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Abstract. We give formulas for infinite sums involving even (odd, respectively) powers of the
gibonacci polynomials, unifying and extending some recent results on infinite sums involving
low powers of the gibonacci polynomials.

1. Introduction

The gibonacci polynomials (short for generalized Fibonacci polynomials) gn(x) are defined
by the second-order recurrence gn+2(x) = xgn+1(x) + gn(x), where x is an arbitrary integer
variable, g0(x) and g1(x) are arbitrary integer polynomials, and n ≥ 0. Let g0(x) = a = a(x)
and g1(x) = b = b(x). If a = 0 and b = 1, then gn(x) is the nth Fibonacci polynomial fn(x)
and if a = 2 and b = x, then gn(x) is the nth Lucas polynomial ℓn(x). In particular, fn(1) is
the nth Fibonacci number Fn, and ℓn(1) is the nth Lucas number Ln, see [1,2]. The first four
gibonacci polynomials are g0(x) = a, g1(x) = b, g2(x) = a + bx, and g3(x) = ax + b(x2 + 1).
Note that there are two other closely related polynomials, one is the Pell polynomials pn(x),
defined as pn(x) = fn(2x), and the other is the Pell-Lucas polynomials qn(x), defined as
qn(x) = ℓn(2x) [2]. For brevity and convenience, we omit the argument x in the functional
notation.

Koshy studied systematically properties of the gibonacci polynomials such as infinite sums
of the squares and fourth powers of the gibonacci polynomials. Throughout the paper, let k
be a positive integer; r = 1, . . . , k;

L =

{
(k + 1)/2, if k is odd;

k/2 + 1, otherwise;

M =

{
(k + 1)/2, if k is odd;

k/2, otherwise;

s =

{
2r − 1, if k is odd;

2r, otherwise;

t =

{
2r, if k is odd;

2r − 1, otherwise;

and ∆ =
√
x2 + 4. Koshy [5] proved the following formulas for infinite sums involving the

squares of the gibonacci polynomials, which were also derived via graph-theoretic techniques
in [6].

∞∑
n=L

f2kf4n
[f2

2n − (−1)kf2
k ]

2
=

k∑
r=1

1

f2
s

, (1.1)

∞∑
n=L

f2kf4n
[ℓ22n + (−1)k∆2f2

k ]
2
=

1

∆2

k∑
r=1

1

ℓ2s
, (1.2)
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∞∑
n=M

f2kf4n+2

[f2
2n+1 + (−1)kf2

k ]
2
=

k∑
r=1

1

f2
t

, (1.3)

∞∑
n=M

f2kf4n+2

[ℓ22n+1 − (−1)k∆2f2
k ]

2
=

1

∆2

k∑
r=1

1

ℓ2t
. (1.4)

For infinite sums involving the fourth powers of the gibonacci polynomials, Koshy [7] also
established the following formulas.

∞∑
n=L

f4kf8n − 4(−1)kf2kf4n
[f2

2n − (−1)kf2
k ]

4
= ∆2

k∑
r=1

1

f4
s

, (1.5)

∞∑
n=L

f4kf8n + 4(−1)kf2kf4n
[ℓ22n + (−1)k∆2f2

k ]
4

=
1

∆2

k∑
r=1

1

ℓ4s
, (1.6)

∞∑
n=M

f4kf8n+4 + 4(−1)kf2kf4n+2

[f2
2n+1 + (−1)kf2

k ]
4

= ∆2
k∑

r=1

1

f4
t

, (1.7)

∞∑
n=M

f4kf8n+4 − 4(−1)kf2kf4n+2

[ℓ22n+1 − (−1)k∆2f2
k ]

4
=

1

∆2

k∑
r=1

1

ℓ4t
. (1.8)

More results may be found in [3,8–12]. Inspired by Koshy’s results on infinite sums involving
powers of the gibonacci polynomials, we establish some further properties on infinite sums
involving powers of the gibonacci polynomials. The aim of the paper is twofold. First, we try
to establish formulas on infinite sums involving even powers of the gibonacci polynomials by
extending the above results as follows.

Theorem 1.1. Let m be a positive integer. Then

∞∑
n=L

∑m−1
j=0

(
2m
j

)
(−1)(k+1)jf2k(m−j)f4n(m−j)

[f2
2n − (−1)kf2

k ]
2m

= ∆2(m−1)
k∑

r=1

1

f2m
s

.

