

=
1

231
;

∞∑
n=1

26n−1

j26n+2 − 81 · 26n−1
=

1

1, 953
;

∞∑
n=1

26n

J2
6n+3 − 9 · 26n

=
1

441
;

∞∑
n=1

26n

j26n+3 + 81 · 26n
=

1

4, 095
.

Using k = 2, we get

∞∑
n=1

22(6n−5)

J2
2(6n−2) − 441 · 26n−5

=
1

1, 365
;

∞∑
n=1

22(6n−5)

j22(6n−2) + 3, 969 · 26n−5
=

1

20, 475
;

∞∑
n=1

22(6n−4)

J2
2(6n−1) − 441 · 26n−4

=
1

6, 825
;

∞∑
n=1

22(6n−4)

j22(6n−1) + 3, 969 · 26n−4
=

1

69, 615
;

∞∑
n=1

22(6n−3)

J2
2(6n) − 441 · 26n−3

=
1

28, 665
;

∞∑
n=1

22(6n−3)

j22(6n) + 3, 969 · 26n−3
=

1

266, 175
;

∞∑
n=1

22(6n−2)

J2
2(6n+1) − 441 · 26n−2

=
1

116, 025
;

∞∑
n=1

22(6n−2)

j22(6n+1) + 3, 969 · 26n−2
=

1

1, 052, 415
;
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∞∑
n=1

22(6n−1)

J2
2(6n+2) − 441 · 26n−1

=
1

465, 465
;

∞∑
n=1

22(6n−1)

j22(6n+2) + 3, 969 · 26n−1
=

1

4, 197, 375
;

∞∑
n=1

22(6n)

J2
2(6n+3) − 441 · 26n

=
1

1, 863, 225
;

∞∑
n=1

22(6n)

j22(6n+3) + 3, 969 · 26n
=

1

16, 777, 215
.

3.3. Gibonacci Delights. Using the above gibonacci sums, we can extract dividends.
∞∑
n=2

1

F 2
2n + 4

=
∞∑
n=1

(
1∑

i=−1

1

F 2
6n+2i + 4

)
= −13

40
+

3
√
5

16
;

∞∑
n=2

1

L2
2n − 20

=

∞∑
n=1

(
1∑

i=−1

1

L2
6n+2i − 20

)
=

43

352
− 3

√
5

80
;

∞∑
n=2

1

F 2
2n+1 − 4

=

∞∑
n=1

(
1∑

i=−1

1

F 2
6n+2i+1 − 4

)
=

91

192
− 3

√
5

16
;

∞∑
n=2

1

L2
2n+1 + 20

=

∞∑
n=1

(
1∑

i=−1

1

L2
6n+2i+1 + 20

)
= − 19

252
+

3
√
5

80
.

Finally, we encourage the gibonacci enthusiasts to explore the gibonacci and Jacobsthal
sums with p = 5, k = 1 = r; p = 5, k = 2, r = 1; and p = 5, k = 2 = r.
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