Theorem 1.2. Let m be a positive integer. Then

∞∑
n=L

∑m−1
j=0

(
2m
j

)
(−1)kjf2k(m−j)f4n(m−j)

[ℓ22n + (−1)k∆2f2
k ]

2m
=

1

∆2

k∑
r=1

1

ℓ2ms
.

Theorem 1.3. Let m be a positive integer. Then

∞∑
n=M

∑m−1
j=0

(
2m
j

)
(−1)kjf2k(m−j)f(4n+2)(m−j)

[f2
2n+1 + (−1)kf2

k ]
2m

= ∆2(m−1)
k∑

r=1

1

f2m
t

.

Theorem 1.4. Let m be a positive integer. Then

∞∑
n=M

∑m−1
j=0

(
2m
j

)
(−1)(k+1)jf2k(m−j)f(4n+2)(m−j)

[ℓ22n+1 − (−1)k∆2f2
k ]

2m
=

1

∆2

k∑
r=1

1

ℓ2mt
.

Letting m = 1, 2 in Theorem 1.1, we have (1.1) and (1.5). So, Theorem 1.1 extends (1.1)
and (1.5). Similarly, Theorem 1.2 extends (1.2) and (1.6), Theorem 1.3 extends (1.3) and
(1.7), and Theorem 1.4 extends (1.4) and (1.8).

Second, we give formulas involving infinite sums involving odd powers of the gibonacci
polynomials as follows.
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Theorem 1.5. For a positive integer n and a nonnegative integer m with n ≥ k,

∞∑
n=L

∑m
j=0

(
2m+1

j

)
f2n(2m+1−2j)ℓk(2m+1−2j)

(f2
2n + f2

k )
2m+1

= ∆2m
k∑

r=1

1

f2m+1
2r−1

if k is odd, and

∞∑
n=L

∑m
j=0

(
2m+1

j

)
(−1)jℓ2n(2m+1−2j)fk(2m+1−2j)

(f2
2n − f2

k )
2m+1

= ∆2m
k∑

r=1

1

f2m+1
2r

if k is even.

Theorem 1.6. For a positive integer n and a nonnegative integer m with n ≥ k,

∞∑
n=L

∑m
j=0

(
2m+1

j

)
(−1)jℓ2n(2m+1−2j)ℓk(2m+1−2j)

(ℓ22n −∆2f2
k )

2m+1
=

k∑
r=1

1

ℓ2m+1
2r−1

if k is odd, and

∞∑
n=L

∑m
j=0

(
2m+1

j

)
f2n(2m+1−2j)fk(2m+1−2j)

(ℓ22n +∆2f2
k )

2m+1
=

1

∆2

k∑
r=1

1

ℓ2m+1
2r

if k is even.

Theorem 1.7. For a positive integer n and a nonnegative integer m with n ≥ k,

∞∑
n=M

∑m
j=0

(
2m+1

j

)
(−1)jf(2n+1)(2m+1−2j)ℓk(2m+1−2j)

(f2
2n+1 − f2

k )
2m+1

= ∆2m
k∑

r=1

1

f2m+1
2r

if k is odd, and

∞∑
n=M

∑m
j=0

(
2m+1

j

)
ℓ(2n+1)(2m+1−2j)fk(2m+1−2j)

(f2
2n+1 + f2

k )
2m+1

= ∆2m
k∑

r=1

1

f2m+1
2r−1

if k is even.

Theorem 1.8. For a positive integer n and a nonnegative integer m with n ≥ k,

∞∑
n=M

∑m
j=0

(
2m+1

j

)
ℓ(2n+1)(2m+1−2j)ℓk(2m+1−2j)

(ℓ22n+1 +∆2f2
k )

2m+1
=

k∑
r=1

1

ℓ2m+1
2r

if k is odd, and

∞∑
n=M

∑m
j=0

(
2m+1

j

)
(−1)jf(2n+1)(2m+1−2j)fk(2m+1−2j)

(ℓ22n+1 −∆2f2
k )

2m+1
=

1

∆2

k∑
r=1

1

ℓ2m+1
2r−1

if k is even.

The case m = 0 in Theorems 1.5, 1.6, 1.7, and 1.8 reduces to equations (5), (9), (7), and
(11), respectively in [3].

As corollaries of Theorems 1.5–1.8, we derive a series of identities related to Fibonacci and
Lucas polynomials (numbers, respectively).

2. Preliminaries

We need the following general properties of the gibonacci polynomials, where gn = fn, ℓn.

Lemma 2.1. [5] Let n be a positive integer with n ≥ k. Then

gn+kgn−k − g2n =

{
(−1)n+k+1f2

k , if gn = fn;

(−1)n+k∆2f2
k , otherwise.

We also need the following telescoping sums suitable for any positive integer power λ of
g(x), established in [5].

Lemma 2.2. [5]
∞∑

n=(k+1)/2
k odd

(
1

gλ2n−k

− 1

gλ2n+k

)
=

k∑
r=1

1

gλ2r−1

.
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Lemma 2.3. [5]
∞∑

n=k/2+1
k even

(
1

gλ2n−k

− 1

gλ2n+k

)
=

k∑
r=1

1

gλ2r
.

Lemma 2.4. [5]
∞∑

n=(k+1)/2
k odd

(
1

gλ2n+1−k

− 1

gλ2n+1+k

)
=

k∑
r=1

1

gλ2r
.

Lemma 2.5. [5]
∞∑

n=k/2
k even

(
1

gλ2n+1−k

− 1

gλ2n+1+k

)
=

k∑
r=1

1

gλ2r−1

.

Fibonacci polynomials fn(x) and Lucas polynomials ℓn(x) can be calculated by the Binet-

like formulas [2]: fn = αn−βn

α−β and ℓn = αn + βn, respectively, where α = x+
√
x2+4
2 and

β = x−
√
x2+4
2 . Clearly, α− β = ∆ and αβ = −1.

3. Sums Involving Even Powers of the Gibonacci Polynomials

In this section, we investigate sums involving even powers of the gibonacci polynomials. We
need two key lemmas.

Lemma 3.1. Let n and m be positive integers with n ≥ k. Then

∆2(m−1)
(
f2m
n+k − f2m

n−k

)
=

m−1∑
j=0

(
2m

j

)
(−1)(n+k+1)jf2k(m−j)f2n(m−j).

Proof. For j = 0, . . . ,m− 1, let

Aj =

(
2m

j

)
(−1)jα(n+k)(2m−j)β(n+k)j +

(
2m

2m− j

)
(−1)2m−jα(n+k)jβ(n+k)(2m−j)

−
(
2m

j

)
(−1)jα(n−k)(2m−j)β(n−k)j −

(
2m

2m− j

)
(−1)2m−jα(n−k)jβ(n−k)(2m−j).

Because αβ = −1, we have

Aj =

(
2m

j

)
(−1)j

(
α(n+k)(2m−j)β(n+k)j + α(n+k)jβ(n+k)(2m−j)

−α(n−k)(2m−j)β(n−k)j − α(n−k)jβ(n−k)(2m−j)
)

=

(
2m

j

)
(−1)j

(
α(n+k)(2m−2j)α(n+k)jβ(n+k)j + α(n+k)jβ(n+k)jβ(n+k)(2m−2j)

−α(n−k)(2m−2j)α(n−k)jβ(n−k)j − α(n−k)jβ(n−k)jβ(n−k)(2m−2j)
)

=

(
2m

j

)
(−1)j

[
(−1)(n+k)jα(n+k)(2m−2j) + (−1)(n+k)jβ(n+k)(2m−2j)

−(−1)(n−k)j(−1)2kjα(n−k)(2m−2j) − (−1)(n−k)j(−1)2kjβ(n−k)(2m−2j)
]

=

(
2m

j

)
(−1)(n+k+1)j

(
α(n+k)(2m−2j) + β(n+k)(2m−2j) − α(n−k)(2m−2j) − β(n−k)(2m−2j)

)
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=

(
2m

j

)
(−1)(n+k+1)j

(
α(n+k)(2m−2j) + β(n+k)(2m−2j)

−α(n−k)(2m−2j)α(2m−2j)kβ(2m−2j)k − β(n−k)(2m−2j)β(2m−2j)kα(2m−2j)k
)

=

(
2m

j

)
(−1)(n+k+1)j

(
α(n+k)(2m−2j) + β(n+k)(2m−2j)

−α(2m−2j)nβ(2m−2j)k − α(2m−2j)kβ(2m−2j)n
)

=

(
2m

j

)
(−1)(n+k+1)j

(
α2k(m−j) − β2k(m−j)

)(
α2n(m−j) − β2n(m−j)

)
= ∆2

(
2m

j

)
(−1)(n+k+1)jf2k(m−j)f2n(m−j),

where the last equality follows from the Binet-like formula. Note also that(
2m

m

)
(−1)m

(
α(n+k)(2m−m)β(n+k)m − α(n−k)(2m−m)β(n−k)m

)
=

(
2m

m

)
(−1)m

[
(−1)(n+k)m − (−1)(n−k)m(−1)2km

]
= 0.

By the Binet-like formula and the binomial theorem, we have

∆2m
(
f2m
n+k − f2m

n−k

)
= (α− β)2m

(
f2m
n+k − f2m

n−k

)
= (αn+k − βn+k)2m − (αn−k − βn−k)2m

=
m−1∑
j=0

Aj +

(
2m

m

)
(−1)m

(
α(n+k)(2m−m)β(n+k)m − α(n−k)(2m−m)β(n−k)m

)

=

m−1∑
j=0

Aj

= ∆2
m−1∑
j=0

(
2m

j

)
(−1)(n+k+1)jf2k(m−j)f2n(m−j). □

By a proof similar to that of Lemma 3.1, we have the following lemma.

Lemma 3.2. Let n and m be positive integers with n ≥ k. Then

ℓ2mn+k − ℓ2mn−k = ∆2
m−1∑
j=0

(
2m

j

)
(−1)(n+k)jf2k(m−j)f2n(m−j).

Now, we are ready to prove Theorems 1.1–1.4.

Proof of Theorem 1.1. By Lemma 2.1, we have

f2
2n − (−1)kf2

k = f2n+kf2n−k.
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By Lemma 3.1, we have

m−1∑
j=0

(
2m

j

)
(−1)(k+1)jf2k(m−j)f4n(m−j) = ∆2(m−1)

(
f2m
2n+k − f2m

2n−k

)
.

Thus, ∑m−1
j=0

(
2m
j

)
(−1)(k+1)jf2k(m−j)f4n(m−j)

[f2
2n − (−1)kf2

k ]
2m

= ∆2(m−1) ·
f2m
2n+k − f2m

2n−k

f2m
2n+kf

2m
2n−k

= ∆2(m−1)

(
1

f2m
2n−k

− 1

f2m
2n+k

)
.

(3.1)

Summing both sides of (3.1) over all n ∈ [L,∞), we get

∞∑
n=L

∑m−1
j=0

(
2m
j

)
(−1)(k+1)jf2k(m−j)f4n(m−j)

[f2
2n − (−1)kf2

k ]
2m

= ∆2(m−1)
∞∑

n=L

(
1

f2m
2n−k

− 1

f2m
2n+k

)
.

If k is odd, then we have, by Lemma 2.2, that

∞∑
n=L

(
1

f2m
2n−k

− 1

f2m
2n+k

)
=

∞∑
n=(k+1)/2

k odd

(
1

f2m
2n−k

− 1

f2m
2n+k

)

=
k∑

r=1

1

f2m
2r−1

=
k∑

r=1

1

f2m
s

.

If k is even, then we have, by Lemma 2.3, that

∞∑
n=L

(
1

f2m
2n−k

− 1

f2m
2n+k

)
=

∞∑
n=k/2+1
k even

(
1

f2m
2n−k

− 1

f2m
2n+k

)

=
k∑

r=1

1

f2m
2r

=
k∑

r=1

1

f2m
s

.

Now, the result follows readily. □

The proofs of Theorems 1.2–1.4 are similar to those of Theorem 1.1 (by Lemmas 2.1, 3.2,
2.2, and 2.3 for Theorem 1.2, Lemmas 2.1, 3.1, 2.4, and 2.5 for Theorem 1.3, and Lemmas 2.1,
3.2, 2.4, and 2.5 for Theorem 1.4) and are left as exercises for the interested reader.

4. Sums Involving Odd Powers of the Gibonacci Polynomials

We need some lemmas in the proofs.

Lemma 4.1. Let n be a positive integer with n ≥ k and m be a nonnegative integer. Then

∆2m
(
f2m+1
n+k − f2m+1

n−k

)
=

{∑m
j=0

(
2m+1

j

)
(−1)njfn(2m+1−2j)ℓk(2m+1−2j), if k is odd;∑m

j=0

(
2m+1

j

)
(−1)(n+1)jℓn(2m+1−2j)fk(2m+1−2j), otherwise.

Proof. For j = 0, . . . ,m, let

Cj =

(
2m+ 1

j

)
(−1)jα(n+k)(2m+1−j)β(n+k)j
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+

(
2m+ 1

2m+ 1− j

)
(−1)2m+1−jα(n+k)jβ(n+k)(2m+1−j)

−
(
2m+ 1

j

)
(−1)jα(n−k)(2m+1−j)β(n−k)j

−
(

2m+ 1

2m+ 1− j

)
(−1)2m+1−jα(n−k)jβ(n−k)(2m+1−j).

Because αβ = −1, we have

Cj =

(
2m+ 1

j

)
(−1)j

(
α(n+k)(2m+1−j)β(n+k)j − α(n+k)jβ(n+k)(2m+1−j)

−α(n−k)(2m+1−j)β(n−k)j + α(n−k)jβ(n−k)(2m+1−j)
)

=

(
2m+ 1

j

)
(−1)(n+k+1)j

(
α(n+k)(2m+1−2j) − β(n+k)(2m+1−2j)

−α(n−k)(2m+1−2j) + β(n−k)(2m+1−2j)
)
.

Now, if k is odd, then, by the Binet-like formula, the binomial theorem, and αβ = −1, we have

∆2m
(
f2m+1
n+k − f2m+1

n−k

)
=

1

α− β

[
(αn+k − βn+k)2m+1 − (αn−k − βn−k)2m+1

]
=

1

α− β

m∑
j=0

Cj

=
1

α− β

m∑
j=0

(
2m+ 1

j

)
(−1)nj

(
α(n+k)(2m+1−2j) − β(n+k)(2m+1−2j)

+α(n−k)(2m+1−2j)αk(2m+1−2j)βk(2m+1−2j)

−β(n−k)(2m+1−2j)αk(2m+1−2j)βk(2m+1−2j)
)

=
1

α− β

m∑
j=0

(
2m+ 1

j

)
(−1)nj

(
α(n+k)(2m+1−2j) − β(n+k)(2m+1−2j)

+αn(2m+1−2j)βk(2m+1−2j) − αk(2m+1−2j)βn(2m+1−2j)
)

=

m∑
j=0

(
2m+ 1

j

)
(−1)nj

[
1

α− β

(
αn(2m+1−2j) − βn(2m+1−2j)

)]
·
(
αk(2m+1−2j) + βk(2m+1−2j)

)
=

m∑
j=0

(
2m+ 1

j

)
(−1)njfn(2m+1−2j)ℓk(2m+1−2j).

Similarly, if k is even, then

∆2m
(
f2m+1
n+k − f2m+1

n−k

)
=

m∑
j=0

(
2m+ 1

j

)
(−1)(n+1)j

(
αn(2m+1−2j) + βn(2m+1−2j)

)
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·
[

1

α− β

(
αk(2m+1−2j) − βk(2m+1−2j)

)]
=

m∑
j=0

(
2m+ 1

j

)
(−1)(n+1)jℓn(2m+1−2j)fk(2m+1−2j),

as desired. □

By a proof similar to that of Lemma 4.1, we have the following lemma.

Lemma 4.2. Let n be a positive integer with n ≥ k and m a nonnegative integer. Then

ℓ2m+1
n+k − ℓ2m+1

n−k =

{∑m
j=0

(
2m+1

j

)
(−1)(n+1)jℓn(2m+1−2j)ℓk(2m+1−2j), if k is odd;

∆2
∑m

j=0

(
2m+1

j

)
(−1)njfn(2m+1−2j)fk(2m+1−2j), otherwise.

Now, we are ready to prove Theorems 1.5–1.8.

Proof of Theorem 1.5. Suppose first that k is odd. Using Lemmas 2.1 and 4.1, we get∑m
j=0

(
2m+1

j

)
f2n(2m+1−2j)ℓk(2m+1−2j)

(f2
2n + f2

k )
2m+1

= ∆2m ·
f2m+1
2n+k − f2m+1

2n−k

f2m+1
2n+k f2m+1

2n−k

= ∆2m

(
1

f2m+1
2n−k

− 1

f2m+1
2n+k

)
.

By Lemma 2.2, it follows that

∞∑
n=L

(
1

f2m+1
2n−k

− 1

f2m+1
2n+k

)
=

∞∑
n=(k+1)/2

k odd

(
1

f2m+1
2n−k

− 1

f2m+1
2n+k

)
=

k∑
r=1

1

f2m+1
2r−1

.

So, the first formula follows.
Suppose next that k is even. By Lemmas 2.1 and 4.1, we get∑m

j=0

(
2m+1

j

)
(−1)jℓ2n(2m+1−2j)fk(2m+1−2j)

(f2
2n − f2

k )
2m+1

= ∆2m ·
f2m+1
2n+k − f2m+1

2n−k

f2m+1
2n+k f2m+1

2n−k

= ∆2m

(
1

f2m+1
2n−k

− 1

f2m+1
2n+k

)
.

Using Lemma 2.3, we have

∞∑
n=L

(
1

f2m+1
2n−k

− 1

f2m+1
2n+k

)
=

∞∑
n=k/2+1
k even

(
1

f2m+1
2n−k

− 1

f2m+1
2n+k

)
=

k∑
r=1

1

f2m+1
2r

.

Then the second formula follows. □

Setting m = 1 and k = 1 in the first formula and m = 1 and k = 2 in the second formula
of Theorem 1.5, we have the following corollary.

Corollary 4.3.
∞∑
n=1

(x3 + 3x)f6n + 3xf2n
(f2

2n + 1)3
= x2 + 4,

∞∑
n=2

x(x4 + 4x2 + 3)ℓ6n − 3xℓ2n
(f2

2n − x2)3
=

(x2 + 4)[(x2 + 2)3 + 1]

x3(x2 + 2)3
.

154 VOLUME 62, NUMBER 2



INFINITE SUMS INVOLVING POWERS OF GIBONACCI POLYNOMIALS

Setting x = 1 in Corollary 4.3, we have the following corollary.

Corollary 4.4.
∞∑
n=1

4F6n + 3F2n

(F 2
2n + 1)3

= 5,
∞∑
n=2

8L6n − 3L2n

(F 2
2n − 1)3

=
140

27
.

The proofs to Theorems 1.6, 1.7, and 1.8 are similar to that of Theorem 1.5 (by Lemmas
2.1, 4.2, 2.2, and 2.3 for Theorem 1.6, Lemmas 2.1, 4.1, 2.4, and 2.5 for Theorem 1.7, and
by Lemmas 2.1, 4.2, 2.4, and 2.5 for Theorem 1.8) and are left as exercises for the interested
reader.

As immediate consequences of Theorem 1.6, we have the following corollaries.

Corollary 4.5.
∞∑
n=1

(x3 + 3x)ℓ6n − 3xℓ2n
(ℓ22n −∆2)3

=
1

x3
,

∞∑
n=2

x(x4 + 4x2 + 3)f6n + 3xf2n
[ℓ22n + (x2 + 4)x2]3

=
1

x2 + 4

(
1

(x2 + 2)3
+

1

(x4 + 4x2 + 2)3

)
.

Corollary 4.6.
∞∑
n=1

4L6n − 3L2n

(L2
2n − 5)3

= 1,
∞∑
n=2

8F6n + 3F2n

(L2
2n + 5)3

=
74

9261
.

From Theorem 1.7, we have the following corollaries.

Corollary 4.7.
∞∑
n=1

(x3 + 3x)f6n+3 − 3xf2n+1

(f2
2n+1 − 1)3

=
x2 + 4

x3
,

∞∑
n=1

x(x4 + 4x2 + 3)ℓ6n+3 + 3xℓ2n+1

(f2
2n+1 + x2)3

=
(x2 + 4)[(x2 + 1)3 + 1]

(x2 + 1)3
.

Corollary 4.8.

∞∑
n=1

4F6n+3 − 3F2n+1

(F 2
2n+1 − 1)3

= 5,

∞∑
n=2

8L6n+3 + 3L2n+1

(F 2
2n+1 + 1)3

=
45

8
.

From Theorem 1.8, we have the following corollaries.

Corollary 4.9.
∞∑
n=1

(x3 + 3x)ℓ6n+3 + 3xℓ2n+1

(ℓ22n+1 + x2 + 4)3
=

1

(x2 + 2)3
,

∞∑
n=1

x(x4 + 4x2 + 3)f6n+3 − 3xf2n+1

[ℓ22n+1 − x2(x2 + 4)]3
=

(x2 + 3)3 + 1

x3(x2 + 4)(x2 + 3)3
.

Corollary 4.10.

∞∑
n=1

4L6n+3 + 3L2n+1

(L2
2n+1 + 5)3

=
1

27
,

∞∑
n=1

8F6n+3 − 3F2n+1

(L2
2n+1 − 5)3

=
13

64
.
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5. Concluding Remark

Following Koshy’s interesting work on infinite sums involving powers of the gibonacci poly-
nomials, we give equalities on infinite sums involving powers of the gibonacci polynomials.
In particular, unified equalities are found on infinite sums involving even powers of the gi-
bonacci polynomials. For the first time, we investigate infinite sums involving odd powers
of the gibonacci polynomials. It would be interesting to find graph-theoretical techniques as
in [4, 6].
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